1
|
Lee CL, Chuang CK, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Understanding Genetic Screening: Harnessing Health Information to Prevent Disease Risks. Int J Med Sci 2025; 22:903-919. [PMID: 39991772 PMCID: PMC11843151 DOI: 10.7150/ijms.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/17/2024] [Indexed: 02/25/2025] Open
Abstract
Genetic screening analyzes an individual's genetic information to assess disease risk and provide personalized health recommendations. This article introduces the public to genetic screening, explaining its definition, principles, history, and common types, including prenatal, newborn, adult disease risk, cancer, and pharmacogenetic screening. It elaborates on the benefits of genetic screening, such as early risk detection, personalized prevention, family risk assessment, and reproductive decision-making. The article also notes limitations, including result interpretation uncertainty, psychological and ethical issues, and privacy and discrimination risks. It provides advice on selecting suitable screening, consulting professionals, choosing reliable institutions, and understanding screening purposes and limitations. Finally, it discusses applying screening results through lifestyle adjustments, regular check-ups, and preventive treatments. By comprehensively introducing genetic screening, the article aims to raise public awareness and encourage utilizing this technology to prevent disease and maintain health.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
2
|
Slavotinek AM, Thompson ML, Martin LJ, Gelb BD. Diagnostic yield after next-generation sequencing in pediatric cardiovascular disease. HGG ADVANCES 2024; 5:100286. [PMID: 38521975 PMCID: PMC11024993 DOI: 10.1016/j.xhgg.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Genetic testing with exome sequencing and genome sequencing is increasingly offered to infants and children with cardiovascular diseases. However, the rates of positive diagnoses after genetic testing within the different categories of cardiac disease and phenotypic subtypes of congenital heart disease (CHD) have been little studied. We report the diagnostic yield after next-generation sequencing in 500 patients with CHD from diverse population subgroups that were enrolled at three different sites in the Clinical Sequencing Evidence-Generating Research consortium. Patients were ascertained due to a primary cardiovascular issue comprising arrhythmia, cardiomyopathy, and/or CHD, and corresponding human phenotype ontology terms were selected to describe the cardiac and extracardiac findings. We examined the diagnostic yield for patients with arrhythmia, cardiomyopathy, and/or CHD and phenotypic subtypes of CHD comprising conotruncal defects, heterotaxy, left ventricular outflow tract obstruction, septal defects, and "other" heart defects. We found a significant increase in the frequency of positive findings for patients who underwent genome sequencing compared to exome sequencing and for syndromic cardiac defects compared to isolated cardiac defects. We also found significantly higher diagnostic rates for patients who presented with isolated cardiomyopathy compared to isolated CHD. For patients with syndromic presentations who underwent genome sequencing, there were significant differences in the numbers of positive diagnoses for phenotypic subcategories of CHD, ranging from 31.7% for septal defects to 60% for "other". Despite variation in the diagnostic yield at each site, our results support genetic testing in pediatric patients with syndromic and isolated cardiovascular issues and in all subtypes of CHD.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Michelle L Thompson
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
De Bruyn H, Johnson M, Moretti M, Ahmed S, Mujat M, Akula JD, Glavan T, Mihalek I, Aslaksen S, Molday LL, Molday RS, Berkowitz BA, Fulton AB. The Surviving, Not Thriving, Photoreceptors in Patients with ABCA4 Stargardt Disease. Diagnostics (Basel) 2024; 14:1545. [PMID: 39061682 PMCID: PMC11275370 DOI: 10.3390/diagnostics14141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Stargardt disease (STGD1), associated with biallelic variants in the ABCA4 gene, is the most common heritable macular dystrophy and is currently untreatable. To identify potential treatment targets, we characterized surviving STGD1 photoreceptors. We used clinical data to identify macular regions with surviving STGD1 photoreceptors. We compared the hyperreflective bands in the optical coherence tomographic (OCT) images that correspond to structures in the STGD1 photoreceptor inner segments to those in controls. We used adaptive optics scanning light ophthalmoscopy (AO-SLO) to study the distribution of cones and AO-OCT to evaluate the interface of photoreceptors and retinal pigment epithelium (RPE). We found that the profile of the hyperreflective bands differed dramatically between patients with STGD1 and controls. AO-SLOs showed patches in which cone densities were similar to those in healthy retinas and others in which the cone population was sparse. In regions replete with cones, there was no debris at the photoreceptor-RPE interface. In regions with sparse cones, there was abundant debris. Our results raise the possibility that pharmaceutical means may protect surviving photoreceptors and so mitigate vision loss in patients with STGD1.
Collapse
Affiliation(s)
- Hanna De Bruyn
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
| | - Megan Johnson
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madelyn Moretti
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Saleh Ahmed
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA;
| | - James D. Akula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomislav Glavan
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Mihalek
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Sigrid Aslaksen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anne B. Fulton
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Hirschi OR, Felker SA, Rednam SP, Vallance KL, Parsons DW, Roy A, Cooper GM, Plon SE. Combined bioinformatic and splicing analysis of likely benign intronic and synonymous variants reveals evidence for pathogenicity. GENETICS IN MEDICINE OPEN 2024; 2:101850. [PMID: 39669609 PMCID: PMC11613871 DOI: 10.1016/j.gimo.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 12/14/2024]
Abstract
Purpose Clinical variant analysis pipelines likely have poor sensitivity to the effects on splicing from variants beyond 10 to 20 bases of exon-intron boundaries. Here, we demonstrate the value of SpliceAI to inform curation of rare variants previously classified as benign/likely benign (B/LB) under current guidelines. Methods Exome sequencing data from 576 pediatric cancer patients enrolled in the Texas KidsCanSeq study were filtered for intronic or synonymous variants absent from population databases, predicted to alter splicing via SpliceAI (>0.20), and scored >10 by combined annotation-dependent depletion. Rare synonymous or intronic B/LB variants in 61 genes submitted to ClinVar were also evaluated and RNA further assessed in monocyte-derived messenger RNA and/or an in vitro splice reporter assay in HEK-293T cells. Results SpliceAI-supplemented analysis of the KidsCanSeq cohort revealed a DICER1 intronic variant that resulted in missplicing in RNA from a proband with a personal and family history of pleuropulmonary blastoma but negative clinical exome and panel reports. Analysis of 34,188 B/LB ClinVar variants yielded 18 variants predicted to cause disrupted reading frames. Assessment of 8 variants (DICER1 n = 4, CDH1 n = 2, PALB2 n = 2) by in vitro splicing assay demonstrated abnormal splice products (mean 66%; range 6% to 100%). When available, phenotypic information from submitting laboratories demonstrated DICER1-associated tumors in 2 families (1 variant) and breast cancer in 3 families (2 PALB2 variants). Conclusion Incorporation of SpliceAI in variant curation pipelines may improve classification of B/LB intronic and synonymous variants and highlight putative pathogenic variants for functional assays and RNA analysis, thereby increasing diagnostic yield for rare diseases.
Collapse
Affiliation(s)
- Owen R. Hirschi
- Baylor College of Medicine, Houston, TX
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX
| | | | - Surya P. Rednam
- Baylor College of Medicine, Houston, TX
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX
| | | | - D. Williams Parsons
- Baylor College of Medicine, Houston, TX
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX
| | | | | | - Sharon E. Plon
- Baylor College of Medicine, Houston, TX
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX
| |
Collapse
|
5
|
Hirschi OR, Felker SA, Rednam SP, Vallance KL, Parsons DW, Roy A, Cooper GM, Plon SE. Combined Bioinformatic and Splicing Analysis of Likely Benign Intronic and Synonymous Variants Reveals Evidence for Pathogenicity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.30.23297632. [PMID: 37961416 PMCID: PMC10635218 DOI: 10.1101/2023.10.30.23297632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Current clinical variant analysis pipelines focus on coding variants and intronic variants within 10-20 bases of an exon-intron boundary that may affect splicing. The impact of newer splicing prediction algorithms combined with in vitro splicing assays on rare variants currently considered Benign/Likely Benign (B/LB) is unknown. Methods Exome sequencing data from 576 pediatric cancer patients enrolled in the Texas KidsCanSeq study were filtered for intronic or synonymous variants absent from population databases, predicted to alter splicing via SpliceAI (>0.20), and scored as potentially deleterious by CADD (>10.0). Total cellular RNA was extracted from monocytes and RT-PCR products analyzed. Subsequently, rare synonymous or intronic B/LB variants in a subset of genes submitted to ClinVar were similarly evaluated. Variants predicted to lead to a frameshifted splicing product were functionally assessed using an in vitro splicing reporter assay in HEK-293T cells. Results KidsCanSeq exome data analysis revealed a rare, heterozygous, intronic variant (NM_177438.3(DICER1):c.574-26A>G) predicted by SpliceAI to result in gain of a secondary splice acceptor site. The proband had a personal and family history of pleuropulmonary blastoma consistent with DICER1 syndrome but negative clinical sequencing reports. Proband RNA analysis revealed alternative DICER1 transcripts including the SpliceAI-predicted transcript.Similar bioinformatic analysis of synonymous or intronic B/LB variants (n=31,715) in ClinVar from 61 Mendelian disease genes yielded 18 variants, none of which could be scored by MaxEntScan. Eight of these variants were assessed (DICER1 n=4, CDH1 n=2, PALB2 n=2) using in vitro splice reporter assay and demonstrated abnormal splice products (mean 66%; range 6% to 100%). Available phenotypic information from submitting laboratories demonstrated DICER1 phenotypes in 2 families (1 variant) and breast cancer phenotypes for PALB2 in 3 families (2 variants). Conclusions Our results demonstrate the power of newer predictive splicing algorithms to highlight rare variants previously considered B/LB in patients with features of hereditary conditions. Incorporation of SpliceAI annotation of existing variant data combined with either direct RNA analysis or in vitro assays has the potential to identify disease-associated variants in patients without a molecular diagnosis.
Collapse
Affiliation(s)
- Owen R Hirschi
- Baylor College of Medicine, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | | | - Surya P Rednam
- Baylor College of Medicine, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | | | - D Williams Parsons
- Baylor College of Medicine, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | | | | | - Sharon E Plon
- Baylor College of Medicine, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
6
|
Wang C, Bertrand KA, Trevino-Talbot M, Flynn M, Ruderman M, Cabral HJ, Bowen DJ, Hughes-Halbert C, Palmer JR. Ethical, legal, and social implications (ELSI) and challenges in the design of a randomized controlled trial to test the online return of cancer genetic research results to U.S. Black women. Contemp Clin Trials 2023; 132:107309. [PMID: 37516165 PMCID: PMC10544717 DOI: 10.1016/j.cct.2023.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND A central challenge to precision medicine research efforts is the return of genetic research results in a manner that is effective, ethical, and efficient. Formal tests of alternate modalities are needed, particularly for racially marginalized populations that have historically been underserved in this context. METHODS We are conducting a randomized controlled trial (RCT) to test scalable modalities for results return and to examine the clinical utility of returning genetic research results to a research cohort of Black women. The primary aim is to compare the efficacy of two communication modalities for results return: 1) a conventional modality that entails telephone disclosure by a Board-certified genetic counselor, and 2) an online self-guided modality that entails results return directly to participants, with optional genetic counselor follow-up via telephone. The trial is being conducted among participants in the Black Women's Health Study (BWHS), where targeted sequencing of 4000 participants was previously completed. RESULTS Several ethical, legal, and social implications (ELSI) and challenges presented, which necessitated substantial revision of the original study protocol. Challenges included chain of custody, re-testing of research results in a CLIA lab, exclusion of VUS results, and digital literacy. Bioethical principles of autonomy, justice, non-maleficence, and beneficence were considered in the design of the study protocol. CONCLUSION This study is uniquely situated to provide critical evidence on the effectiveness of alternative models for genetic results return and provide further insight into the factors influencing access and uptake of genetic information among U.S. Black women. CLINICALTRIALS gov: NCT04407611.
