1
|
Du M, Yang X, Zhang R, Yu N, Peng L, Lin J, Yan X, Wu Y, Bao S. A relative-independent haplotype derivation method applied for noninvasive prenatal testing for chromosomal rearrangements in a pregnant carrier. Mol Genet Genomics 2025; 300:19. [PMID: 39928155 DOI: 10.1007/s00438-025-02225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
This study aimed to perform noninvasive prenatal testing for structural chromosomal rearrangements (NIPT-SR) for a female pregnant proband carrying a t(4;8) balanced translocation, whose husband exhibited a normal karyotype. NIPT-SR could accurately detect transmission status of structural rearrangements in fetus through Hidden Markov Model (HMM) analysis, which requires the construction of parental haplotypes. To address the challenge of lacking genetic information from other family members of this proband, we developed a novel strategy to infer the fetal inheritance of structural variants by integrating Oxford Nanopore Technologies (ONT) with the NIPT-SR approach. Long-read sequencing was performed on the proband to directly detect the translocation and nearby single nucleotide polymorphisms (SNPs), and to link the structural variants with phased haplotypes. NIPT-SR method was used to infer the fetal inheritance of the constructed haplotypes and to evaluate the potential presence of unbalanced translocation in the fetus. Noninvasive prenatal testing (NIPT) was performed at 12 weeks of gestation, followed by copy number variation sequencing (CNV-seq) and karyotype analysis after birth respectively to confirm the accuracy of NIPT-SR results. Using nanopore sequencing, we identified the precise locations of the breakpoint junctions and successfully established the SNP-based haplotypes that were linked to the breakpoints on chr4 and chr8, without the need for retrieving genetic information of other family members. Haplotype-based analysis of cell-free DNA (cfDNA) indicated that the fetus inherited the normal haplotypes, which was consistent with the NIPT results and confirmed by the postnatal CNV-seq and karyotype analysis. In conclusion, the NIPT-SR method coupled with ONT platform could be used to perform NIPT-SR for those who carries balanced translocation circumventing the need for other family members as reference, providing an important supplement to birth defects prevention.
Collapse
Affiliation(s)
- Mengyang Du
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xi Yang
- Shanghai WeHealth BioMedical Technology Co.,Ltd, Shanghai, China
| | - Ruixiu Zhang
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Na Yu
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Liying Peng
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiawen Lin
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xue Yan
- Shanghai WeHealth BioMedical Technology Co.,Ltd, Shanghai, China
| | - Yiming Wu
- Shanghai WeHealth BioMedical Technology Co.,Ltd, Shanghai, China.
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Abalı ZY, Kurnaz E, Güran T. Antenatal Diagnosis and Treatment in Congenital Adrenal Hyperplasia Due to 21-hydroxylase Deficiency and Congenital Adrenal Hyperplasia Screening in Newborns. J Clin Res Pediatr Endocrinol 2025; 17:33-43. [PMID: 39713885 PMCID: PMC11730100 DOI: 10.4274/jcrpe.galenos.2024.2024-6-10-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024] Open
Abstract
Signs of virilization, such as clitoromegaly, labio-scrotal fusion, and urogenital sinus may be observed in females with 21-hydroxylase deficiency (21-OHD) and other rare virilizing forms of congenital adrenal hyperplasia (CAH). This makes sex determination difficult, and multiple reconstructive surgeries in the postnatal period may be required. As 21-OHD is an autosomal recessive disease, the chance of any child being affected is one in four and so only one in eight will be an affected female. The primary objective of antenatal diagnosis is to identify only the affected fetus in the early gestational weeks before the onset of genital organogenesis and to treat that case. Therefore, studies aimed at antenatal diagnosis and preventing adrenal androgen exposure in the female fetus with CAH have long been of interest. Antenatal steroid treatment is considered experimental and controversial for safety reasons in recent clinical guidelines. If antenatal treatment is to be used, it is recommended that it should be performed in experienced centers that can collect data on a large number of cases which will help to define the benefits and harms of treatment better. In the postnatal period, a severe deficiency of the 21-hydroxylase enzyme leads to life-threatening adrenocortical insufficiency in both sexes and varying degrees of pathology of the external genitalia in females. This condition is also associated with high mortality in the first days of life and an increased risk of incorrect sex assignment. Neonatal screening for 21-OHD CAH effectively detects the severe forms and reduces mortality, and it is instrumental in the correct sex assignment of female cases.
Collapse
Affiliation(s)
- Zehra Yavaş Abalı
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Erdal Kurnaz
- Ankara Etlik City Hospital, Clinic of Pediatrics, Divison of Pediatric Endocrinology, Ankara, Turkey
| | - Tülay Güran
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| |
Collapse
|
3
|
Byrou S, Brouwer RWW, Tomazou M, Tamana S, Kountouris P, Lederer CW, Petrou M, Ozgur Z, den Dekker X, Azmani Z, Christou S, Makariou C, Kleanthous M, van IJcken WFJ, Papasavva T. Non-Invasive Determination of the Paternal Inheritance in Pregnancies at Risk for β-Thalassaemia by Analyzing Cell-Free Fetal DNA Using Targeted Next-Generation Sequencing. Int J Mol Sci 2025; 26:570. [PMID: 39859286 PMCID: PMC11765003 DOI: 10.3390/ijms26020570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma. The assay determines paternal inheritance by analyzing highly heterozygous single-nucleotide variants (SNVs) in the β-globin gene cluster. To identify highly heterozygous SNVs in the population, 96 randomly selected samples were processed using Illumina DNA-prep NGS chemistry. A custom, high-density NGS genotyping panel, named HAPLONID, was designed with 169 SNVs, including 15 common pathogenic ones. The AmpliSeq for Illumina assay was then applied to cfDNA to evaluate the panel's efficiency in performing NIPT for β-thalassaemia. Analysis revealed 219 highly polymorphic SNVs, and the sequencing of 17 families confirmed successful paternal allele determination. The NIPH assay demonstrated 100% success in diagnostic interpretation. This study achieved the advancement of an integrated NGS-NIPT assay for β-thalassaemia, bringing it one step closer to being a diagnostic assay and thereby enabling a reduction in the number of risky invasive prenatal sampling procedures in Cyprus and elsewhere.
Collapse
Affiliation(s)
- Stefania Byrou
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Rutger W. W. Brouwer
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marios Tomazou
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Stella Tamana
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Petros Kountouris
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Carsten W. Lederer
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Miranda Petrou
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Zeliha Ozgur
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Xander den Dekker
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Zakia Azmani
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Soteroula Christou
- Nicosia Thalassaemia Clinic, Archbishop Makarios III Hospital, Nicosia 2371, Cyprus;
| | - Christiana Makariou
- Thalassaemia Screening Laboratory, Thalassaemia Center, Archbishop Makarios III Hospital, Nicosia 2371, Cyprus;
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Thessalia Papasavva
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| |
Collapse
|
4
|
Gao B, Jiang Y, Han M, Ji X, Zhang D, Wu L, Gao X, Huang S, Zhao C, Su Y, Yang S, Zhang X, Liu N, Han L, Wang L, Ren L, Yang J, Wu J, Yuan Y, Dai P. Targeted Linked-Read Sequencing for Direct Haplotype Phasing of Parental GJB2/SLC26A4 Alleles: A Universal and Dependable Noninvasive Prenatal Diagnosis Method Applied to Autosomal Recessive Nonsyndromic Hearing Loss in At-Risk Families. J Mol Diagn 2024; 26:638-651. [PMID: 38663495 DOI: 10.1016/j.jmoldx.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) for autosomal recessive nonsyndromic hearing loss (ARNSHL) has been rarely reported until recent years. Additionally, the existing method can not be used for challenging genome loci (eg, copy number variations, deletions, inversions, or gene recombinants) or on families without proband genotype. This study assessed the performance of relative haplotype dosage analysis (RHDO)-based NIPD for identifying fetal genotyping in pregnancies at risk of ARNSHL. Fifty couples carrying pathogenic variants associated with ARNSHL in either GJB2 or SLC26A4 were recruited. The RHDO-based targeted linked-read sequencing combined with whole gene coverage probes was used to genotype the fetal cell-free DNA of 49 families who met the quality control standard. Fetal amniocyte samples were genotyped using invasive prenatal diagnosis (IPD) to assess the performance of NIPD. The NIPD results showed 100% (49/49) concordance with those obtained through IPD. Two families with copy number variation and recombination were also successfully identified. Sufficient specific informative single-nucleotide polymorphisms for haplotyping, as well as the fetal cell-free DNA concentration and sequencing depth, are prerequisites for RHDO-based NIPD. This method has the merits of covering the entire genes of GJB2 and SLC26A4, qualifying for copy number variation and recombination analysis with remarkable sensitivity and specificity. Therefore, it has clinical potential as an alternative to traditional IPD for ARNSHL.
Collapse
Affiliation(s)
- Bo Gao
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yi Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mingyu Han
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | | | - Dejun Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Lihua Wu
- Department of Otolaryngology, Fujian Medical University ShengLi Clinical College, Fujian Provincial Hospital, Fuzhou, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shasha Huang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chaoyue Zhao
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yu Su
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Suyan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Na Liu
- MyGenostics Inc., Beijing, China
| | - Lu Han
- MyGenostics Inc., Beijing, China
| | | | - Lina Ren
- MyGenostics Inc., Beijing, China
| | - Jinyuan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Jian Wu
- MyGenostics Inc., Beijing, China
| | - Yongyi Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China.
| | - Pu Dai
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China.
| |
Collapse
|
5
|
Peng H, Pan M, Zhou Z, Chen C, Xing X, Cheng S, Zhang S, Zheng H, Qian K. The impact of preanalytical variables on the analysis of cell-free DNA from blood and urine samples. Front Cell Dev Biol 2024; 12:1385041. [PMID: 38784382 PMCID: PMC11111958 DOI: 10.3389/fcell.2024.1385041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cell-free DNA (cfDNA), a burgeoning class of molecular biomarkers, has been extensively studied across a variety of biomedical fields. As a key component of liquid biopsy, cfDNA testing is gaining prominence in disease detection and management due to the convenience of sample collection and the abundant wealth of genetic information it provides. However, the broader clinical application of cfDNA is currently impeded by a lack of standardization in the preanalytical procedures for cfDNA analysis. A number of fundamental challenges, including the selection of appropriate preanalytical procedures, prevention of short cfDNA fragment loss, and the validation of various cfDNA measurement methods, remain unaddressed. These existing hurdles lead to difficulties in comparing results and ensuring repeatability, thereby undermining the reliability of cfDNA analysis in clinical settings. This review discusses the crucial preanalytical factors that influence cfDNA analysis outcomes, including sample collection, transportation, temporary storage, processing, extraction, quality control, and long-term storage. The review provides clarification on achievable consensus and offers an analysis of the current issues with the goal of standardizing preanalytical procedures for cfDNA analysis.
Collapse
Affiliation(s)
- Hongwei Peng
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Pan
- Taihe Skills Training Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zongning Zhou
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Congbo Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xing Xing
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shaoping Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shanshan Zhang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Zheng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Sistermans EA. Use of Type 5 Single Nucleotide Polymorphisms Allows Noninvasive Prenatal Diagnosis for Consanguineous Families. Clin Chem 2024; 70:687-689. [PMID: 38592369 DOI: 10.1093/clinchem/hvae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Affiliation(s)
- Erik A Sistermans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Hanson B, Shaw J, Povarnitsyn N, Bowns B, Young E, Gerrish A, Allen S, Scotchman E, Chitty LS, Chandler NJ. Expanding Access to Noninvasive Prenatal Diagnosis for Monogenic Conditions to Consanguineous Families. Clin Chem 2024; 70:727-736. [PMID: 38592422 DOI: 10.1093/clinchem/hvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Cell-free fetal DNA exists within the maternal bloodstream during pregnancy and provides a means for noninvasive prenatal diagnosis (NIPD). Our accredited clinical service offers definitive NIPD for several autosomal recessive (AR) and X-linked conditions using relative haplotype dosage analysis (RHDO). RHDO involves next-generation sequencing (NGS) of thousands of common single nucleotide polymorphism (SNPs) surrounding the gene of interest in the parents and an affected or unaffected offspring to conduct haplotype phasing of the high- and low-risk alleles. NGS is carried out in parallel on the maternal cell-free DNA, and fetal inheritance is predicted using sensitive dosage calculations performed at sites where the parental genotypes differ. RHDO is not currently offered to consanguineous couples owing to the shared haplotype between parents. Here we test the expansion of RHDO for AR monogenic conditions to include consanguineous couples. METHODS The existing sequential probability ratio test analysis pipeline was modified to apply to SNPs where both parents are heterozygous for the same genotype. Quality control thresholds were developed using 33 nonconsanguineous cases. The performance of the adapted RHDO pipeline was tested on 8 consanguineous cases. RESULTS The correct fetal genotype was predicted by our revised RHDO approach in all conclusive cases with known genotypes (n = 5). Haplotype block classification accuracies of 94.5% and 93.9% were obtained for the nonconsanguineous and consanguineous case cohorts, respectively. CONCLUSIONS Our modified RHDO pipeline correctly predicts the genotype in fetuses from consanguineous families, allowing the potential to expand access to NIPD services for these families.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| | - Joe Shaw
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| | - Nikita Povarnitsyn
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| | - Benjamin Bowns
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Elizabeth Young
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Amy Gerrish
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Stephanie Allen
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, United Kingdom
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Natalie J Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Schwitzgebel VM, Blouin JL, Dehos B, Köhler-Ballan B, Puder JJ, Rieubland C, Triantafyllidou M, Zanchi A, Abramowicz M, Nouspikel T. Enhancing fetal outcomes in GCK-MODY pregnancies: a precision medicine approach via non-invasive prenatal GCK mutation detection. Front Med (Lausanne) 2024; 11:1347290. [PMID: 38745742 PMCID: PMC11091329 DOI: 10.3389/fmed.2024.1347290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Background Mutations in the GCK gene cause Maturity Onset Diabetes of the Young (GCK-MODY) by impairing glucose-sensing in pancreatic beta cells. During pregnancy, managing this type of diabetes varies based on fetal genotype. Fetuses carrying a GCK mutation can derive benefit from moderate maternal hyperglycemia, stimulating insulin secretion in fetal islets, whereas this may cause macrosomia in wild-type fetuses. Modulating maternal glycemia can thus be viewed as a form of personalized prenatal therapy, highly beneficial but not justifying the risk of invasive testing. We therefore developed a monogenic non-invasive prenatal diagnostic (NIPD-M) test to reliably detect the transmission of a known maternal GCK mutation to the fetus. Methods A small amount of fetal circulating cell-free DNA is present in maternal plasma but cannot be distinguished from maternal cell-free DNA. Determining transmission of a maternal mutation to the fetus thus implies sequencing adjacent polymorphisms to determine the balance of maternal haplotypes, the transmitted haplotype being over-represented in maternal plasma. Results Here we present a series of such tests in which fetal genotype was successfully determined and show that it can be used to guide therapeutic decisions during pregnancy and improve the outcome for the offspring. We discuss several potential hurdles inherent to the technique, and strategies to overcome these. Conclusion Our NIPD-M test allows reliable determination of the presence of a maternal GCK mutation in the fetus, thereby allowing personalized in utero therapy by modulating maternal glycemia, without incurring the risk of miscarriage inherent to invasive testing.