Collapse
Affiliation(s)
- Catharine Wang
- Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, USA.
| | - Kimberly A Bertrand
- Slone Epidemiology Center at Boston University, 72 East Concord St, L-7, Boston, MA 02118, USA.
| | | | - Maureen Flynn
- MGH Institute of Health Professions, 36 1st Ave, Boston, MA 02129, USA.
| | - Maggie Ruderman
- Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St, Boston, MA 02118, USA.
| | - Howard J Cabral
- Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, USA.
| | - Deborah J Bowen
- University of Washington, 1959 NE Pacific Street, Box 357120, Seattle, WA 98195, USA.
| | - Chanita Hughes-Halbert
- University of Southern California, 1845 North Soto Street, MC 9C 9239, Los Angeles, CA 90089, USA.
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, 72 East Concord St, L-7, Boston, MA 02118, USA; Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St, Boston, MA 02118, USA.
| |
Collapse
|
7
|
Wolf SM, Green RC. Return of Results in Genomic Research Using Large-Scale or Whole Genome Sequencing: Toward a New Normal. Annu Rev Genomics Hum Genet 2023; 24:393-414. [PMID: 36913714 PMCID: PMC10497726 DOI: 10.1146/annurev-genom-101122-103209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Genome sequencing is increasingly used in research and integrated into clinical care. In the research domain, large-scale analyses, including whole genome sequencing with variant interpretation and curation, virtually guarantee identification of variants that are pathogenic or likely pathogenic and actionable. Multiple guidelines recommend that findings associated with actionable conditions be offered to research participants in order to demonstrate respect for autonomy, reciprocity, and participant interests in health and privacy. Some recommendations go further and support offering a wider range of findings, including those that are not immediately actionable. In addition, entities covered by the US Health Insurance Portability and Accountability Act (HIPAA) may be required to provide a participant's raw genomic data on request. Despite these widely endorsed guidelines and requirements, the implementation of return of genomic results and data by researchers remains uneven. This article analyzes the ethical and legal foundations for researcher duties to offer adult participants their interpreted results and raw data as the new normal in genomic research.
Collapse
Affiliation(s)
- Susan M Wolf
- Law School and Medical School, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Robert C Green
- Genomes2People Research Program, Harvard Medical School, Mass General Brigham, Broad Institute, and Ariadne Labs, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Halley MC, Olson NW. Blurred Boundaries: Toward an Expanded Ethics of Research and Clinical Care. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2023; 23:5-9. [PMID: 38410998 PMCID: PMC11774246 DOI: 10.1080/15265161.2023.2224148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
|
9
|
Richards JL, Knight SJ. Parents' Perspectives on Secondary Genetic Ancestry Findings in Pediatric Genomic Medicine. Clin Ther 2023; 45:719-728. [PMID: 37573223 PMCID: PMC11182349 DOI: 10.1016/j.clinthera.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE With advances in genome sequencing technologies, large-scale genome-wide sequencing has advanced our understanding of disease risk and etiology and contributes to the rapidly expanding genomic health services in pediatric settings. Because it is possible to return ancestry estimates following clinical genomic sequencing, it is important to understand the interest in ancestry results among families who may have the option of receiving these results. METHODS We conducted 26 semi-structured qualitative telephone interviews of parents with children/newborns with likely genetic conditions from two studies of clinical genome sequencing. Using a purposive sampling approach, we selected parents from the SouthSeq cohort, Clinical Sequencing Evidence-Generating Research (CSER Phase 2) project active in Alabama, Mississippi, and Louisiana, or an earlier Clinical Sequencing Exploratory Research (CSER Phase 1) initiative based in the same region. Our interviews focused on parental knowledge about, attitudes on, interest in, and preferences for receiving genetic ancestry results following clinical genome sequencing in the neonatal intensive care unit or in pediatric clinics. FINDINGS Overall, parents prioritized clinical results or results that would help guide the diagnosis and treatment of their child, but they were also interested in any genetic result, including genetic ancestry, that potentially could enhance the meaning of information on disease risk, prevention and screening guidance, or family planning. While parents thought that ancestry results would help them learn about themselves and their heritage, the had concerns over the privacy, security, and accuracy of genetic ancestry information, although parents indicated that they had greater trust in ancestry findings provided as part of clinical care compared with those offered commercially. Parents also wanted ancestry results to be returned in a timely manner by knowledgeable staff, with kid-friendly materials and online tools available to aid, as needed, in the understanding of their results. IMPLICATIONS Taken together, our results highlight that despite being in high-stress situations, such as having a newborn in the neonatal intensive care unit, parents were interested in receiving genetic ancestry results along with their clinically relevant findings.
Collapse
Affiliation(s)
- Jaimie L Richards
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara J Knight
- Department of Internal Medicine, Division of Epidemiology, University of Utah, School of Medicine, Salt Lake City, Utah, USA; Informatics, Decision-Enhancement, and Analytical Sciences Center of Innovation, Salt Lake City VA Healthcare System, Salt Lake City, Utah, USA.
| |
Collapse
|
10
|
Felker SA, Lawlor JMJ, Hiatt SM, Thompson ML, Latner DR, Finnila CR, Bowling KM, Bonnstetter ZT, Bonini KE, Kelly NR, Kelley WV, Hurst ACE, Rashid S, Kelly MA, Nakouzi G, Hendon LG, Bebin EM, Kenny EE, Cooper GM. Poison exon annotations improve the yield of clinically relevant variants in genomic diagnostic testing. Genet Med 2023; 25:100884. [PMID: 37161864 PMCID: PMC10524927 DOI: 10.1016/j.gim.2023.100884] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
PURPOSE Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze "poison exons" (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease. METHODS We curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts. RESULTS Across 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features. CONCLUSION With a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.
Collapse
Affiliation(s)
| | | | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | | | | | | | | | | - Katherine E Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole R Kelly
- Division of Pediatric Genetic Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
11
|
WGS Data Collections: How Do Genomic Databases Transform Medicine? Int J Mol Sci 2023; 24:ijms24033031. [PMID: 36769353 PMCID: PMC9917848 DOI: 10.3390/ijms24033031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
As a scientific community we assumed that exome sequencing will elucidate the basis of most heritable diseases. However, it turned out it was not the case; therefore, attention has been increasingly focused on the non-coding sequences that encompass 98% of the genome and may play an important regulatory function. The first WGS-based datasets have already been released including underrepresented populations. Although many databases contain pooled data from several cohorts, recently the importance of local databases has been highlighted. Genomic databases are not only collecting data but may also contribute to better diagnostics and therapies. They may find applications in population studies, rare diseases, oncology, pharmacogenetics, and infectious and inflammatory diseases. Further data may be analysed with Al technologies and in the context of other omics data. To exemplify their utility, we put a highlight on the Polish genome database and its practical application.
Collapse
|
12
|
Felker SA, Lawlor JMJ, Hiatt SM, Thompson ML, Latner DR, Finnila CR, Bowling KM, Bonnstetter ZT, Bonini KE, Kelly NR, Kelley WV, Hurst ACE, Kelly MA, Nakouzi G, Hendon LG, Bebin EM, Kenny EE, Cooper GM. Poison exon annotations improve the yield of clinically relevant variants in genomic diagnostic testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523654. [PMID: 36711854 PMCID: PMC9882217 DOI: 10.1101/2023.01.12.523654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Purpose Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains around 50%, suggesting some clinically relevant rare variants may be missed by standard analyses. Here we analyze "poison exons" (PEs) which, while often absent from standard gene annotations, are alternative exons whose inclusion results in a premature termination codon. Variants that alter PE inclusion can lead to loss-of-function and may be highly penetrant contributors to disease. Methods We curated published RNA-seq data from developing mouse cortex to define 1,937 PE regions conserved between humans and mice and potentially relevant to NDDs. We then analyzed variants found by genome sequencing in multiple NDD cohorts. Results Across 2,999 probands, we found six clinically relevant variants in PE regions that were previously overlooked. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family ( SCN1A, SCN2A , and SCN8A ), associated with epilepsies. One variant is in SNRPB , associated with Cerebrocostomandibular Syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and were observed in probands with features consistent with those reported for the associated gene. Conclusion With only a minimal increase in variant analysis burden (most probands had zero or one candidate PE variants in a known NDD gene, with an average of 0.77 per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.
Collapse
Affiliation(s)
| | - James MJ Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| | | | - Donald R Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| | | | - Kevin M Bowling
- Washington University School of Medicine, Saint Louis, MO, USA 63110
| | | | - Katherine E Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai. New York, NY, USA 10029
| | - Nicole R Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA 10467
| | - Whitley V Kelley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| | - Anna CE Hurst
- University of Alabama in Birmingham, Birmingham, AL, USA 35294
| | | | | | - Laura G Hendon
- University of Mississippi Medical Center, Jackson, MS, 39216
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai. New York, NY, USA 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| |
Collapse
|
13
|
Madden JA, Brothers KK, Williams JL, Myers MF, Leppig KA, Clayton EW, Wiesner GL, Holm IA. Impact of returning unsolicited genomic results to nongenetic health care providers in the eMERGE III Network. Genet Med 2022; 24:1297-1305. [PMID: 35341654 PMCID: PMC9940614 DOI: 10.1016/j.gim.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE As genomic sequencing becomes more common, medically actionable secondary findings will increasingly be returned to health care providers (HCPs), who will be faced with managing the resulting patient care. These findings are generally unsolicited, ie, unrelated to the sequencing indication and/or ordered by another clinician. METHODS To understand the impact of receiving unsolicited results, we interviewed HCPs who received genomic results for patients enrolled in the Electronic Medical Records and Genomics (eMERGE) Phase III Network, which returned results on >100 actionable genes to eMERGE participants and HCPs. RESULTS In total, 16 HCPs across 3 eMERGE sites were interviewed about their experience of receiving a positive (likely pathogenic or pathogenic), negative, or variant of uncertain significance result for a patient enrolled in eMERGE Phase III and about managing their patient on the basis of the result. Although unsolicited, HCPs felt responsible for managing the patient's resulting medical care. HCPs indicated that clinical utility depended on the actionability of results, and whereas comfort levels varied, confidence was improved by the availability of subspecialist consults. HCPs were concerned about patient anxiety, insurability, and missing an actionable result in the electronic health record. CONCLUSION Our findings help inform best practices for return of unsolicited genomic screening findings in the future.
Collapse
Affiliation(s)
- Jill A. Madden
- Division of Genetics & Genomics and the Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Kyle K. Brothers
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY
| | | | - Melanie F. Myers
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, and College of Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Ellen Wright Clayton
- Center for Biomedical Ethics and Society and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Georgia L. Wiesner
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Ingrid A. Holm
- Division of Genetics & Genomics and the Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA,Department of Pediatrics, Harvard Medical School, Boston, MA,Correspondence and requests for materials should be addressed to Ingrid A. Holm, Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA.
| |
Collapse
|
14
|
Smith HS, Morain SR, Robinson JO, Canfield I, Malek J, Rubanovich CK, Bloss CS, Ackerman SL, Biesecker B, Brothers KB, Goytia CN, Horowitz CR, Knight SJ, Koenig B, Kraft SA, Outram S, Rini C, Shipman KJ, Waltz M, Wilfond B, McGuire AL. Perceived Utility of Genomic Sequencing: Qualitative Analysis and Synthesis of a Conceptual Model to Inform Patient-Centered Instrument Development. THE PATIENT 2022; 15:317-328. [PMID: 34658003 PMCID: PMC9013723 DOI: 10.1007/s40271-021-00558-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Successful clinical integration of genomic sequencing (GS) requires evidence of its utility. While GS potentially has benefits (utilities) or harms (disutilities) across multiple domains of life for both patients and their families, there is as yet no empirically informed conceptual model of these effects. Our objective was to develop an empirically informed conceptual model of perceived utility of GS that captures utilities and disutilities for patients and their families across diverse backgrounds. METHODS We took a patient-centered approach, in which we began with a review of existing literature followed by collection of primary interview data. We conducted semi-structured interviews to explore types of utility in a clinically and sociopolitically diverse sample of 60 adults from seven Clinical Sequencing Evidence-Generating Research (CSER) consortium projects. Interviewees had either personally received, or were parents of a child who had received, GS results. Qualitative data were analyzed using thematic analysis. Findings from interviews were integrated with existing literature on clinical and personal utility to form the basis of an initial conceptual model that was refined based on expert review and feedback. RESULTS Five key utility types that have been previously identified in qualitative literature held up as primary domains of utility and disutility in our diverse sample. Interview data were used to specify and organize subdomains of an initial conceptual model. After expert refinement, the five primary domains included in the final model are clinical, emotional, behavioral, cognitive, and social, and several subdomains are specified within each. CONCLUSION We present an empirically informed conceptual model of perceived utility of GS. This model can be used to guide development of instruments for patient-centered outcome measurement that capture the range of relevant utilities and disutilities and inform clinical implementation of GS.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA.
| | - Stephanie R Morain
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | - Jill Oliver Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Canfield
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Janet Malek
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Caryn Kseniya Rubanovich
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Cinnamon S Bloss
- Herbert Wertheim School of Public Health, University of California San Diego, San Diego, CA, USA
| | - Sara L Ackerman
- Department of Social and Behavioral Sciences, University of California, San Francisco, CA, USA
| | | | - Kyle B Brothers
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Crispin N Goytia
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol R Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Institute for Health Equity Research, New York, NY, USA
| | - Sara J Knight
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Barbara Koenig
- Program in Bioethics, University of California, San Francisco, CA, USA
| | - Stephanie A Kraft
- Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute and Hospital, Seattle, WA, USA
- Division of Bioethics and Palliative Care, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Simon Outram
- Program in Bioethics, University of California, San Francisco, CA, USA
| | - Christine Rini
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Kelly J Shipman
- Palliative Care and Resilience Lab, Seattle Children's, Seattle, WA, USA
| | - Margaret Waltz
- Department of Social Medicine, UNC-Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Benjamin Wilfond
- Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute and Hospital, Seattle, WA, USA
- Division of Bioethics and Palliative Care, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Liu Z, Roberts R, Mercer TR, Xu J, Sedlazeck FJ, Tong W. Towards accurate and reliable resolution of structural variants for clinical diagnosis. Genome Biol 2022; 23:68. [PMID: 35241127 PMCID: PMC8892125 DOI: 10.1186/s13059-022-02636-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Structural variants (SVs) are a major source of human genetic diversity and have been associated with different diseases and phenotypes. The detection of SVs is difficult, and a diverse range of detection methods and data analysis protocols has been developed. This difficulty and diversity make the detection of SVs for clinical applications challenging and requires a framework to ensure accuracy and reproducibility. Here, we discuss current developments in the diagnosis of SVs and propose a roadmap for the accurate and reproducible detection of SVs that includes case studies provided from the FDA-led SEquencing Quality Control Phase II (SEQC-II) and other consortium efforts.
Collapse
Affiliation(s)
- Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Ruth Roberts
- ApconiX, BioHub at Alderley Park, Alderley Edge, SK10 4TG, UK
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Joshua Xu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
16
|
Challenges and practical solutions for managing secondary genomic findings in primary care. Eur J Med Genet 2021; 65:104384. [PMID: 34768014 DOI: 10.1016/j.ejmg.2021.104384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/25/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022]
Abstract
Primary care providers will increasingly be tasked with managing most secondary findings from genomic sequencing, but literature exploring their capacity to manage findings beyond conventional genetic testing is limited. This study aimed to explore primary care providers' challenges and potential solutions for managing secondary findings. Providers were recruited in two groups. Group 1 providers had a patient in their practice who received secondary findings and all potential group 1 providers were invited to participate. Group 2 providers were provided with the secondary findings of a hypothetical patient and were purposefully sampled for maximal variation in sex, practice setting, and geographic location. Providers were interviewed about their challenges and solutions managing secondary findings from a patient in their practice or a hypothetical patient. Using interpretive description methodology, transcripts were analysed thematically complemented by constant comparison. Out of the fifty-five providers invited, 15 family physicians participated across community and academic settings in Ontario, Canada (range 6-40 years in practice; 10/15 female). Providers described a responsibility to manage secondary findings, but limited capacity for this, describing practice, knowledge, and technical challenges. Providers expressed concern that compared to other incidental findings, secondary genomic findings might be reported directly to patients and result in longer-term anxiety. Potential solutions were a structured letter with categorized results and summary tables highlighting key secondary findings with follow-up recommendations and resources, as well as electronic medical records (EMRs) that store and integrate genomic information for prescribing or referrals. These solutions were deemed essential to address knowledge and technical challenges faced by primary care physicians and ultimately promote clinical utility of secondary findings.
Collapse
|
17
|
Eichinger J, Elger BS, Koné I, Filges I, Shaw D, Zimmermann B, McLennan S. The full spectrum of ethical issues in pediatric genome-wide sequencing: a systematic qualitative review. BMC Pediatr 2021; 21:387. [PMID: 34488686 PMCID: PMC8420043 DOI: 10.1186/s12887-021-02830-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The use of genome-wide sequencing in pediatric medicine and research is growing exponentially. While this has many potential benefits, the normative and empirical literature has highlighted various ethical issues. There have not been, however, any systematic reviews of these issues. The aim of this systematic review is to determine systematically the spectrum of ethical issues that is raised for stakeholders in in pediatric genome-wide sequencing. Methods A systematic review in PubMed and Google Books (publications in English or German between 2004 and 2021) was conducted. Further references were identified via reference screening. Data were analyzed and synthesized using qualitative content analysis. Ethical issues were defined as arising when a relevant normative principle is not adequately considered or when two principles come into conflict. Results Our literature search retrieved 3175 publications of which 143 were included in the analysis. Together these mentioned 106 ethical issues in pediatric genome-wide sequencing, categorized into five themes along the pediatric genome-wide sequencing lifecycle. Most ethical issues identified in relation to genome-wide sequencing typically reflect ethical issues that arise in general genetic testing, but they are often amplified by the increased quantity of data obtained, and associated uncertainties. The most frequently discussed ethical aspects concern the issue of unsolicited findings. Conclusion Concentration of the debate on unsolicited findings risks overlooking other ethical challenges. An overarching difficulty presents the terminological confusion: both with regard to both the test procedure/ the scope of analysis, as well as with the topic of unsolicited findings. It is important that the genetics and ethics communities together with other medical professions involved work jointly on specific case related guidelines to grant the maximum benefit for the care of the children, while preventing patient harm and disproportionate overload of clinicians and the healthcare system by the wealth of available options and economic incentives to increase testing. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02830-w.
Collapse
Affiliation(s)
- Johanna Eichinger
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056, Basel, Switzerland. .,Institute of History and Ethics in Medicine, Technical University of Munich, Munich, Germany.
| | - Bernice S Elger
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056, Basel, Switzerland.,Center for legal medicine (CURML), University of Geneva, Geneva, Switzerland
| | - Insa Koné
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056, Basel, Switzerland
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Shaw
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056, Basel, Switzerland.,Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Bettina Zimmermann
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056, Basel, Switzerland.,Institute of History and Ethics in Medicine, Technical University of Munich, Munich, Germany
| | - Stuart McLennan
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056, Basel, Switzerland.,Institute of History and Ethics in Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Filer DL, Kuo F, Brandt AT, Tilley CR, Mieczkowski PA, Berg JS, Robasky K, Li Y, Bizon C, Tilson JL, Powell BC, Bost DM, Jeffries CD, Wilhelmsen KC. Pre-capture multiplexing provides additional power to detect copy number variation in exome sequencing. BMC Bioinformatics 2021; 22:374. [PMID: 34284719 PMCID: PMC8293537 DOI: 10.1186/s12859-021-04246-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background As exome sequencing (ES) integrates into clinical practice, we should make every effort to utilize all information generated. Copy-number variation can lead to Mendelian disorders, but small copy-number variants (CNVs) often get overlooked or obscured by under-powered data collection. Many groups have developed methodology for detecting CNVs from ES, but existing methods often perform poorly for small CNVs and rely on large numbers of samples not always available to clinical laboratories. Furthermore, methods often rely on Bayesian approaches requiring user-defined priors in the setting of insufficient prior knowledge. This report first demonstrates the benefit of multiplexed exome capture (pooling samples prior to capture), then presents a novel detection algorithm, mcCNV (“multiplexed capture CNV”), built around multiplexed capture. Results We demonstrate: (1) multiplexed capture reduces inter-sample variance; (2) our mcCNV method, a novel depth-based algorithm for detecting CNVs from multiplexed capture ES data, improves the detection of small CNVs. We contrast our novel approach, agnostic to prior information, with the the commonly-used ExomeDepth. In a simulation study mcCNV demonstrated a favorable false discovery rate (FDR). When compared to calls made from matched genome sequencing, we find the mcCNV algorithm performs comparably to ExomeDepth. Conclusion Implementing multiplexed capture increases power to detect single-exon CNVs. The novel mcCNV algorithm may provide a more favorable FDR than ExomeDepth. The greatest benefits of our approach derive from (1) not requiring a database of reference samples and (2) not requiring prior information about the prevalance or size of variants. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04246-w.
Collapse
Affiliation(s)
- Dayne L Filer
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA. .,Renaissance Computing Institute, Chapel Hill, USA.
| | - Fengshen Kuo
- Renaissance Computing Institute, Chapel Hill, USA
| | - Alicia T Brandt
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA
| | | | | | - Jonathan S Berg
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA
| | - Kimberly Robasky
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA.,Renaissance Computing Institute, Chapel Hill, USA.,UNC School of Information and Library Science, Chapel Hill, USA
| | - Yun Li
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA.,Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, USA
| | - Chris Bizon
- Renaissance Computing Institute, Chapel Hill, USA
| | | | - Bradford C Powell
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA.,Renaissance Computing Institute, Chapel Hill, USA
| | - Darius M Bost
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA.,Renaissance Computing Institute, Chapel Hill, USA
| | | | - Kirk C Wilhelmsen
- Department of Genetics, UNC School of Medicine, Chapel Hill, USA.,Renaissance Computing Institute, Chapel Hill, USA.,Department of Neurology, UNC School of Medicine, Chapel Hill, USA
| |
Collapse
|
19
|
Lemke AA, Amendola LM, Thompson J, Dunnenberger HM, Kuchta K, Wang C, Dilzell-Yu K, Hulick PJ. Patient-Reported Outcomes and Experiences with Population Genetic Testing Offered Through a Primary Care Network. Genet Test Mol Biomarkers 2021; 25:152-160. [PMID: 33596141 PMCID: PMC7891215 DOI: 10.1089/gtmb.2020.0275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aims: To explore patient experiences in a large-scale primary care-based, preemptive genetic testing program. Methods: Patients who received genetic results from the initiative were invited to participate in an online survey 3 weeks postresult disclosure. A 6-month follow-up survey was sent to assess changes over time. Results: The initial survey was completed by 1646 patients, with 544 completing the 6-month follow-up survey. The following outcomes were high overall: patient-reported understanding of results (cancer: 87%; cardiac: 86%); perceived utility (75%); positive emotions (relieved: 66.8%; happy: 62.0%); family result sharing (67.6%); and satisfaction (87%), although analysis by demographic factors identified groups who may benefit from additional education and emotional support. Results-related health behaviors and discussions with providers increased over time (screening procedures 6.1% to 14.2% p < 0.001; provider discussion 10.3% to 25.3%, p < 0.001), and were more likely to take place for patients with positive cancer and/or cardiac results (39.8% vs. 7.6%, p < 0.001). Forty-seven percent of patients reported insurance discrimination concerns, and most (79.4%) were not familiar with privacy and nondiscrimination laws. Concerns regarding discrimination and negative emotions decreased between the two survey time points (privacy issues 44.6% to 35.1% p < 0.001; life insurance discrimination concerns 35.5% to 29.6%, p = 0.001; anxiety 8.1% to 3.3%, p < 0.001; and uncertainty 19.8% to 12.8%, p < 0.001). These findings led to the development and integration of additional patient resources to improve program implementation. Conclusion: Our findings highlight patient experiences with and areas of need in a community-based genomic screening pilot initiative using a mixed primary care/genetics provider model to deliver precision medicine.