Collapse
Affiliation(s)
- Valérie M. Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Louis Blouin
- Genetic Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Barbara Dehos
- Division of Endocrinology and Diabetes, Spital Grabs, Grabs, Switzerland
| | | | - Jardena J. Puder
- Department Women-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claudine Rieubland
- Department of Medical Genetics, Central Institute of the Hospitals, Hospital of the Valais, Valais, Switzerland
| | - Maria Triantafyllidou
- Division of Endocrinology, Diabetes and Clinical Nutrition, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Anne Zanchi
- Department of Medicine, Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Marc Abramowicz
- Genetic Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Nouspikel
- Genetic Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Liu D, Nong X, Lai F, Nong C, Wang T, Tang Y. Noninvasive Prenatal Diagnosis of SEA-Thalassemia by Combining 1000 Genomes Database and Relative Haplotype Dosage. Hemoglobin 2024:1-8. [PMID: 38632980 DOI: 10.1080/03630269.2024.2327830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
To explore a noninvasive method for diagnosis of SEA-thalassemia and to investigate whether the regional factors affect the accuracy of this method. The method involved using a public database and bioinformatics software to construct parental haplotypes for proband and predicting fetal genotypes using relative haplotype dosage. We screened and downloaded sequencing data of couples who were both SEA-thalassemia carriers from the China National Genebank public data platform, and matched the sequencing data format with that of the reference panel using Ubuntu system tools. We then used Beagle software to construct parental haplotypes, predicted fetal haplotypes by relative haplotype dosage. Finally, we used Hidden Markov Model and Viterbi algorithm to determine fetal pathogenic haplotypes. All noninvasive fetal genotype diagnosis results were compared with gold standard gap-PCR electrophoresis results. Our method was successful in diagnosing 13 families with SEA-thalassemia carriers. The best diagnostic results were obtained when Southern Chinese Han was used as the reference panel, and 10 families showed full agreement between our noninvasive diagnostic results and the gap-PCR electrophoresis results. The accuracy of our method was higher when using a Chinese Han as the reference panel for haplotype construction in the Southern Chinese Han region as opposed to Beijing Chinese region. The combined use of public databases and relative haplotype dosage for diagnosing SEA-thalassemia is a feasible approach. Our method produces the best noninvasive diagnostic results when the test samples and population reference panel are closely matched in both ethnicity and geography. When constructing parental haplotypes with our method, it is important to consider the effect of region in addition to population background alone.
Collapse
Affiliation(s)
- Dewen Liu
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xuejuan Nong
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Fengming Lai
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chen Nong
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Taizhong Wang
- School of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yulian Tang
- School of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
10
|
Verebi C, Gravrand V, Pacault M, Audrezet MP, Couque N, Vincent MC, Leturcq F, Tsatsaris V, Bienvenu T, Nectoux J. [Towards a generalization of non-invasive prenatal diagnosis of single-gene disorders? Assesment and outlook]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2023; 51:463-470. [PMID: 37517661 DOI: 10.1016/j.gofs.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES The screening of fetal aneuploidies and non-invasive prenatal diagnosis of monogenic diseases (NIPD-MD) both rely on the study of free fetal DNA in maternal circulation, but their respective rise was unequal. Development of NIPD-MD has taken longer as it represents a less attractive commercial dynamic for industry, but also because it usually involves the development of tailored tests specific to each pathogenic variant. METHODS We have carried out a review of the literature on the various indications and technologies involved in the use of NIPD-MM. We present its current implementation and its development in France. RESULTS To date, NIPD-MD has been routinely offered in France for several years by the laboratories of the French NIPD-MD network but remains mostly limited to the exclusion of paternal or de novo variants, the exclusion DPNI-MD. Indeed, it is still difficult to study the transmission of maternal variants from circulating free DNA analysis, due to its biological complexity: coexistence and predominance of similar DNA sequences of maternal origin. Different strategies, either direct or indirect, are being evaluated to establish fetal status regardless of the parental origin of the disease or its transmission mode. The emergence of commercial screening solutions for monogenic diseases complements the arsenal of prenatal exploration tools for these diseases. CONCLUSION The multitude of existing technologies and protocols may complicate the information provided during antenatal consultations, but mastery of know-how and knowledge of ethical issues of NIPD-MD will ensure optimal service and better management of pregnancies at risk of transmitting monogenic disease.
Collapse
Affiliation(s)
- Camille Verebi
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France; Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR1266, « Genetic vulnerability to addictive and psychiatric disorders » team, Paris, France
| | - Victor Gravrand
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Mathilde Pacault
- Laboratoire de génétique moléculaire et d'histocompatibilité, centre hospitalier régional universitaire, Brest, France
| | - Marie-Pierre Audrezet
- Laboratoire de génétique moléculaire et d'histocompatibilité, centre hospitalier régional universitaire, Brest, France
| | - Nathalie Couque
- Service de génétique, AP-HP, hôpital Robert-Debré, 75019 Paris, France
| | - Marie-Claire Vincent
- Génétique moléculaire et cytogénomique, centre hospitalier universitaire de Montpellier, 34000 Montpellier, France
| | - France Leturcq
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Vassilis Tsatsaris
- Gynécologie-obstétrique, Maternité Port-Royal, AP-HP centre, université Paris Cité, hôpital Cochin, 75014 Paris, France
| | - Thierry Bienvenu
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France; Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR1266, « Genetic vulnerability to addictive and psychiatric disorders » team, Paris, France
| | - Juliette Nectoux
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France.
| |
Collapse
|
11
|
Lefferts JW, Boersma V, Nieuwenhuijze NDA, Suen SWF, Hajo K, Collantes NS, Vermeulen C, Groeneweg T, Hagemeijer MC, de Jonge HR, van der Ent CK, Splinter E, Beekman JM. Targeted locus amplification reveals heterogeneity between and within CFTR genotypes and association with CFTR function in patient-derived intestinal organoids. J Cyst Fibros 2023; 22:538-547. [PMID: 37100706 DOI: 10.1016/j.jcf.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) disease severity can be highly variable, even between people with CF (pwCF) with similar genotypes. Here we use patient-derived intestinal organoids to study the influence of genetic variation within the cystic fibrosis transmembrane conductance regulator (CFTR) gene on CFTR function. METHODS Organoids of F508del/class I, F508del/S1251N and pwCF with only one detected CF-causing mutation were cultured. Allele-specific CFTR variation was investigated using targeted locus amplification (TLA), CFTR function was measured using the forskolin-induced swelling assay and mRNA levels were quantified using RT-qPCR. RESULTS We were able to distinguish CFTR genotypes based on TLA data. Additionally, we observed heterogeneity within genotypes, which we were able to link to CFTR function for S1251N alleles. CONCLUSIONS Our results indicate that the paired analysis of CFTR intragenic variation and CFTR function can gain insights in the underlying CFTR defect for individuals where the disease phenotype does not match the CFTR mutations detected during diagnosis.
Collapse
Affiliation(s)
- J W Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands
| | - V Boersma
- Cergentis BV., Utrecht, the Netherlands
| | - N D A Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands; Gastroenterology & Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - S W F Suen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands; Xilis BV, Utrecht, the Netherlands
| | - K Hajo
- Cergentis BV., Utrecht, the Netherlands
| | - N Sanchez Collantes
- Oncode Institute, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - C Vermeulen
- Oncode Institute, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T Groeneweg
- Gastroenterology & Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M C Hagemeijer
- Current affiliation: Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - H R de Jonge
- Gastroenterology & Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - C K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - J M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, the Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, the Netherlands.
| |
Collapse
|
12
|
Hanson B, Paternoster B, Povarnitsyn N, Scotchman E, Chitty L, Chandler N. Non-invasive prenatal diagnosis (NIPD): current and emerging technologies. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:3-26. [PMID: 39698301 PMCID: PMC11648410 DOI: 10.20517/evcna.2022.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 12/20/2024]
Abstract
Prenatal testing is important for the early detection and diagnosis of rare genetic conditions with life-changing implications for the patient and their family. Gaining access to the fetal genotype can be achieved using gold-standard invasive sampling methods, such as amniocentesis and chorionic villus sampling, but these carry a small risk of miscarriage. Non-invasive prenatal diagnosis (NIPD) for select rare monogenic conditions has been in clinical service in England since 2012 and has revolutionised the field of prenatal diagnostics by reducing the number of women undergoing invasive sampling procedures. Fetal-derived genomic material is present in a highly fragmented form amongst the maternal cell-free DNA (cfDNA) in circulation, with sequence coverage across the entire fetal genome. Cell-free fetal DNA (cffDNA) is the foundation for NIPD, and several technologies have been clinically implemented for the detection of paternally inherited and de novo pathogenic variants. Conversely, a low abundance of cffDNA within a high background of maternal cfDNA makes assigning maternally inherited variants to the fetal fraction a significantly more challenging task. Research is ongoing to expand available tests for maternal inheritance to include a broader range of monogenic conditions, as well as to uncover novel diagnostic avenues. This review covers the scope of technologies currently clinically available for NIPD of monogenic conditions and those still in the research pipeline towards implementation in the future.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Nikita Povarnitsyn
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Lyn Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| |
Collapse
|
13
|
Lefferts JW, Boersma V, Hagemeijer MC, Hajo K, Beekman JM, Splinter E. Targeted Locus Amplification and Haplotyping. Methods Mol Biol 2023; 2590:31-48. [PMID: 36335490 DOI: 10.1007/978-1-0716-2819-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Targeted locus amplification (TLA) allows for the detection of all genetic variation (including structural variation) in a genomic region of interest. As TLA is based on proximity ligation, variants can be linked to each other, thereby enabling allelic phasing and the generation of haplotypes. This allows for the study of genetic variants in an allele-specific manner. Here, we provide a step-by-step protocol for TLA sample preparation and a complete bioinformatics pipeline for the allelic phasing of TLA data. Additionally, to illustrate the protocol, we show the ability of TLA to re-sequence and haplotype the complete cystic fibrosis transmembrane (CFTR) gene (> 200 kb in size) from patient-derived intestinal organoids.