Collapse
Affiliation(s)
- Amy A Lemke
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Laura M Amendola
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Jennifer Thompson
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Henry M Dunnenberger
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Kristine Kuchta
- Center for Biomedical Research Informatics, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Chi Wang
- Center for Biomedical Research Informatics, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Kristen Dilzell-Yu
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Peter J Hulick
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| |
Collapse
|
20
|
Staley BS, Milko LV, Waltz M, Griesemer I, Mollison L, Grant TL, Farnan L, Roche M, Navas A, Lightfoot A, Foreman AKM, O'Daniel JM, O'Neill SC, Lin FC, Roman TS, Brandt A, Powell BC, Rini C, Berg JS, Bensen JT. Evaluating the clinical utility of early exome sequencing in diverse pediatric outpatient populations in the North Carolina Clinical Genomic Evaluation of Next-generation Exome Sequencing (NCGENES) 2 study: a randomized controlled trial. Trials 2021; 22:395. [PMID: 34127041 PMCID: PMC8201439 DOI: 10.1186/s13063-021-05341-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Exome sequencing (ES) has probable utility for shortening the diagnostic odyssey of children with suspected genetic disorders. This report describes the design and methods of a study evaluating the potential of ES as a routine clinical tool for pediatric patients who have suspected genetic conditions and who are in the early stages of the diagnostic odyssey. METHODS The North Carolina Clinical Genomic Evaluation by Next-generation Exome Sequencing (NCGENES) 2 study is an interdisciplinary, multi-site Phase III randomized controlled trial of two interventions: educational pre-visit preparation (PVP) and offer of first-line ES. In this full-factorial design, parent-child dyads are randomly assigned to one of four study arms (PVP + usual care, ES + usual care, PVP + ES + usual care, or usual care alone) in equal proportions. Participants are recruited from Pediatric Genetics or Neurology outpatient clinics in three North Carolina healthcare facilities. Eligible pediatric participants are < 16 years old and have a first visit to a participating clinic, a suspected genetic condition, and an eligible parent/guardian to attend the clinic visit and complete study measures. The study oversamples participants from underserved and under-represented populations. Participants assigned to the PVP arms receive an educational booklet and question prompt list before clinical interactions. Randomization to offer of first-line ES is revealed after a child's clinic visit. Parents complete measures at baseline, pre-clinic, post-clinic, and two follow-up timepoints. Study clinicians provide phenotypic data and complete measures after the clinic visit and after returning results. Reportable study-related research ES results are confirmed in a CLIA-certified clinical laboratory. Results are disclosed to the parent by the clinical team. A community consultation team contributed to the development of study materials and study implementation methods and remains engaged in the project. DISCUSSION NCGENES 2 will contribute valuable knowledge concerning technical, clinical, psychosocial, and health economic issues associated with using early diagnostic ES to shorten the diagnostic odyssey of pediatric patients with likely genetic conditions. Results will inform efforts to engage diverse populations in genomic medicine research and generate evidence that can inform policy, practice, and future research related to the utility of first-line diagnostic ES in health care. TRIAL REGISTRATION ClinicalTrials.gov NCT03548779 . Registered on June 07, 2018.
Collapse
Affiliation(s)
- Brooke S Staley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Campus Box #7295, Chapel Hill, NC, 27599-7295, USA.
| | - Laura V Milko
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Margaret Waltz
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ida Griesemer
- Department of Heath Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lonna Mollison
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tracey L Grant
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Laura Farnan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Myra Roche
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Angelo Navas
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra Lightfoot
- Department of Heath Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ann Katherine M Foreman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Julianne M O'Daniel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Suzanne C O'Neill
- Department of Oncology, Georgetown University, Washington, DC, 20007, USA
| | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alicia Brandt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bradford C Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christine Rini
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Campus Box #7295, Chapel Hill, NC, 27599-7295, USA
| |
Collapse
|
21
|
Tillman EM, Beavers CJ, Afanasjeva J, Momary KM, Strnad KG, Yerramilli A, Williams AM, Smith BA, Florczykowski B, Fahmy M. Current and future state of clinical pharmacist‐led precision medicine initiatives. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2021. [DOI: 10.1002/jac5.1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Monica Fahmy
- American College of Clinical Pharmacy Lenexa Kansas USA
| |
Collapse
|
22
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
23
|
Ding X, Schimenti JC. Strategies to Identify Genetic Variants Causing Infertility. Trends Mol Med 2021; 27:792-806. [PMID: 33431240 DOI: 10.1016/j.molmed.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Genetic causes are thought to underlie about half of infertility cases, but understanding the genetic bases has been a major challenge. Modern genomics tools allow more sophisticated exploration of genetic causes of infertility through population, family-based, and individual studies. Nevertheless, potential therapies based on genetic diagnostics will be limited until there is certainty regarding the causality of genetic variants identified in an individual. Genome modulation and editing technologies have revolutionized our ability to functionally test such variants, and also provide a potential means for clinical correction of infertility variants. This review addresses strategies being used to identify causative variants of infertility.
Collapse
Affiliation(s)
- Xinbao Ding
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Nestor JG, Fedotov A, Fasel D, Marasa M, Milo-Rasouly H, Wynn J, Chung WK, Gharavi A, Hripcsak G, Bakken S, Sengupta S, Weng C. An electronic health record (EHR) log analysis shows limited clinician engagement with unsolicited genetic test results. JAMIA Open 2021; 4:ooab014. [PMID: 33709066 PMCID: PMC7935499 DOI: 10.1093/jamiaopen/ooab014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 11/14/2022] Open
Abstract
How clinicians utilize medically actionable genomic information, displayed in the electronic health record (EHR), in medical decision-making remains unknown. Participating sites of the Electronic Medical Records and Genomics (eMERGE) Network have invested resources into EHR integration efforts to enable the display of genetic testing data across heterogeneous EHR systems. To assess clinicians' engagement with unsolicited EHR-integrated genetic test results of eMERGE participants within a large tertiary care academic medical center, we analyzed automatically generated EHR access log data. We found that clinicians viewed only 1% of all the eMERGE genetic test results integrated in the EHR. Using a cluster analysis, we also identified different user traits associated with varying degrees of engagement with the EHR-integrated genomic data. These data contribute important empirical knowledge about clinicians limited and brief engagements with unsolicited EHR-integrated genetic test results of eMERGE participants. Appreciation for user-specific roles provide additional context for why certain users were more or less engaged with the unsolicited results. This study highlights opportunities to use EHR log data as a performance metric to more precisely inform ongoing EHR-integration efforts and decisions about the allocation of informatics resources in genomic research.
Collapse
Affiliation(s)
- Jordan G Nestor
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Alexander Fedotov
- The Irving Institute for Clinical and Translational Research, Columbia University, New York, New York, USA
| | - David Fasel
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University, New York, New York, USA
| | - Maddalena Marasa
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University, New York, New York, USA
| | - Hila Milo-Rasouly
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University, New York, New York, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Wendy K Chung
- Departments of Pediatric and Medicine, Columbia University, New York, New York, USA
| | - Ali Gharavi
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University, New York, New York, USA
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Suzanne Bakken
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Soumitra Sengupta
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| |
Collapse
|
25
|
Finucane BM, Myers SM, Martin CL, Ledbetter DH. Long overdue: including adults with brain disorders in precision health initiatives. Curr Opin Genet Dev 2020; 65:47-52. [PMID: 32544666 PMCID: PMC7736248 DOI: 10.1016/j.gde.2020.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
Developmental brain disorders (DBD), including autism spectrum disorder, intellectual disability, and schizophrenia, are clinically defined and etiologically heterogeneous conditions with a wide range of outcomes. Rare pathogenic copy number and single nucleotide genomic variants are among the most common known etiologies, with diagnostic yields approaching for some DBD cohorts. Incorporating genetic testing into the care of adult patients with DBD, paired with targeted genetic counseling and family cascade testing, may increase self-advocacy and decrease stigma. In the long-term, breakthroughs in the understanding of DBD pathophysiology will hinge on the identification, engagement, and study of individuals with rare genetic DBD etiologies, consistent with successful precision medicine approaches to the treatment of cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Brenda M Finucane
- Autism & Developmental Medicine Institute, Geisinger, United States.
| | - Scott M Myers
- Autism & Developmental Medicine Institute, Geisinger, United States
| | - Christa L Martin
- Autism & Developmental Medicine Institute, Geisinger, United States
| | | |
Collapse
|
26
|
Lewis C, Hammond J, Hill M, Searle B, Hunter A, Patch C, Chitty LS, Sanderson SC. Young people's understanding, attitudes and involvement in decision-making about genome sequencing for rare diseases: A qualitative study with participants in the UK 100, 000 Genomes Project. Eur J Med Genet 2020; 63:104043. [DOI: 10.1016/j.ejmg.2020.104043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
|
27
|
Mogaka JJO, Chimbari MJ. The mediating effects of public genomic knowledge in precision medicine implementation: A structural equation model approach. PLoS One 2020; 15:e0240585. [PMID: 33052984 PMCID: PMC7556538 DOI: 10.1371/journal.pone.0240585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
Precision medicine emphasizes predictive, preventive and personalized treatment on the basis of information gleaned from personal genetic and environmental data. Its implementation at health systems level is regarded as multifactorial, involving variables associated with omics technologies, public genomic awareness and adoption tendencies for new medical technologies. However, interrelationships of the various factors and their synergy has not been sufficiently quantified. Based on a survey of 270 participants involved in the use of molecular tests (omics-based biomarkers, OBMs), this study examined how characteristics of omics biomarkers influence precision medicine implementation outcomes (ImO) through an intermediary factor, public genomic awareness (represented by User Response, UsR). A structural equation modelling (SEM) approach was applied to develop and test a 3 latent variable mediation model; each latent variable being measured by a set of indicators ranging between three and six. Mediation analysis results confirmed a partial mediation effect (an indirect effect represented as the product of paths 'a' and 'b' (a*b)) of 0.36 at 90% confidence level, CI = [0.03, 9.94]. Results from the individual mediation paths 'a' and 'b' however, showed that these effects were negative(a = -0.38, b = -0.94). Path 'a' represents the effect of characteristics of OBMs on the mediator, UsR; 'b' represents the effect of the mediator, UsR on implementation outcomes, ImO, holding OBMs constant. The results have both theoretical and practice implications for biomedical genomics research and clinical genomics, respectively. For instance, the results imply better ways have to be devised to more effectively engage the public in addressing extended family support for extended family cascade screening, especially for monogenic hereditary conditions like BRCA-related breast cancer and colorectal cancer in Lynch syndrome families. At basic biomedical research level, results suggest an integrated biomarker development pipeline, with early consideration of factors that may influence biomarker uptake. The results are also relevant at health systems level in indicating which factors should be addressed for successful.
Collapse
Affiliation(s)
- John Jules O. Mogaka
- Department of Public Health Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Moses J. Chimbari
- Department of Public Health Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
28
|
Rockowitz S, LeCompte N, Carmack M, Quitadamo A, Wang L, Park M, Knight D, Sexton E, Smith L, Sheidley B, Field M, Holm IA, Brownstein CA, Agrawal PB, Kornetsky S, Poduri A, Snapper SB, Beggs AH, Yu TW, Williams DA, Sliz P. Children's rare disease cohorts: an integrative research and clinical genomics initiative. NPJ Genom Med 2020; 5:29. [PMID: 32655885 PMCID: PMC7338382 DOI: 10.1038/s41525-020-0137-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
While genomic data is frequently collected under distinct research protocols and disparate clinical and research regimes, there is a benefit in streamlining sequencing strategies to create harmonized databases, particularly in the area of pediatric rare disease. Research hospitals seeking to implement unified genomics workflows for research and clinical practice face numerous challenges, as they need to address the unique requirements and goals of the distinct environments and many stakeholders, including clinicians, researchers and sequencing providers. Here, we present outcomes of the first phase of the Children’s Rare Disease Cohorts initiative (CRDC) that was completed at Boston Children’s Hospital (BCH). We have developed a broadly sharable database of 2441 exomes from 15 pediatric rare disease cohorts, with major contributions from early onset epilepsy and early onset inflammatory bowel disease. All sequencing data is integrated and combined with phenotypic and research data in a genomics learning system (GLS). Phenotypes were both manually annotated and pulled automatically from patient medical records. Deployment of a genomically-ordered relational database allowed us to provide a modular and robust platform for centralized storage and analysis of research and clinical data, currently totaling 8516 exomes and 112 genomes. The GLS integrates analytical systems, including machine learning algorithms for automated variant classification and prioritization, as well as phenotype extraction via natural language processing (NLP) of clinical notes. This GLS is extensible to additional analytic systems and growing research and clinical collections of genomic and other types of data.
Collapse
Affiliation(s)
- Shira Rockowitz
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115 USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA
| | - Nicholas LeCompte
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115 USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA
| | - Mary Carmack
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115 USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA
| | - Andrew Quitadamo
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115 USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA
| | - Lily Wang
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115 USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA
| | - Meredith Park
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115 USA.,Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115 USA
| | - Devon Knight
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115 USA.,Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115 USA
| | - Emma Sexton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115 USA.,Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115 USA
| | - Lacey Smith
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115 USA.,Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115 USA
| | - Beth Sheidley
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115 USA.,Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115 USA
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115 USA
| | - Ingrid A Holm
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115 USA
| | - Catherine A Brownstein
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115 USA
| | - Pankaj B Agrawal
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115 USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115 USA
| | - Susan Kornetsky
- Research Administration, Boston Children's Hospital, Boston, MA 02115 USA
| | - Annapurna Poduri
- Harvard Medical School, Boston, MA 02115 USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115 USA.,Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115 USA
| | - Scott B Snapper
- Harvard Medical School, Boston, MA 02115 USA.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115 USA
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115 USA
| | - Timothy W Yu
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115 USA
| | - David A Williams
- Harvard Medical School, Boston, MA 02115 USA.,Division of Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115 USA
| | - Piotr Sliz
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115 USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
29
|
East KM, Cochran M, Kelley WV, Greve V, Emmerson K, Raines G, Cochran JN, Hott AM, Bick D. Understanding the present and preparing for the future: Exploring the needs of diagnostic and elective genomic medicine patients. J Genet Couns 2020; 28:438-448. [PMID: 30964585 DOI: 10.1002/jgc4.1114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
Advances in genomic knowledge and technology have increased the use of comprehensive clinical sequencing tests. Genome sequencing has established utility for diagnosing patients with rare, undiagnosed diseases as well as interest in an elective context, without a clinical indication for testing. The Smith Family Clinic for Genomic Medicine, LLC in Huntsville, AL is a private practice genomic medicine clinic caring for both diagnostic (79%) and elective (21%) patients. Diagnostic and elective patients are seen on a clinical basis and receive standard care. Genome sequencing is provided on a self-pay basis, with assistance available for diagnostic patients who have financial need. Here, we describe demographics and motivations of the distinct patient populations and our experiences engaging patients in online education. Diagnostic patients were motivated by the possibility of receiving an explanation for symptoms (96%) while elective patients were motivated by the chance to learn about future disease risk (57%). Elective patients were less likely to engage with online education, with only 28% reading all assigned topics compared to 54% of diagnostic patients. Understanding the needs, interests, and barriers unique to diagnostic and elective patients is critical to inform individualized and scalable best practices in patient education and engagement.
Collapse
Affiliation(s)
- Kelly M East
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Meagan Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | | | - Veronica Greve
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | | | - Grace Raines
- The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Adam M Hott
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| |
Collapse
|
30
|
Returning Results in the Genomic Era: Initial Experiences of the eMERGE Network. J Pers Med 2020; 10:jpm10020030. [PMID: 32349224 PMCID: PMC7354592 DOI: 10.3390/jpm10020030] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
A goal of the 3rd phase of the Electronic Medical Records and Genomics (eMERGE3) Network was to examine the return of results (RoR) of actionable variants in more than 100 genes to consenting participants and their healthcare providers. Each of the 10 eMERGE sites developed plans for three essential elements of the RoR process: Disclosure to the participant, notification of the health care provider, and integration of results into the electronic health record (EHR). Procedures and protocols around these three elements were adapted as appropriate to individual site requirements and limitations. Detailed information about the RoR procedures at each site was obtained through structured telephone interviews and follow-up surveys with the clinical investigator leading or participating in the RoR process at each eMERGE3 institution. Because RoR processes at each of the 10 sites allowed for taking into account differences in population, disease focus and institutional requirements, significant heterogeneity of process was identified, including variability in the order in which patients and clinicians were notified and results were placed in the EHR. This heterogeneity in the process flow for eMERGE3 RoR reflects the “real world” of genomic medicine in which RoR procedures must be shaped by the needs of the patients and institutional environments.
Collapse
|
31
|
Mollison L, O'Daniel JM, Henderson GE, Berg JS, Skinner D. Parents' perceptions of personal utility of exome sequencing results. Genet Med 2020; 22:752-757. [PMID: 31857707 PMCID: PMC7192542 DOI: 10.1038/s41436-019-0730-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Clinical genome or exome sequencing (GS/ES) provides a diagnosis for many individuals with suspected genetic disorders, but also yields negative or uncertain results for the majority. This study examines how parents of a child with an undiagnosed condition attribute personal utility to all types of ES results. METHODS Return of 31 exome sequencing results was observed during clinic sessions, followed by semistructured interviews with parents one month later. Observations and interviews were recorded and transcribed. Data display matrices were used for content analysis and systematic comparisons of parents' perceptions of utility. RESULTS ES results could not provide all the answers to parents' questions, especially in cases of clinically uninformative results, but parents nonetheless attributed utility to the knowledge gained. Parents across all results categories used the genomic information to rule out possible causes, end or postpone the diagnostic odyssey, and shift focus to treatment and management of symptoms. CONCLUSION This study suggests that parents value even uninformative ES results while expressing hope for future discoveries. As pediatric genetics moves toward GS/ES as a first-tier test, how parents perceive the personal utility of negative or uncertain results is an important topic for genetic counseling and further research.
Collapse
Affiliation(s)
- Lonna Mollison
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Julianne M O'Daniel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gail E Henderson
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Debra Skinner
- FPG Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
What Results Should Be Returned from Opportunistic Screening in Translational Research? J Pers Med 2020; 10:jpm10010013. [PMID: 32121581 PMCID: PMC7151595 DOI: 10.3390/jpm10010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Increasingly, patients without clinical indications are undergoing genomic tests. The purpose of this study was to assess their appreciation and comprehension of their test results and their clinicians' reactions. We conducted 675 surveys with participants from the Vanderbilt Electronic Medical Records and Genomics (eMERGE) cohort. We interviewed 36 participants: 19 had received positive results, and 17 were self-identified racial minorities. Eleven clinicians who had patients who had participated in eMERGE were interviewed. A further 21 of these clinicians completed surveys. Participants spontaneously admitted to understanding little or none of the information returned to them from the eMERGE study. However, they simultaneously said that they generally found testing to be "helpful," even when it did not inform their health care. Primary care physicians expressed discomfort in being asked to interpret the results for their patients and described it as an undue burden. Providing genetic testing to otherwise healthy patients raises a number of ethical issues that warrant serious consideration. Although our participants were enthusiastic about enrolling and receiving their results, they express a limited understanding of what the results mean for their health care. This fact, coupled the clinicians' concern, urges greater caution when educating and enrolling participants in clinically non-indicated testing.
Collapse
|
33
|
Marchant G, Barnes M, Evans JP, LeRoy B, Wolf SM. From Genetics to Genomics: Facing the Liability Implications in Clinical Care. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2020; 48:11-43. [PMID: 32342786 PMCID: PMC7433684 DOI: 10.1177/1073110520916994] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Health care is transitioning from genetics to genomics, in which single-gene testing for diagnosis is being replaced by multi-gene panels, genome-wide sequencing, and other multi-genic tests for disease diagnosis, prediction, prognosis, and treatment. This health care transition is spurring a new set of increased or novel liability risks for health care providers and test laboratories. This article describes this transition in both medical care and liability, and addresses 11 areas of potential increased or novel liability risk, offering recommendations to both health care and legal actors to address and manage those liability risks.