Collapse
Affiliation(s)
- Juliet W Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marne C Hagemeijer
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center, Center for Living Technologies, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Pacault M, Verebi C, Champion M, Orhant L, Perrier A, Girodon E, Leturcq F, Vidaud D, Férec C, Bienvenu T, Daveau R, Nectoux J. Non-invasive prenatal diagnosis of single gene disorders with enhanced relative haplotype dosage analysis for diagnostic implementation. PLoS One 2023; 18:e0280976. [PMID: 37093806 PMCID: PMC10124834 DOI: 10.1371/journal.pone.0280976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Non-invasive prenatal diagnosis of single-gene disorders (SGD-NIPD) has been widely accepted, but is mostly limited to the exclusion of either paternal or de novo mutations. Indeed, it is still difficult to infer the inheritance of the maternal allele from cell-free DNA (cfDNA) analysis. Based on the study of maternal haplotype imbalance in cfDNA, relative haplotype dosage (RHDO) was developed to address this challenge. Although RHDO has been shown to be reliable, robust control of statistical error and explicit delineation of critical parameters for assessing the quality of the analysis have not been fully addressed. We present here a universal and adaptable enhanced-RHDO (eRHDO) procedure through an automated bioinformatics pipeline with a didactic visualization of the results, aiming to be applied for any SGD-NIPD in routine care. A training cohort of 43 families carrying CFTR, NF1, DMD, or F8 mutations allowed the characterization and optimal setting of several adjustable data variables, such as minimum sequencing depth, type 1 and type 2 statistical errors, as well as the quality assessment of intermediate steps and final results by block score and concordance score. Validation was successfully performed on a test cohort of 56 pregnancies. Finally, computer simulations were used to estimate the effect of fetal-fraction, sequencing depth and number of informative SNPs on the quality of results. Our workflow proved to be robust, as we obtained conclusive and correctly inferred fetal genotypes in 94.9% of cases, with no false-negative or false-positive results. By standardizing data generation and analysis, we fully describe a turnkey protocol for laboratories wishing to offer eRHDO-based non-invasive prenatal diagnosis for single-gene disorders as an alternative to conventional prenatal diagnosis.
Collapse
Affiliation(s)
- Mathilde Pacault
- Laboratoire de Génétique Moléculaire et Histocompatibilité, Brest, France
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | - Camille Verebi
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | | | - Lucie Orhant
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | - Alexandre Perrier
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | - Emmanuelle Girodon
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | - France Leturcq
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | - Dominique Vidaud
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et Histocompatibilité, Brest, France
| | - Thierry Bienvenu
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| | - Romain Daveau
- MOABI, Plateforme bio-informatique AP-HP, Département I&D, DSI, Paris, France
| | - Juliette Nectoux
- Service de Médecine Génomique des maladies de système et d'organe, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
| |
Collapse
|
15
|
Cell-Free Fetal DNA and Non-Invasive Prenatal Diagnosis of Chromosomopathies and Pediatric Monogenic Diseases: A Critical Appraisal and Medicolegal Remarks. J Pers Med 2022; 13:jpm13010001. [PMID: 36675662 PMCID: PMC9862851 DOI: 10.3390/jpm13010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cell-free fetal DNA (cffDNA) analysis is a non-invasive prenatal diagnostic test with a fundamental role for the screening of chromosomic or monogenic pathologies of the fetus. Its administration is performed by fetal DNA detection in the mother's blood from the fourth week of gestation. Given the great interest regarding its validation as a diagnostic tool, the authors have set out to undertake a critical appraisal based on a wide-ranging narrative review of 45 total studies centered around such techniques. Both chromosomopathies and monogenic diseases were taken into account and systematically discussed and elucidated. Not surprisingly, cell-free fetal DNA analysis for screening purposes is already rather well-established. At the same time, considerable interest in its diagnostic value has emerged from this literature review, which recommends the elaboration of appropriate validation studies, as well as a broad discourse, involving all stakeholders, to address the legal and ethical complexities that such techniques entail.
Collapse
|
16
|
Hanson B, Scotchman E, Chitty LS, Chandler NJ. Non-invasive prenatal diagnosis (NIPD): how analysis of cell-free DNA in maternal plasma has changed prenatal diagnosis for monogenic disorders. Clin Sci (Lond) 2022; 136:1615-1629. [PMID: 36383187 PMCID: PMC9670272 DOI: 10.1042/cs20210380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023]
Abstract
Cell-free fetal DNA (cffDNA) is released into the maternal circulation from trophoblastic cells during pregnancy, is detectable from 4 weeks and is representative of the entire fetal genome. The presence of this cffDNA in the maternal bloodstream has enabled clinical implementation of non-invasive prenatal diagnosis (NIPD) for monogenic disorders. Detection of paternally inherited and de novo mutations is relatively straightforward, and several methods have been developed for clinical use, including quantitative polymerase chain reaction (qPCR), and PCR followed by restriction enzyme digest (PCR-RED) or next-generation sequencing (NGS). A greater challenge has been in the detection of maternally inherited variants owing to the high background of maternal cell-free DNA (cfDNA). Molecular counting techniques have been developed to measure subtle changes in allele frequency. For instance, relative haplotype dosage analysis (RHDO), which uses single nucleotide polymorphisms (SNPs) for phasing of high- and low-risk alleles, is clinically available for several monogenic disorders. A major drawback is that RHDO requires samples from both parents and an affected or unaffected proband, therefore alternative methods, such as proband-free RHDO and relative mutation dosage (RMD), are being investigated. cffDNA was thought to exist only as short fragments (<500 bp); however, long-read sequencing technologies have recently revealed a range of sizes up to ∼23 kb. cffDNA also carries a specific placental epigenetic mark, and so fragmentomics and epigenetics are of interest for targeted enrichment of cffDNA. Cell-based NIPD approaches are also currently under investigation as a means to obtain a pure source of intact fetal genomic DNA.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Lyn S. Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, U.K
| | - Natalie J. Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| |
Collapse
|
17
|
Sherer DM, Hsieh V, Hall A, Gerren A, Walters E, Dalloul M. Current Perspectives of Prenatal Cell-free DNA Screening in Clinical Management of First-Trimester Septated Cystic Hygroma. Int J Womens Health 2022; 14:1499-1518. [PMID: 36325393 PMCID: PMC9621220 DOI: 10.2147/ijwh.s328201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022] Open
Abstract
First-trimester septated cystic hygroma occurs in approximately 1 in 268 pregnancies and has long been associated with a markedly increased risk of fetal aneuploidy and, among euploid fetuses, an increased risk of structural anomalies primarily affecting the cardiac and skeletal systems. Invasive prenatal diagnosis – chorionic villus sampling and/or amniocentesis – encompasses the time-honored clinical tools for the next step in management following prenatal sonographic diagnosis of first-trimester septated cystic hygroma. Currently, prenatal cell-free DNA (cfDNA) screening for fetal aneuploidy with select microdeletions is gradually replacing the considerably less sensitive, and labor-intensive combined first-trimester screening. These new technologies have opened potential new venues in the clinical management of this ominous late first-trimester sonographic diagnosis. Advances in cfDNA technologies are now permitting detection of chromosomal copy number variants (CNV) larger than 7Mb across genome and select serious single-gene disorders (mainly impacting skeletal and neurological development), affecting quality of life and may benefit from medical and/or surgical management. This commentary will address the available non-invasive prenatal screening technologies, which clearly enhance immediate genetic analysis modalities applicable in the presence of the complex sonographic finding of first-trimester septated cystic hygroma.