Collapse
Affiliation(s)
- Gary Marchant
- Gary Marchant, B.SC., Ph.D., J.D., M.P.P., is Regents' Professor, Lincoln Professor of Emerging Technologies, Law & Ethics, and Faculty Director of the Center for Law, Science & Innovation at ASU. He researches, teaches and speaks about governance of a variety of emerging technologies including genomics, biotechnology, neuroscience, nanotechnology and artificial intelligence. Prior to starting at ASU in 1999, he was a partner in the Washington, DC office of Kirkland & Ellis. Mark Barnes, J.D., LL.M., is a partner in the life sciences practice at Ropes & Gray LLP; teaches health care law and the law of biomedical research at Yale Law School; and is founder and co-director of the Multi-Regional Clinical Trials Center (MRCT Center) of Harvard University and Brigham and Women's Hospital. James P. Evans, M.D., Ph.D., is a Medical Geneticist and Internist who is currently retired, but pursued a long-standing interest in genomics and its broad social implications. He is Professor Emeritus, University of North Carolina at Chapel Hill, Department of Genetics. Bonnie LeRoy, M.S., L.G.C., is a licensed genetic counselor with over 20 years of clinical experience. She developed and now directs the Graduate Program in Genetic Counseling at the University of Minnesota. She is a past president of the National Society of Genetic Counselors, the American Board of Genetic Counseling, and the Association of Genetic Counseling Program Directors. Susan M. Wolf, J.D., is McKnight Presidential Professor of Law, Medicine & Public Policy; Faegre Baker Daniels Professor of Law; Professor of Medicine; and Chair of the Consortium on Law and Values in Health, Environment & the Life Sciences at the University of Minnesota. She is a Principal Investigator on the LawSeq project funded by NIH. Institutions are listed for author identification only
| | - Mark Barnes
- Gary Marchant, B.SC., Ph.D., J.D., M.P.P., is Regents' Professor, Lincoln Professor of Emerging Technologies, Law & Ethics, and Faculty Director of the Center for Law, Science & Innovation at ASU. He researches, teaches and speaks about governance of a variety of emerging technologies including genomics, biotechnology, neuroscience, nanotechnology and artificial intelligence. Prior to starting at ASU in 1999, he was a partner in the Washington, DC office of Kirkland & Ellis. Mark Barnes, J.D., LL.M., is a partner in the life sciences practice at Ropes & Gray LLP; teaches health care law and the law of biomedical research at Yale Law School; and is founder and co-director of the Multi-Regional Clinical Trials Center (MRCT Center) of Harvard University and Brigham and Women's Hospital. James P. Evans, M.D., Ph.D., is a Medical Geneticist and Internist who is currently retired, but pursued a long-standing interest in genomics and its broad social implications. He is Professor Emeritus, University of North Carolina at Chapel Hill, Department of Genetics. Bonnie LeRoy, M.S., L.G.C., is a licensed genetic counselor with over 20 years of clinical experience. She developed and now directs the Graduate Program in Genetic Counseling at the University of Minnesota. She is a past president of the National Society of Genetic Counselors, the American Board of Genetic Counseling, and the Association of Genetic Counseling Program Directors. Susan M. Wolf, J.D., is McKnight Presidential Professor of Law, Medicine & Public Policy; Faegre Baker Daniels Professor of Law; Professor of Medicine; and Chair of the Consortium on Law and Values in Health, Environment & the Life Sciences at the University of Minnesota. She is a Principal Investigator on the LawSeq project funded by NIH. Institutions are listed for author identification only
| | - James P Evans
- Gary Marchant, B.SC., Ph.D., J.D., M.P.P., is Regents' Professor, Lincoln Professor of Emerging Technologies, Law & Ethics, and Faculty Director of the Center for Law, Science & Innovation at ASU. He researches, teaches and speaks about governance of a variety of emerging technologies including genomics, biotechnology, neuroscience, nanotechnology and artificial intelligence. Prior to starting at ASU in 1999, he was a partner in the Washington, DC office of Kirkland & Ellis. Mark Barnes, J.D., LL.M., is a partner in the life sciences practice at Ropes & Gray LLP; teaches health care law and the law of biomedical research at Yale Law School; and is founder and co-director of the Multi-Regional Clinical Trials Center (MRCT Center) of Harvard University and Brigham and Women's Hospital. James P. Evans, M.D., Ph.D., is a Medical Geneticist and Internist who is currently retired, but pursued a long-standing interest in genomics and its broad social implications. He is Professor Emeritus, University of North Carolina at Chapel Hill, Department of Genetics. Bonnie LeRoy, M.S., L.G.C., is a licensed genetic counselor with over 20 years of clinical experience. She developed and now directs the Graduate Program in Genetic Counseling at the University of Minnesota. She is a past president of the National Society of Genetic Counselors, the American Board of Genetic Counseling, and the Association of Genetic Counseling Program Directors. Susan M. Wolf, J.D., is McKnight Presidential Professor of Law, Medicine & Public Policy; Faegre Baker Daniels Professor of Law; Professor of Medicine; and Chair of the Consortium on Law and Values in Health, Environment & the Life Sciences at the University of Minnesota. She is a Principal Investigator on the LawSeq project funded by NIH. Institutions are listed for author identification only
| | - Bonnie LeRoy
- Gary Marchant, B.SC., Ph.D., J.D., M.P.P., is Regents' Professor, Lincoln Professor of Emerging Technologies, Law & Ethics, and Faculty Director of the Center for Law, Science & Innovation at ASU. He researches, teaches and speaks about governance of a variety of emerging technologies including genomics, biotechnology, neuroscience, nanotechnology and artificial intelligence. Prior to starting at ASU in 1999, he was a partner in the Washington, DC office of Kirkland & Ellis. Mark Barnes, J.D., LL.M., is a partner in the life sciences practice at Ropes & Gray LLP; teaches health care law and the law of biomedical research at Yale Law School; and is founder and co-director of the Multi-Regional Clinical Trials Center (MRCT Center) of Harvard University and Brigham and Women's Hospital. James P. Evans, M.D., Ph.D., is a Medical Geneticist and Internist who is currently retired, but pursued a long-standing interest in genomics and its broad social implications. He is Professor Emeritus, University of North Carolina at Chapel Hill, Department of Genetics. Bonnie LeRoy, M.S., L.G.C., is a licensed genetic counselor with over 20 years of clinical experience. She developed and now directs the Graduate Program in Genetic Counseling at the University of Minnesota. She is a past president of the National Society of Genetic Counselors, the American Board of Genetic Counseling, and the Association of Genetic Counseling Program Directors. Susan M. Wolf, J.D., is McKnight Presidential Professor of Law, Medicine & Public Policy; Faegre Baker Daniels Professor of Law; Professor of Medicine; and Chair of the Consortium on Law and Values in Health, Environment & the Life Sciences at the University of Minnesota. She is a Principal Investigator on the LawSeq project funded by NIH. Institutions are listed for author identification only
| | - Susan M Wolf
- Gary Marchant, B.SC., Ph.D., J.D., M.P.P., is Regents' Professor, Lincoln Professor of Emerging Technologies, Law & Ethics, and Faculty Director of the Center for Law, Science & Innovation at ASU. He researches, teaches and speaks about governance of a variety of emerging technologies including genomics, biotechnology, neuroscience, nanotechnology and artificial intelligence. Prior to starting at ASU in 1999, he was a partner in the Washington, DC office of Kirkland & Ellis. Mark Barnes, J.D., LL.M., is a partner in the life sciences practice at Ropes & Gray LLP; teaches health care law and the law of biomedical research at Yale Law School; and is founder and co-director of the Multi-Regional Clinical Trials Center (MRCT Center) of Harvard University and Brigham and Women's Hospital. James P. Evans, M.D., Ph.D., is a Medical Geneticist and Internist who is currently retired, but pursued a long-standing interest in genomics and its broad social implications. He is Professor Emeritus, University of North Carolina at Chapel Hill, Department of Genetics. Bonnie LeRoy, M.S., L.G.C., is a licensed genetic counselor with over 20 years of clinical experience. She developed and now directs the Graduate Program in Genetic Counseling at the University of Minnesota. She is a past president of the National Society of Genetic Counselors, the American Board of Genetic Counseling, and the Association of Genetic Counseling Program Directors. Susan M. Wolf, J.D., is McKnight Presidential Professor of Law, Medicine & Public Policy; Faegre Baker Daniels Professor of Law; Professor of Medicine; and Chair of the Consortium on Law and Values in Health, Environment & the Life Sciences at the University of Minnesota. She is a Principal Investigator on the LawSeq project funded by NIH. Institutions are listed for author identification only
| |
Collapse
|
34
|
Biswas S, Medne L, Devkota B, Bedoukian E, Berrodin D, Izumi K, Deardorff MA, Tarpinian J, Leonard J, Pyle L, Gray C, Montgomery J, Williams T, Fortunato S, Weatherly J, McEldrew D, Kaur M, Raible SE, Wilkens A, Spinner NB, Skraban C, Krantz ID. A Centralized Approach for Practicing Genomic Medicine. Pediatrics 2020; 145:peds.2019-0855. [PMID: 32102930 PMCID: PMC9921770 DOI: 10.1542/peds.2019-0855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 11/24/2022] Open
Abstract
Next-generation sequencing has revolutionized the diagnostic process, making broadscale testing affordable and applicable to almost all specialties; however, there remain several challenges in its widespread implementation. Barriers such as lack of infrastructure or expertise within local health systems and complex result interpretation or counseling make it harder for frontline clinicians to incorporate genomic testing in their existing workflow. The general population is more informed and interested in pursuing genetic testing, and this has been coupled with the increasing accessibility of direct-to-consumer testing. As a result of these changes, primary care physicians and nongenetics specialty providers find themselves seeing patients for whom genetic testing would be beneficial but managing genetic test results that are out of their scope of practice. In this report, we present a practical and centralized approach to providing genomic services through an independent, enterprise-wide clinical service model. We present 4 years of clinical experience, with >3400 referrals, toward designing and implementing the clinical service, maximizing resources, identifying barriers, and improving patient care. We provide a framework that can be implemented at other institutions to support and integrate genomic services across the enterprise.
Collapse
Affiliation(s)
- Sawona Biswas
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Livija Medne
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Batsal Devkota
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Emma Bedoukian
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Donna Berrodin
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kosuke Izumi
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew A. Deardorff
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer Tarpinian
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jacqueline Leonard
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Loiusa Pyle
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher Gray
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jasmine Montgomery
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tyrah Williams
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sierra Fortunato
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jamila Weatherly
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Deborah McEldrew
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Manindar Kaur
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sarah E. Raible
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Nancy B. Spinner
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cara Skraban
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian D. Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Rasmussen LV, Smith ME, Almaraz F, Persell SD, Rasmussen-Torvik LJ, Pacheco JA, Chisholm RL, Christensen C, Herr TM, Wehbe FH, Starren JB. An ancillary genomics system to support the return of pharmacogenomic results. J Am Med Inform Assoc 2020; 26:306-310. [PMID: 30778576 DOI: 10.1093/jamia/ocy187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/15/2018] [Accepted: 12/20/2018] [Indexed: 01/26/2023] Open
Abstract
Existing approaches to managing genetic and genomic test results from external laboratories typically include filing of text reports within the electronic health record, making them unavailable in many cases for clinical decision support. Even when structured computable results are available, the lack of adopted standards requires considerations for processing the results into actionable knowledge, in addition to storage and management of the data. Here, we describe the design and implementation of an ancillary genomics system used to receive and process heterogeneous results from external laboratories, which returns a descriptive phenotype to the electronic health record in support of pharmacogenetic clinical decision support.
Collapse
Affiliation(s)
- Luke V Rasmussen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Maureen E Smith
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Federico Almaraz
- Department of Information Technology, Northwestern Memorial HealthCare, Chicago, IL
| | - Stephen D Persell
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rex L Chisholm
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Carl Christensen
- Department of Information Technology, Northwestern Memorial HealthCare, Chicago, IL.,Department of Information Technology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Timothy M Herr
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Firas H Wehbe
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Justin B Starren
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
36
|
|
37
|
Childerhose JE, Finnila CH, Yu JH, Koenig BA, McEwen J, Berg SL, Wilfond BS, Appelbaum PS, Brothers KB. Participant Engagement in Translational Genomics Research: Respect for Persons-and Then Some. Ethics Hum Res 2019; 41:2-15. [PMID: 31541538 PMCID: PMC7199158 DOI: 10.1002/eahr.500029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expansion of both formal and informal frameworks of "engaged" research in translational research settings raises emerging and substantial normative concerns. In this article, we draw on findings from a focus group study with members of a national consortium of translational genomic research sites. The goals were to catalog informal participant engagement practices, to explore the perceived roots of these practices and the motivations of research staff members for adopting them, and to reflect on their ethical implications. We learned that participant engagement is a deliberate strategy by research staff members both to achieve instrumental research goals and to "do research differently" in response to past research injustices. While many of the participant engagement practices used in translational genomic research are not new, important insights can be gained through a closer examination of the specific contours of participant engagement in this context. These practices appear to have been shaped by the professional training of genetic counselors and by the interests and needs of participants who enroll in clinical genomics studies. The contours of this contemporary application of engaged research principles have relevance not only to clinical genomics research but also to translational research broadly, particularly for how communities of clinical researchers are interpreting the principle of respect for persons. Our findings invite normative questions about the governance of these practices and sociological questions about whether and how clinical researchers in other professions are also engaging participants in translational research settings.