Collapse
Affiliation(s)
- David M Sherer
- The Division of Maternal Fetal Medicine, the Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA,Correspondence: David M Sherer, Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, 450 Clarkson Avenue, Box 24, Brooklyn, NY, 11203, USA, Tel +001-718-270-2081, Fax +001-718-270-4122, Email
| | - Vicky Hsieh
- The Division of Maternal Fetal Medicine, the Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| | - Anika Hall
- The Division of Maternal Fetal Medicine, the Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| | - Allison Gerren
- The Division of Maternal Fetal Medicine, the Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| | - Erin Walters
- The Division of Maternal Fetal Medicine, the Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mudar Dalloul
- The Division of Maternal Fetal Medicine, the Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
18
|
Tilleman L, Rubben K, Van Criekinge W, Deforce D, Van Nieuwerburgh F. Haplotyping pharmacogenes using TLA combined with Illumina or Nanopore sequencing. Sci Rep 2022; 12:17734. [PMID: 36273027 PMCID: PMC9587992 DOI: 10.1038/s41598-022-22499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/16/2022] [Indexed: 01/18/2023] Open
Abstract
The currently used pharmacogenetic genotyping assays offer limited haplotype information, which can potentially cause specific functional effects to be missed. This study tested if Targeted Locus Amplification (TLA), when using non-patient-specific primers combined with Illumina or Nanopore sequencing, can offer an advantage in terms of accurate phasing. The TLA method selectively amplifies and sequences entire genes based on crosslinking DNA in close physical proximity. This way, DNA fragments that were initially further apart in the genome are ligated into one molecule, making it possible to sequence distant variants within one short read. In this study, four pharmacogenes, CYP2D6, CYP2C19, CYP1A2 and BRCA1, were sequenced after enrichment using different primer pairs. Only 24% or 38% of the nucleotides mapped on target when using Illumina or Nanopore sequencing, respectively. With an average depth of more than 1000X for the regions of interest, none of the genes were entirely covered with either sequencing method. For three of the four genes, less than half of the variants were phased correctly compared to the reference. The Nanopore dataset with the optimized primer pair for CYP2D6 resulted in the correct haplotype, showing that this method can be used for reliable genotyping and phasing of pharmacogenes but does require patient-specific primer design and optimization to be effective.
Collapse
Affiliation(s)
- Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Kaat Rubben
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Wim Van Criekinge
- Laboratory of Bioinformatics and Computational Genomics, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
19
|
Mondal G, VanLith CJ, Nicolas CT, Thompson WS, Cao WS, Hillin L, Haugo BJ, Brien DRO, Kocher JP, Kaiser RA, Lillegard JB. Activation of homology-directed DNA repair plays key role in CRISPR-mediated genome correction. Gene Ther 2022; 30:386-397. [PMID: 36258038 DOI: 10.1038/s41434-022-00369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Gene editing for the cure of inborn errors of metabolism (IEMs) has been limited by inefficiency of adult hepatocyte targeting. Here, we demonstrate that in utero CRISPR/Cas9-mediated gene editing in a mouse model of hereditary tyrosinemia type 1 provides stable cure of the disease. Following this, we performed an extensive gene expression analysis to explore the inherent characteristics of fetal/neonatal hepatocytes that make them more susceptible to efficient gene editing than adult hepatocytes. We showed that fetal and neonatal livers are comprised of proliferative hepatocytes with abundant expression of genes involved in homology-directed repair (HDR) of DNA double-strand breaks (DSBs), key for efficient gene editing by CRISPR/Cas9. We demonstrated the same is true of hepatocytes after undergoing a regenerative stimulus (partial hepatectomy), where post-hepatectomy cells show a higher efficiency of HDR and correction. Specifically, we demonstrated that HDR-related genome correction is most effective in the replicative phase, or S-phase, of an actively proliferating cell. In conclusion, this study shows that taking advantage of or triggering cell proliferation, specifically DNA replication in S-phase, may serve as an important tool to improve efficiency of CRISPR/Cas9-mediated genome editing in the liver and provide a curative therapy for IEMs in both children and adults.
Collapse
Affiliation(s)
| | | | - Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | - Whitney S Thompson
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - William S Cao
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lori Hillin
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel R O' Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Kocher
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, MN, USA
| | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN, USA. .,Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, MN, USA. .,Pediatric Surgical Associates, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Tang X, Wang Z, Yang S, Chen M, Zhang Y, Zhang F, Tan J, Yin T, Wang L. Maternal Xp22.31 copy-number variations detected in non-invasive prenatal screening effectively guide the prenatal diagnosis of X-linked ichthyosis. Front Genet 2022; 13:934952. [PMID: 36118896 PMCID: PMC9471005 DOI: 10.3389/fgene.2022.934952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background and aims: X-linked ichthyosis (XLI) is a common recessive genetic disease caused by the deletion of steroid sulfatase (STS) in Xp22.31. Maternal copy-number deletions in Xp22.31 (covering STS) can be considered an incidental benefit of genome-wide cell-free DNA profiling. Here, we explored the accuracy and clinical value of maternal deletions in Xp22.31 during non-invasive prenatal screening (NIPS). Materials and methods: We evaluated 13,156 pregnant women who completed NIPS. The maternal deletions in Xp22.31 revealed by NIPS were confirmed with maternal white blood cells by chromosome microarray analysis (CMA) or copy-number variation sequencing (CNV-seq). Suspected positive women pregnant with male fetuses were informed and provided with prenatal genetic counseling. Results: Nineteen maternal deletions in Xp22.31 covering STS were detected by NIPS, which were all confirmed, ranging in size from 0.61 to 1.77 Mb. Among them, eleven women with deletions in male fetuses accepted prenatal diagnoses, and finally nine cases of XLI were diagnosed. The nine XLI males had differing degrees of skin abnormalities, and of them, some male members of ten families had symptoms associated with XLI. Conclusion: NIPS has the potential to detect clinically significant maternal X chromosomal CNVs causing XLI, which can guide the prenatal diagnosis of X-linked ichthyosis and reflect the family history, so as to enhance pregnancy management as well as children and family members’ health management.
Collapse
|
21
|
Liautard-Haag C, Durif G, VanGoethem C, Baux D, Louis A, Cayrefourcq L, Lamairia M, Willems M, Zordan C, Dorian V, Rooryck C, Goizet C, Chaussenot A, Monteil L, Calvas P, Miry C, Favre R, Le Boette E, Fradin M, Roux AF, Cossée M, Koenig M, Alix-Panabière C, Guissart C, Vincent MC. Noninvasive prenatal diagnosis of genetic diseases induced by triplet repeat expansion by linked read haplotyping and Bayesian approach. Sci Rep 2022; 12:11423. [PMID: 35794169 PMCID: PMC9259573 DOI: 10.1038/s41598-022-15307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe field of noninvasive prenatal diagnosis (NIPD) has undergone significant progress over the last decade. Direct haplotyping has been successfully applied for NIPD of few single-gene disorders. However, technical issues remain for triplet-repeat expansions. The objective of this study was to develop an NIPD approach for couples at risk of transmitting dynamic mutations. This method includes targeted enrichment for linked-read libraries and targeted maternal plasma DNA sequencing. We also developed an innovative Bayesian procedure to integrate the Hoobari fetal genotyping model for inferring the fetal haplotype and the targeted gene variant status. Our method of directly resolving parental haplotypes through targeted linked-read sequencing was smoothly performed using blood samples from families with Huntington’s disease or myotonic dystrophy type 1. The Bayesian analysis of transmission of parental haplotypes allowed defining the genotype of five fetuses. The predicted variant status of four of these fetuses was in agreement with the invasive prenatal diagnosis findings. Conversely, no conclusive result was obtained for the NIPD of fragile X syndrome. Although improvements should be made to achieve clinically acceptable accuracy, our study shows that linked-read sequencing and parental haplotype phasing can be successfully used for NIPD of triplet-repeat expansion diseases.Trial registration: NCT04698551_date of first registration: 07/01/2021.
Collapse
|
22
|
Direct Chromosomal Phasing: An Easy and Fast Approach for Broadening Prenatal Diagnostic Applicability. THALASSEMIA REPORTS 2022. [DOI: 10.3390/thalassrep12030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The assignment of alleles to haplotypes in prenatal diagnostic assays has traditionally depended on family study analyses. However, this prevents the wide application of prenatal diagnosis based on haplotype analysis, especially in countries with dispersed populations. Here, we present an easy and fast approach using Droplet Digital PCR for the direct determination of haplotype blocks, overcoming the necessity for acquiring other family members’ genetic samples. We demonstrate this approach on nine families that were referred to our center for a prenatal diagnosis of β-thalassaemia using four highly polymorphic single nucleotide variations and the most common pathogenic β-thalassaemia variation in our population. Our approach resulted in the successful direct chromosomal phasing and haplotyping for all nine of the families analyzed, demonstrating a complete agreement with the haplotypes that are ascertained based on family trios. The clinical utility of this approach is envisaged to open the application of prenatal diagnosis for β-thalassaemia to all cases, while simultaneously providing a model for extending the prenatal diagnostic application of other monogenic diseases as well.
Collapse
|
23
|
Zhong LPW, Chiu RWK. The Next Frontier in Noninvasive Prenatal Diagnostics: Cell-Free Fetal DNA Analysis for Monogenic Disease Assessment. Annu Rev Genomics Hum Genet 2022; 23:413-425. [PMID: 35316613 DOI: 10.1146/annurev-genom-110821-113411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the widespread clinical adoption of noninvasive screening for fetal chromosomal aneuploidies based on cell-free DNA analysis from maternal plasma, more researchers are turning their attention to noninvasive prenatal assessment for single-gene disorders. The development of a spectrum of approaches to analyze cell-free DNA in maternal circulation, including relative mutation dosage, relative haplotype dosage, and size-based methods, has expanded the scope of noninvasive prenatal testing to sex-linked and autosomal recessive disorders. Cell-free fetal DNA analysis for several of the more prevalent single-gene disorders has recently been introduced into clinical service. This article reviews the analytical approaches currently available and discusses the extent of the clinical implementation of noninvasive prenatal testing for single-gene disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lilian Pok Wa Zhong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ,
| | - Rossa W K Chiu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; ,
| |
Collapse
|
24
|
Nouspikel T, Blouin J, Puder JJ, Köhler Ballan B, Schwitzgebel VM. Precision medicine in diabetes: A non-invasive prenatal diagnostic test for the determination of fetal glucokinase mutations. J Diabetes Investig 2022; 13:256-261. [PMID: 34469064 PMCID: PMC8847152 DOI: 10.1111/jdi.13656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Hyperglycemia caused by mutations in the glucokinase gene, GCK, is the most common form of monogenic diabetes. Prenatal diagnosis is important, as it impacts on treatment. This study reports a monogenic non-invasive prenatal diagnostic (NIPD-M) test on cell-free DNA in maternal plasma using the relative haplotype dosage. In three pregnancies of two families with known maternal GCK mutations, the fetal genotype was determined unambiguously already at 12 weeks of gestation. In summary, proof is provided of the feasibility for NIPD-M in GCK diabetes.
Collapse
Affiliation(s)
- Thierry Nouspikel
- Genetic MedicineDiagnostic DepartmentUniversity Hospitals of GenevaGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Jean‐Louis Blouin
- Genetic MedicineDiagnostic DepartmentUniversity Hospitals of GenevaGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Jardena J Puder
- Department Women‐Mother‐ChildLausanne University HospitalLausanneSwitzerland
| | | | - Valerie M Schwitzgebel
- Pediatric Endocrine and Diabetes UnitDepartment of Pediatrics, Obstetrics and GynecologyUniversity Hospitals of GenevaGenevaSwitzerland
- Diabetes Center of the Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
25
|
Mokveld T, Al-Ars Z, Sistermans EA, Reinders M. WisecondorFF: Improved Fetal Aneuploidy Detection from Shallow WGS through Fragment Length Analysis. Diagnostics (Basel) 2021; 12:59. [PMID: 35054227 PMCID: PMC8774687 DOI: 10.3390/diagnostics12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
In prenatal diagnostics, NIPT screening utilizing read coverage-based profiles obtained from shallow WGS data is routinely used to detect fetal CNVs. From this same data, fragment size distributions of fetal and maternal DNA fragments can be derived, which are known to be different, and often used to infer fetal fractions. We argue that the fragment size has the potential to aid in the detection of CNVs. By integrating, in parallel, fragment size and read coverage in a within-sample normalization approach, it is possible to construct a reference set encompassing both data types. This reference then allows the detection of CNVs within queried samples, utilizing both data sources. We present a new methodology, WisecondorFF, which improves sensitivity, while maintaining specificity, relative to existing approaches. WisecondorFF increases robustness of detected CNVs, and can reliably detect even at lower fetal fractions (<2%).
Collapse
Affiliation(s)
- Tom Mokveld
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands;
| | - Zaid Al-Ars
- Computer Engineering, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands;
| | - Erik A. Sistermans
- Department of Human Genetics and Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands;
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands;
| |
Collapse
|
26
|
Erlich HA, López-Peña C, Carlberg KT, Shih S, Bali G, Yamaguchi KD, Salamon H, Das R, Lal A, Calloway CD. Non-Invasive Prenatal Test for β-Thalassemia and Sickle Cell Disease Using Probe Capture Enrichment and Next-Generation Sequencing of DNA in Maternal Plasma. J Appl Lab Med 2021; 7:515-531. [PMID: 34849992 DOI: 10.1093/jalm/jfab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/30/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Noninvasive prenatal testing (NIPT) of chromosomal aneuploidies based on next-generation sequencing (NGS) analysis of fetal DNA in maternal plasma is well established, but testing for autosomal recessive disorders remains challenging. NGS libraries prepared by probe capture facilitate the analysis of the short DNA fragments plasma. This system has been applied to the β-hemoglobinopathies to reduce the risk to the fetus. METHOD Our probe panel captures >4 kb of the HBB region and 435 single-nucleotide polymorphisms (SNPs) used to estimate fetal fraction. Contrived mixtures of DNA samples, plasma, and whole blood samples from 7 pregnant women with β-thalassemia or sickle cell anemia mutations and samples from the father, sibling, and baby or chorionic villus were analyzed. The fetal genotypes, including point mutations and deletions, were inferred by comparing the observed and expected plasma sequence read ratios, based on fetal fraction, at the mutation site and linked SNPs. Accuracy was increased by removing PCR duplicates and by in silico size selection of plasma sequence reads. A probability was assigned to each of the potential fetal genotypes using a statistical model for the experimental variation, and thresholds were established for assigning clinical status. RESULTS Using in silico size selection of plasma sequence files, the predicted clinical fetal genotype assignments were correct in 9 of 10 plasma libraries with maternal point mutations, with 1 inconclusive result. For 2 additional plasmas with deletions, the most probable fetal genotype was correct. The β-globin haplotype determined from linked SNPs, when available, was used to infer the fetal genotype at the mutation site. CONCLUSION This probe capture NGS assay demonstrates the potential of NIPT for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Henry A Erlich
- Department of Genetics and Genomics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Christian López-Peña
- Department of Genetics and Genomics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Katie T Carlberg
- Department of Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Shelly Shih
- Department of Genetics and Genomics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Gunmeet Bali
- Department of Genetics and Genomics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | | | - Reena Das
- Post Graduate Institute of Medical and Educational Research, Chandigarh, India
| | - Ashutosh Lal
- Department of Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Cassandra D Calloway
- Department of Genetics and Genomics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
- Department of Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| |
Collapse
|
27
|
Chen C, Chen M, Zhu Y, Jiang L, Li J, Wang Y, Lu Z, Guo F, Wang H, Peng Z, Yang Y, Sun J. Noninvasive prenatal diagnosis of monogenic disorders based on direct haplotype phasing through targeted linked-read sequencing. BMC Med Genomics 2021; 14:244. [PMID: 34627256 PMCID: PMC8502361 DOI: 10.1186/s12920-021-01091-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Background Though massively parallel sequencing has been widely applied to noninvasive prenatal screen for common trisomy, the clinical use of massively parallel sequencing to noninvasive prenatal diagnose monogenic disorders is limited. This study was to develop a method for directly determining paternal haplotypes for noninvasive prenatal diagnosis of monogenic disorders without requiring proband’s samples. Methods The study recruited 40 families at high risk for autosomal recessive diseases. The targeted linked-read sequencing was performed on high molecular weight (HMW) DNA of parents using customized probes designed to capture targeted genes and single-nucleotide polymorphisms (SNPs) distributed within 1Mb flanking region of targeted genes. Plasma DNA from pregnant mothers also underwent targeted sequencing using the same probes to determine fetal haplotypes according to parental haplotypes. The results were further confirmed by invasive prenatal diagnosis. Results Seventy-eight parental haplotypes of targeted gene were successfully determined by targeted linked-read sequencing. The predicted fetal inheritance of variant was correctly deduced in 38 families in which the variants had been confirmed by invasive prenatal diagnosis. Two families were determined to be no-call. Conclusions Targeted linked-read sequencing method demonstrated to be an effective means to phase personal haplotype for noninvasive prenatal diagnosis of monogenic disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01091-x.