Collapse
Affiliation(s)
- Janet E. Childerhose
- Division of Pediatric Clinical and Translational Research, University of Louisville School of Medicine, 231 East Chestnut Street, N-97, Louisville, KY 40202
| | - Candice H. Finnila
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806
| | - Joon-Ho Yu
- Department of Pediatrics, University of Washington School of Medicine, Box 357371, 1959 NE Pacific St. HSB I607Q, Seattle, WA 98195
| | - Barbara A. Koenig
- Institute for Health and Aging, University of California San Francisco, 3333 California St., Suite 340, San Francisco, CA 94118
| | - Jean McEwen
- The Ethical, Legal and Social Implications Research Program, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076, MSC 9305, Bethesda, MD 20892
| | - Stacey L. Berg
- Texas Children’s Cancer Center, Department of Pediatrics, Baylor College of Medicine, 6701 Fannin St #1400, Houston, Texas 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Suite 450A, Houston, Texas 77030
| | - Benjamin S. Wilfond
- Treuman Katz Center for Pediatric Bioethics, Seattle Children’s Hospital, 1900 Ninth Ave., M/S JMB-6, Seattle, WA 98101
| | - Paul S. Appelbaum
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Kyle B. Brothers
- Division of Pediatric Clinical and Translational Research, University of Louisville School of Medicine, 231 East Chestnut Street, N-97, Louisville, KY 40202
- Institute for Bioethics, Health Policy, and Law, University of Louisville, 501 E. Broadway, Ste 310, Louisville, KY 40202
| |
Collapse
|
38
|
Peterson JF, Roden DM, Orlando LA, Ramirez AH, Mensah GA, Williams MS. Building evidence and measuring clinical outcomes for genomic medicine. Lancet 2019; 394:604-610. [PMID: 31395443 PMCID: PMC6730663 DOI: 10.1016/s0140-6736(19)31278-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/08/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
Human genomic sequencing has potential diagnostic, prognostic, and therapeutic value across a wide breadth of clinical disciplines. One barrier to widespread adoption is the paucity of evidence for improved outcomes in patients who do not already have an indication for more focused testing. In this Series paper, we review clinical outcome studies in genomic medicine and discuss the important features and key challenges to building evidence for next generation sequencing in the context of routine patient care.
Collapse
Affiliation(s)
- Josh F Peterson
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Dan M Roden
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori A Orlando
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Andrea H Ramirez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - George A Mensah
- Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
39
|
Yu JH, Appelbaum PS, Brothers KB, Joffe S, Kauffman TL, Koenig BA, Prince AE, Scollon S, Wolf SM, Bernhardt BA, Wilfond BS. Consent for clinical genome sequencing: considerations from the Clinical Sequencing Exploratory Research Consortium. Per Med 2019; 16:325-333. [PMID: 31313633 DOI: 10.2217/pme-2018-0076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Implementing genome and exome sequencing in clinical practice presents challenges, including obtaining meaningful informed consent. Consent may be challenging due to test limitations such as uncertainties associated with test results and interpretation, complexity created by the potential for additional findings and high patient expectations. We drew on the experiences of research teams within the Clinical Sequencing Exploratory Research (CSER1) Consortium on informed consent for clinical genome and exome sequencing (CGES) to negotiate consensus considerations. We present six considerations for clinicians and 12 key points to communicate as they support patients in deciding whether to undergo CGES. These considerations and key points provide a helpful starting point for informed consent to CGES, grounded in the Clinical Sequencing Exploratory Research (CSER1) experience.
Collapse
Affiliation(s)
- Joon-Ho Yu
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Treuman Katz Center for Pediatric Bioethics, Seattle Children's Hospital & Research Institute, Seattle, WA 98101, USA
| | - Paul S Appelbaum
- Department of Psychiatry, Columbia University Medical Center, NY, 10032, USA
| | - Kyle B Brothers
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Steven Joffe
- Department of Medical Ethics & Health Policy, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Tia L Kauffman
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR 97227, USA
| | - Barbara A Koenig
- Program in Bioethics, University of California, San Francisco, CA 94143, USA
| | - Anya Er Prince
- College of Law, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah Scollon
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Wolf
- Law School; Medical School; Consortium on Law & Values in Health, Environment & the Life Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Barbara A Bernhardt
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin S Wilfond
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Treuman Katz Center for Pediatric Bioethics, Seattle Children's Hospital & Research Institute, Seattle, WA 98101, USA
| | | |
Collapse
|
40
|
Thomson KL, Ormondroyd E, Harper AR, Dent T, McGuire K, Baksi J, Blair E, Brennan P, Buchan R, Bueser T, Campbell C, Carr-White G, Cook S, Daniels M, Deevi SVV, Goodship J, Hayesmoore JBG, Henderson A, Lamb T, Prasad S, Rayner-Matthews P, Robert L, Sneddon L, Stark H, Walsh R, Ware JS, Farrall M, Watkins HC. Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield. Genet Med 2019; 21:1576-1584. [PMID: 30531895 PMCID: PMC6614037 DOI: 10.1038/s41436-018-0375-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Increasing numbers of genes are being implicated in Mendelian disorders and incorporated into clinical test panels. However, lack of evidence supporting the gene-disease relationship can hinder interpretation. We explored the utility of testing 51 additional genes for hypertrophic cardiomyopathy (HCM), one of the most commonly tested Mendelian disorders. METHODS Using genome sequencing data from 240 sarcomere gene negative HCM cases and 6229 controls, we undertook case-control and individual variant analyses to assess 51 genes that have been proposed for HCM testing. RESULTS We found no evidence to suggest that rare variants in these genes are prevalent causes of HCM. One variant, in a single case, was categorized as likely to be pathogenic. Over 99% of variants were classified as a variant of uncertain significance (VUS) and 54% of cases had one or more VUS. CONCLUSION For almost all genes, the gene-disease relationship could not be validated and lack of evidence precluded variant interpretation. Thus, the incremental diagnostic yield of extending testing was negligible, and would, we propose, be outweighed by problems that arise with a high rate of uninterpretable findings. These findings highlight the need for rigorous, evidence-based selection of genes for clinical test panels.
Collapse
Affiliation(s)
- Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew R Harper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tim Dent
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Karen McGuire
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - John Baksi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Brennan
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Rachel Buchan
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Foundation Trust, London, UK
| | - Teofila Bueser
- King's College London, Guy's & St Thomas' Hospital NHS Foundation Trust, King's College Hospital NHS Foundation Trust, London, UK
| | - Carolyn Campbell
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Stuart Cook
- National Heart and Lung Institute, Imperial College London, London, UK
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Division of Cardiovascular & Metabolic Disorders, Duke-National University of, Singapore, Singapore
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Matthew Daniels
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sri V V Deevi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Judith Goodship
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Jesse B G Hayesmoore
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Alex Henderson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Teresa Lamb
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Sanjay Prasad
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Paula Rayner-Matthews
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Leema Robert
- Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Linda Sneddon
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Hannah Stark
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Roddy Walsh
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Foundation Trust, London, UK
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Foundation Trust, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugh C Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
41
|
Robinson JO, Wynn J, Biesecker B, Biesecker LG, Bernhardt B, Brothers KB, Chung WK, Christensen KD, Green RC, McGuire AL, Hart MR, Griesemer I, Patrick DL, Rini C, Veenstra D, Cronin AM, Gray SW. Psychological outcomes related to exome and genome sequencing result disclosure: a meta-analysis of seven Clinical Sequencing Exploratory Research (CSER) Consortium studies. Genet Med 2019; 21:2781-2790. [PMID: 31189963 DOI: 10.1038/s41436-019-0565-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE As exome and genome sequencing (ES/GS) enters the clinic, there is an urgent need to understand the psychological effects of test result disclosure. Through a Clinical Sequencing Exploratory Research (CSER), phase 1 (CSER1) Consortium collaboration, we evaluated participants' psychological outcomes across multiple clinical settings. METHODS We conducted a random effects meta-analysis of state anxiety (Hospital Anxiety and Depression Scale [HADS]/Generalized Anxiety Disorder 7-item), depressive symptoms (HADS/Personal Health Questionnaire 9-item), and multidimensional impact (i.e., test-related distress, uncertainty and positive impact: modified Multidimensional Impact of Cancer Risk Assessment/Feelings About Genomic Testing Results scale). RESULTS Anxiety and depression did not increase significantly following test result disclosure. Meta-analyses examining mean differences from pre- to postdisclosure revealed an overall trend for a decrease in participants' anxiety. We observed low levels of test-related distress and perceptions of uncertainty in some populations (e.g., pediatric patients) and a wide range of positive responses. CONCLUSION Our findings across multiple clinical settings suggest no clinically significant psychological harms from the return of ES/GS results. Some populations may experience low levels of test-related distress or greater positive psychological effects. Future research should further investigate the reasons for test-related psychological response variation.
Collapse
Affiliation(s)
- Jill O Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | | | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Barbara Bernhardt
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle B Brothers
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.,Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Kurt D Christensen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert C Green
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT, Cambridge, MA, USA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - M Ragan Hart
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ida Griesemer
- Department of Health Behavior, University of North Carolina, Chapel Hill, NC, USA
| | - Donald L Patrick
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Christine Rini
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA.,Georgetown University School of Medicine, Washington, DC, USA
| | - David Veenstra
- Clinical Sequencing Exploratory Research Coordinating Center, University of Washington, Seattle, WA, USA.,Department of Pharmacy, University of Washington, Seattle, WA, USA
| | | | - Stacy W Gray
- Department of Population Science, City of Hope, Duarte, CA, USA. .,Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, USA.
| |
Collapse
|
42
|
Wu Y, Zhang J. Building the electronic evidence analysis model based on association rule mining and FP-growth algorithm. Soft comput 2019. [DOI: 10.1007/s00500-019-04032-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Roberts JS. Assessing the Psychological Impact of Genetic Susceptibility Testing. Hastings Cent Rep 2019; 49 Suppl 1:S38-S43. [PMID: 31268575 PMCID: PMC7026861 DOI: 10.1002/hast.1015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The expanded use of genetic testing raises key ethical and policy questions about possible benefits and harms for those receiving disease-risk information. As predictive testing for Huntington's was initiated in a clinical setting, survey research posing hypothetical test scenarios suggested that the vast majority of at-risk relatives wanted to know whether they carried a disease-causing mutation. However, only a small minority ultimately availed themselves of this opportunity. Many at-risk individuals concluded that a positive test result would be too psychologically overwhelming. A substantial literature suggests that individuals are often more resilient than anticipated in coping with many different health-related stresses. Much of my own work in the field has been through the Risk Evaluation & Education for Alzheimer's Disease study (REVEAL), a series of randomized clinical trials assessing the impact of genetic susceptibility testing on asymptomatic individuals at risk for Alzheimer's disease. Our experience in developing and implementing four successive, multisite trials provides some potentially useful lessons for the field. More people will be asking for their personal genetic information. Better understanding will help us decide when access is appropriate and how best to disclose results in a manner that supports adjustment to test findings and promotes use of genetic information to improve human health.
Collapse
|
44
|
Gornick MC, Ryan KA, Scherer AM, Roberts JS, De Vries RG, Uhlmann WR. Interpretations of the Term "Actionable" when Discussing Genetic Test Results: What you Mean Is Not What I Heard. J Genet Couns 2019; 28:334-342. [PMID: 30964581 PMCID: PMC10558004 DOI: 10.1007/s10897-018-0289-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
In genomic medicine, the familiarity and inexactness of the term "actionable" can lead to multiple interpretations and mistaken beliefs about realistic treatment options. As part of a larger study focusing on public attitudes toward policies for the return of secondary genomic results, we looked at how members of the lay public interpret the term "medically actionable" in the context of genetic testing. We also surveyed a convenience sample of oncologists as part of a separate study and asked them to define the term "medically actionable." After being provided with a definition of the term, 21 out of 60 (35%) layperson respondents wrote an additional action not specified in the provided definition (12 mentioned "cure" and 9 mentioned environment or behavioral change) and 17 (28%) indicated "something can be done" with no action specified. In contrast, 52 surveyed oncologists did not mention environment, behavioral change, or cure. Based on our findings, we propose that rather than using the term "actionable" alone, providers should also say "what they mean" to reduce miscommunication and confusion that could negatively impact medical decision-making. Lastly, to guide clinicians during patient- provider discussion about genetic test results, we provide examples of phrasing to facilitate clearer communication and understanding of the term "actionable."
Collapse
Affiliation(s)
- Michele C. Gornick
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Kerry A. Ryan
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Aaron M. Scherer
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, IA
| | - J. Scott Roberts
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI
- Department of Health Behavior & Health Education, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Raymond G. De Vries
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI
| | - Wendy R. Uhlmann
- Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
45
|
Bilkey GA, Burns BL, Coles EP, Bowman FL, Beilby JP, Pachter NS, Baynam G, J. S. Dawkins H, Nowak KJ, Weeramanthri TS. Genomic Testing for Human Health and Disease Across the Life Cycle: Applications and Ethical, Legal, and Social Challenges. Front Public Health 2019; 7:40. [PMID: 30915323 PMCID: PMC6421958 DOI: 10.3389/fpubh.2019.00040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
The expanding use of genomic technologies encompasses all phases of life, from the embryo to the elderly, and even the posthumous phase. In this paper, we present the spectrum of genomic healthcare applications, and describe their scope and challenges at different stages of the life cycle. The integration of genomic technology into healthcare presents unique ethical issues that challenge traditional aspects of healthcare delivery. These challenges include the different definitions of utility as applied to genomic information; the particular characteristics of genetic data that influence how it might be protected, used and shared; and the difficulties applying existing models of informed consent, and how new consent models might be needed.
Collapse
Affiliation(s)
- Gemma A. Bilkey
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
- Office of the Chief Health Officer, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Belinda L. Burns
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Emily P. Coles
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Faye L. Bowman
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - John P. Beilby
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Nicholas S. Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Department of Health, Government of Western Australia, Subiaco, WA, Australia
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Gareth Baynam
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
- Genetic Services of Western Australia, King Edward Memorial Hospital, Department of Health, Government of Western Australia, Subiaco, WA, Australia
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Department of Health, Government of Western Australia, Subiaco, WA, Australia
- Centre for Child Health Research, The University of Western Australia and Telethon Kids Institute, Perth, WA, Australia
| | - Hugh J. S. Dawkins
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Sir Walter Murdoch School of Policy and International Affairs, Murdoch University, Murdoch, WA, Australia
- School of Public Health, Curtin University of Technology, Bentley, WA, Australia
| | - Kristen J. Nowak
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Tarun S. Weeramanthri
- Office of the Chief Health Officer, Public and Aboriginal Health Division, Department of Health, Government of Western Australia, East Perth, WA, Australia
- Faculty of Health and Medical Sciences, School of Population and Global Health, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
46
|
Guerrero-Preston R, Lawson F, Rodriguez-Torres S, Noordhuis MG, Pirini F, Manuel L, Valle BL, Hadar T, Rivera B, Folawiyo O, Baez A, Marchionni L, Koch WM, Westra WH, Kim YJ, Eshleman JR, Sidransky D. JAK3 Variant, Immune Signatures, DNA Methylation, and Social Determinants Linked to Survival Racial Disparities in Head and Neck Cancer Patients. Cancer Prev Res (Phila) 2019; 12:255-270. [PMID: 30777857 DOI: 10.1158/1940-6207.capr-17-0356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 10/30/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
To inform novel personalized medicine approaches for race and socioeconomic disparities in head and neck cancer, we examined germline and somatic mutations, immune signatures, and epigenetic alterations linked to neighborhood determinants of health in Black and non-Latino White (NLW) patients with head and neck cancer. Cox proportional hazards revealed that Black patients with squamous cell carcinoma of head and neck (HNSCC) with PAX5 (P = 0.06) and PAX1 (P = 0.017) promoter methylation had worse survival than NLW patients, after controlling for education, zipcode, and tumor-node-metastasis stage (n = 118). We also found that promoter methylation of PAX1 and PAX5 (n = 78), was correlated with neighborhood characteristics at the zip-code level (P < 0.05). Analyses also showed differences in the frequency of TP53 mutations (n = 32) and tumor-infiltrating lymphocyte (TIL) counts (n = 24), and the presence of a specific C → A germline mutation in JAK3, chr19:17954215 (protein P132T), in Black patients with HNSCC (n = 73; P < 0.05), when compared with NLW (n = 37) patients. TIL counts are associated (P = 0.035) with long-term (>5 years), when compared with short-term survival (<2 years). We show bio-social determinants of health associated with survival in Black patients with HNSCC, which together with racial differences shown in germline mutations, somatic mutations, and TIL counts, suggests that contextual factors may significantly inform precision oncology services for diverse populations.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland. .,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Fahcina Lawson
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Sebastian Rodriguez-Torres
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Maartje G Noordhuis
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Manuel
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Blanca L Valle
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Tal Hadar
- Breast Health Unit, Department of General Surgery, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Bianca Rivera
- Department of Otolaryngology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Adriana Baez
- Department of Otolaryngology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Wayne M Koch
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - William H Westra
- Department of Pathology, The Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Young J Kim
- Department of Otolaryngology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Abstract
OBJECTIVE To review ethical, legal, and social implications of genomics, a ground-breaking science that when applied improves cancer care outcomes. DATA SOURCES PubMed, Cumulative Index to Nursing and Allied Health (CINAHL), Cochrane Library, consensus statements, and professional guidelines. CONCLUSION Ethical, legal, and social domains of genomics are not fully delineated. Areas needing further discussion and policies include return of findings, informed consent, electronic health records, and data resources and sharing. IMPLICATIONS FOR NURSING PRACTICE All nurses need a basic understanding of the ethical, legal, and social implications of genomics.
Collapse
|
48
|
Stark Z, Dolman L, Manolio TA, Ozenberger B, Hill SL, Caulfied MJ, Levy Y, Glazer D, Wilson J, Lawler M, Boughtwood T, Braithwaite J, Goodhand P, Birney E, North KN. Integrating Genomics into Healthcare: A Global Responsibility. Am J Hum Genet 2019; 104:13-20. [PMID: 30609404 PMCID: PMC6323624 DOI: 10.1016/j.ajhg.2018.11.014] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023] Open
Abstract
Genomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.
Collapse
Affiliation(s)
- Zornitza Stark
- Australian Genomics Health Alliance, Melbourne VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Lena Dolman
- Global Alliance for Genomics and Health, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada; Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Teri A Manolio
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Brad Ozenberger
- All of Us Research Program, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Sue L Hill
- National Health Service England, Skipton House, 80 London Road, London SE1 6LH, UK
| | - Mark J Caulfied
- Genomics England, Queen Mary University of London, Dawson Hall, London EC1M 6BQ, UK
| | - Yves Levy
- INSERM (French National Institute for Health and Medical Research), 75654 Paris Cedex 13, France
| | - David Glazer
- Verily Life Sciences, 269 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Julia Wilson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Tiffany Boughtwood
- Australian Genomics Health Alliance, Melbourne VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Jeffrey Braithwaite
- Australian Genomics Health Alliance, Melbourne VIC 3052, Australia; Australian Institute of Health Innovation, Macquarie University, 75 Talavera Road, Sydney, NSW 2113, Australia
| | - Peter Goodhand
- Global Alliance for Genomics and Health, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada; Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Ewan Birney
- Global Alliance for Genomics and Health, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada; European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Kathryn N North
- Australian Genomics Health Alliance, Melbourne VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia; Global Alliance for Genomics and Health, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada.
| |
Collapse
|
49
|
Abstract
BACKGROUND Genetic data have the potential to impact patient care significantly. In primary care and in the ICU, patients are undergoing genetic testing. Genetics is also transforming cancer care and undiagnosed diseases. Optimal personalized medicine relies on the understanding of disease penetrance. In this article, I examine the complexity of penetrance. METHODS In this article, I assess how variable penetrance can be seen with many diseases, including those of different modes of inheritance, and how genomic testing is being applied effectively for many diseases. In this article, I also identify challenges in the field, including the interpretation of gene variants. RESULTS Using advancing bioinformatics and detailed phenotypic assessment, we can increase the yield of genomic testing, particularly for highly penetrant conditions. The technologies are useful and applicable to different medical situations. CONCLUSIONS There are now effective genome diagnostics for many diseases. However, the best personalized application of these data still requires skilled interpretation.
Collapse
Affiliation(s)
- Joseph T.C. Shieh
- Division of Medical Genetics, Department of Pediatrics, Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
50
|
Roberts JS, Gornick MC, Le LQ, Bartnik NJ, Zikmund-Fisher BJ, Chinnaiyan AM. Next-generation sequencing in precision oncology: Patient understanding and expectations. Cancer Med 2019; 8:227-237. [PMID: 30600607 PMCID: PMC6346219 DOI: 10.1002/cam4.1947] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Implementation of precision oncology interventions poses several challenges to informed consent and patient education. This study assessed cancer patients' understanding, expectations, and outcomes regarding participation in research examining the impact of matched tumor and germline sequencing on their clinical care. METHODS A total of 297 patients (mean age: 59 years; 50% female; 96% white) with refractory, metastatic cancer were surveyed, including 217 who completed surveys both before and after undergoing integrated whole exome and transcriptome sequencing as part of a larger clinical research study. RESULTS At baseline, the vast majority of patients expected to receive several potential direct benefits from study participation, including written reports of sequencing findings (88%), greater understanding of the causes of their cancer (74%), and participation in clinical trials for which sequencing results would make them eligible (84%). In most cases, these benefits were not realized by study completion. Despite explanations from study personnel to the contrary, most participants (67%-76%) presumed that incidental germline sequencing findings relevant to noncancerous health conditions (eg, diabetes) would automatically be disclosed to them. Patients reported low levels of concern about study risks at baseline and low levels of regret about study participation at follow-up. CONCLUSIONS Findings suggest that cancer patients participating in precision oncology intervention research have largely unfulfilled expectations of direct benefits related to their study participation. Increased focus on patient education to supplement the informed consent process may help manage patients' expectations regarding the extent and likelihood of benefits received as a result of undergoing genomic sequencing.
Collapse
Affiliation(s)
- J. Scott Roberts
- Department of Health Behavior and Health EducationUniversity of Michigan School of Public HealthAnn ArborMichigan
- Center for Bioethics & Social Sciences in MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Michele C. Gornick
- Center for Bioethics & Social Sciences in MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
- Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Lan Q. Le
- Department of Health Behavior and Health EducationUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Natalie J. Bartnik
- Department of Health Behavior and Health EducationUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Brian J. Zikmund-Fisher
- Department of Health Behavior and Health EducationUniversity of Michigan School of Public HealthAnn ArborMichigan
- Center for Bioethics & Social Sciences in MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
- Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Arul M. Chinnaiyan
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichigan
- Michigan Center for Translational PathologyUniversity of Michigan Medical SchoolAnn ArborMichigan
- Department of UrologyUniversity of Michigan Medical SchoolAnn ArborMichigan
- Howard Hughes Medical InstituteUniversity of Michigan Medical SchoolAnn ArborMichigan
| |
Collapse
|