Collapse
Affiliation(s)
- Chao Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Min Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaping Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Lu Jiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Jia Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yaoshen Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Zhe Lu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Fengyu Guo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Hairong Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 430074, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yun Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China. .,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 430074, China. .,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jun Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China. .,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China.
| |
Collapse
|
28
|
van Galen K, Lavin M, Skouw-Rasmussen N, Fischer K, Noone D, Pollard D, Mauser-Bunschoten E, Khair K, Gomez K, van Loon E, Bagot CN, Elfvinge P, d'Oiron R, Abdul-Kadir R. European principles of care for women and girls with inherited bleeding disorders. Haemophilia 2021; 27:837-847. [PMID: 34343384 DOI: 10.1111/hae.14379] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Despite increasing awareness of issues faced by women and girls with inherited BDs (WGBD), standards of care are lacking, with disparities in diagnosis and treatment for WGBD across Europe. We aimed to develop practical principles of care (PoC) to promote standardization of care for WGBD within European Haemophilia Treatment and Comprehensive Care Centres (HTC/CCCs). METHODS The co-creation process, supported by the European Association for Haemophilia and Allied Disorders, consisted of four multidisciplinary meetings with health care providers (HCPs) experienced in WGBD care, and European Haemophilia Consortium representatives, combined with broad patient and HCP consultations in the European haemophilia community. Relevant medical societies outside Europe were contacted for confirmation. RESULTS We developed ten PoC for WGBD, stressing the importance and benefits of a centralized, multidisciplinary, comprehensive, family-centred approach to support and manage WGBD during all life stages. These PoC emphasise the right to equitable access and quality of care for all people with BDs, irrespective of gender. Multiple medical societies outside Europe also confirmed their support for endorsement. CONCLUSIONS Ten PoC for WGBD evolved from an iterative process among stakeholders, supported by relevant medical societies worldwide. These PoC can serve as a benchmark for diagnosis and comprehensive multidisciplinary management of WGBD, and improve awareness of their unique challenges. They offer a framework to guide HTC/CCCs in providing equitable care for all WGBD, both in their own services and in other healthcare settings. Implementation of these principles aims to positively impact the health, wellbeing and quality of life for WGBD.
Collapse
Affiliation(s)
- Karin van Galen
- Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Michelle Lavin
- Irish Centre for Vascular Biology, School of Pharmacy and Biomedical Sciences, RCSI, Dublin and National Coagulation Centre, St. James' Hospital, Dublin, Ireland
| | | | - Kathelijn Fischer
- Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Declan Noone
- President, European Haemophilia Consortium, Brussels, Belgium
| | - Debra Pollard
- Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| | | | - Kate Khair
- Director of Research, Haemnet, London, UK
| | - Keith Gomez
- Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| | | | | | - Petra Elfvinge
- Department of Haematology, Karolinska University, Stockholm, Sweden
| | - Roseline d'Oiron
- Centre de Référence de l'Hémophilie et des Maladies Hémorragiques Constitutionnelles, APHP Paris Saclay - Hôpital Bicêtre and Inserm, U 1176 Le Kremlin Bicêtre, France
| | - Rezan Abdul-Kadir
- Department of Obstetrics and Gynaecology, Royal Free London NHS Foundation Trust and Institute for Women's Health, University College London, London, UK
| | | |
Collapse
|
29
|
Achour A, Koopmann TT, Baas F, Harteveld CL. The Evolving Role of Next-Generation Sequencing in Screening and Diagnosis of Hemoglobinopathies. Front Physiol 2021; 12:686689. [PMID: 34385932 PMCID: PMC8353275 DOI: 10.3389/fphys.2021.686689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
During the last few years, next-generation sequencing (NGS) has undergone a rapid transition from a research setting to a clinical application, becoming the method of choice in many clinical genetics laboratories for the detection of disease-causing variants in a variety of genetic diseases involving multiple genes. The hemoglobinopathies are the most frequently found Mendelian inherited monogenic disease worldwide and are composed of a complex group of disorders frequently involving the inheritance of more than one abnormal gene. This review aims to present the role of NGS in both screening and pre- and post-natal diagnostics of the hemoglobinopathies, and the added value of NGS is discussed based on the results described in the literature. Overall, NGS has an added value in large-scale high throughput carrier screening and in the complex cases for which common molecular techniques have some inadequacies. It is proven that the majority of thalassemia cases and Hb variants can be diagnosed using routine analysis involving a combined approach of hematology, hemoglobin separation, and classical DNA methods; however, we conclude that NGS can be a useful addition to the existing methods in the diagnosis of these disorders.
Collapse
Affiliation(s)
- Ahlem Achour
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, Netherlands.,Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Tamara T Koopmann
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Baas
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis L Harteveld
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
30
|
Xu Z, Dixon JR. Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Brief Funct Genomics 2021; 19:139-150. [PMID: 31875884 DOI: 10.1093/bfgp/elz026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Genomic analysis of individuals or organisms is predicated on the availability of high-quality reference and genotype information. With the rapidly dropping costs of high-throughput DNA sequencing, this is becoming readily available for diverse organisms and for increasingly large populations of individuals. Despite these advances, there are still aspects of genome sequencing that remain challenging for existing sequencing methods. This includes the generation of long-range contiguity during genome assembly, identification of structural variants in both germline and somatic tissues, the phasing of haplotypes in diploid organisms and the resolution of genome sequence for organisms derived from complex samples. These types of information are valuable for understanding the role of genome sequence and genetic variation on genome function, and numerous approaches have been developed to address them. Recently, chromosome conformation capture (3C) experiments, such as the Hi-C assay, have emerged as powerful tools to aid in these challenges for genome reconstruction. We will review the current use of Hi-C as a tool for aiding in genome sequencing, addressing the applications, strengths, limitations and potential future directions for the use of 3C data in genome analysis. We argue that unique features of Hi-C experiments make this data type a powerful tool to address challenges in genome sequencing, and that future integration of Hi-C data with alternative sequencing assays will facilitate the continuing revolution in genomic analysis and genome sequencing.
Collapse
|
31
|
Filer DL, Mieczkowski PA, Brandt A, Gilmore KL, Powell BC, Berg JS, Wilhelmsen KC, Vora NL. Noninvasive prenatal exome sequencing diagnostic utility limited by sequencing depth and fetal fraction. Prenat Diagn 2021; 42:567-573. [PMID: 34265090 DOI: 10.1002/pd.6009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Sequencing cell-free DNA now allows detection of large chromosomal abnormalities and dominant Mendelian disorders in the prenatal period. Improving upon these methods would allow newborn screening programs to begin with prenatal genetics, ultimately improving the management of rare genetic disorders. METHODS As a pilot study, we performed exome sequencing on the cell-free DNA from three mothers with singleton pregnancies to assess the viability of broad sequencing modalities in a noninvasive prenatal setting. RESULTS We found poor resolution of maternal and fetal genotypes due to both sampling and technical issues. CONCLUSION We find broad sequencing modalities inefficient for noninvasive prenatal applications. Alternatively, we suggest a more targeted path forward for noninvasive prenatal genotyping.
Collapse
Affiliation(s)
- Dayne L Filer
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.,Renaissance Computing Institute, Chapel Hill, NC, USA
| | - Piotr A Mieczkowski
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Alicia Brandt
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kelly L Gilmore
- Department of Obstetrics & Gynecology, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Bradford C Powell
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.,Renaissance Computing Institute, Chapel Hill, NC, USA
| | - Jonathan S Berg
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kirk C Wilhelmsen
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.,Renaissance Computing Institute, Chapel Hill, NC, USA.,Department of Neurology, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Neeta L Vora
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.,Department of Obstetrics & Gynecology, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Mauser‐Bunschoten EP, Kadir RA, Laan ETM, Elfvinge P, Haverman L, Teela L, Degenaar MEL, Fransen van de Putte DE, D'Oiron R, van Galen KPM. Managing women-specific bleeding in inherited bleeding disorders: A multidisciplinary approach. Haemophilia 2021; 27:463-469. [PMID: 33314402 PMCID: PMC8246991 DOI: 10.1111/hae.14221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Multidisciplinary management of women-specific bleeding is important to preserve quality of life, healthy reproduction and social participation of women and girls with bleeding disorders (WBD). AIM To support appropriate multidisciplinary care for WBD in haemophilia treatment centres. METHODS Two case examples are presented and management issues discussed from different health care perspectives, including the nurse, patient, psychologist, gynaecologist, geneticist, psychosexual therapist and haematologist. RESULTS Woman with bleeding disorders may experience heavy menstruation from menarche onwards. This has a physical and psychosocial impact requiring a multidisciplinary approach. If a woman with an inherited bleeding disorder desires to become pregnant, preconception counselling is essential, to discuss genetic diagnosis, state of the art treatment options for the bleeding disorder in question and possible choices to prevent having an affected child, as well as maternal bleeding risks during conception, delivery and the post-partum period. CONCLUSION Adequate management and good education of WBD requires a patient-centred multidisciplinary approach with experienced specialists in a haemophilia treatment centre.
Collapse
Affiliation(s)
| | - Rezan A. Kadir
- Katharine Dormandy Haemophilia and Thrombosis UnitDepartment of Obstetrics and GynaecologyRoyal Free Foundation Hospital and Insitiute for Women's HealthUniversity College LondonLondonUK
| | - Ellen T. M. Laan
- Department of Sexology and Psychosomatic GynaecologyAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Petra Elfvinge
- Department of HaematologyKarolinska UniversityStockholmSweden
| | - Lotte Haverman
- Department of PsychologyEmma Children's HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lorynn Teela
- Department of PsychologyEmma Children's HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Roseline D'Oiron
- APHP Paris SaclayHôpital BicêtreINSERM U 1176Le Kremlin BicêtreFrance
| | - Karin P. M. van Galen
- Van CreveldkliniekUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
33
|
Zhuo X, Wang Q, Vossaert L, Salman R, Kim A, Van den Veyver I, Breman A, Beaudet A. Use of amplicon-based sequencing for testing fetal identity and monogenic traits with Single Circulating Trophoblast (SCT) as one form of cell-based NIPT. PLoS One 2021; 16:e0249695. [PMID: 33857205 PMCID: PMC8049273 DOI: 10.1371/journal.pone.0249695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
A major challenge for cell-based non-invasive prenatal testing (NIPT) is to distinguish individual presumptive fetal cells from maternal cells in female pregnancies. We have sought a rapid, robust, versatile, and low-cost next-generation sequencing method to facilitate this process. Toward this goal, single isolated cells underwent whole genome amplification prior to genotyping. Multiple highly polymorphic genomic regions (including HLA-A and HLA-B) with 10-20 very informative single nucleotide polymorphisms (SNPs) within a 200 bp interval were amplified with a modified method based on other publications. To enhance the power of cell identification, approximately 40 Human Identification SNP (Applied Biosystems) test amplicons were also utilized. Using SNP results to compare to sex chromosome data from NGS as a reliable standard, the true positive rate for genotyping was 83.4%, true negative 6.6%, false positive 3.3%, and false negative 6.6%. These results would not be sufficient for clinical diagnosis, but they demonstrate the general validity of the approach and suggest that deeper genotyping of single cells could be completely reliable. A paternal DNA sample is not required using this method. The assay also successfully detected pathogenic variants causing Tay Sachs disease, cystic fibrosis, and hemoglobinopathies in single lymphoblastoid cells, and disease-causing variants in three cell-based NIPT cases. This method could be applicable for any monogenic diagnosis.
Collapse
Affiliation(s)
- Xinming Zhuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Qun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Roseen Salman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Adriel Kim
- Graduate Program in Diagnostic Genetics, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Ignatia Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States of America
| | - Amy Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Arthur Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
34
|
Noninvasive prenatal testing for β-thalassemia by targeted nanopore sequencing combined with relative haplotype dosage (RHDO): a feasibility study. Sci Rep 2021; 11:5714. [PMID: 33707551 PMCID: PMC7952549 DOI: 10.1038/s41598-021-85128-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Noninvasive prenatal testing (NIPT) for single gene disorders remains challenging. One approach that allows for accurate detection of the slight increase of the maternally inherited allele is the relative haplotype dosage (RHDO) analysis, which requires the construction of parental haplotypes. Recently, the nanopore sequencing technologies have become available and may be an ideal tool for direct construction of haplotypes. Here, we explored the feasibility of combining nanopore sequencing with the RHDO analysis in NIPT of β-thalassemia. Thirteen families at risk for β-thalassemia were recruited. Targeted region of parental genomic DNA was amplified by long-range PCR of 10 kb and 20 kb amplicons. Parental haplotypes were constructed using nanopore sequencing and next generation sequencing data. Fetal inheritance of parental haplotypes was classified by the RHDO analysis using data from maternal plasma DNA sequencing. Haplotype phasing was achieved in 12 families using data from 10 kb library. While data from the 20 kb library gave a better performance that haplotype phasing was achieved in all 13 families. Fetal status was correctly classified in 12 out of 13 families. Thus, targeted nanopore sequencing combined with the RHDO analysis is feasible to NIPT for β-thalassemia.
Collapse
|
35
|
Chen C, Li R, Sun J, Zhu Y, Jiang L, Li J, Fu F, Wan J, Guo F, An X, Wang Y, Fan L, Sun Y, Guo X, Zhao S, Wang W, Zeng F, Yang Y, Ni P, Ding Y, Xiang B, Peng Z, Liao C. Noninvasive prenatal testing of α-thalassemia and β-thalassemia through population-based parental haplotyping. Genome Med 2021; 13:18. [PMID: 33546747 PMCID: PMC7866698 DOI: 10.1186/s13073-021-00836-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background Noninvasive prenatal testing (NIPT) of recessive monogenic diseases depends heavily on knowing the correct parental haplotypes. However, the currently used family-based haplotyping method requires pedigrees, and molecular haplotyping is highly challenging due to its high cost, long turnaround time, and complexity. Here, we proposed a new two-step approach, population-based haplotyping-NIPT (PBH-NIPT), using α-thalassemia and β-thalassemia as prototypes. Methods First, we deduced parental haplotypes with Beagle 4.0 with training on a large retrospective carrier screening dataset (4356 thalassemia carrier screening-positive cases). Second, we inferred fetal haplotypes using a parental haplotype-assisted hidden Markov model (HMM) and the Viterbi algorithm. Results With this approach, we enrolled 59 couples at risk of having a fetus with thalassemia and successfully inferred 94.1% (111/118) of fetal alleles. We confirmed these alleles by invasive prenatal diagnosis, with 99.1% (110/111) accuracy (95% CI, 95.1–100%). Conclusions These results demonstrate that PBH-NIPT is a sensitive, fast, and inexpensive strategy for NIPT of thalassemia. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00836-8.
Collapse
Affiliation(s)
- Chao Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jun Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Yaping Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Lu Jiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Jian Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junhui Wan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fengyu Guo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Xiaoying An
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Yaoshen Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Linlin Fan
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Yan Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 490079, China
| | - Xiaosen Guo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sumin Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Wanyang Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Fanwei Zeng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yun Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, 490079, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peixiang Ni
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Yi Ding
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Bixia Xiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
36
|
Abstract
For decades, prenatal testing has been offered to evaluate pregnancies for genetic conditions. In recent years, the number of testing options and range of testing capabilities has dramatically increased. Because of the risks associated with invasive diagnostic testing, research has focused on the detection of genetic conditions through screening technologies such as cell-free DNA. Screening for aneuploidy, copy number variants, and monogenic disorders is clinically available using a sample of maternal blood, but limited data exist on the accuracy of some of these testing options. Additional research is needed to examine the accuracy and utility of screening for increasingly rare conditions. As the breadth of prenatal genetic testing options continues to expand, patients, clinical providers, laboratories, and researchers need to find collaborative means to validate and introduce new testing technologies responsibly. Adequate validation of prenatal tests and effective integration of emerging technologies into prenatal care will become even more important once prenatal treatments for genetic conditions become available.
Collapse
Affiliation(s)
- Blair Stevens
- McGovern Medical School at UTHealth in Houston, Department of Obstetrics, Gynecology and Reproductive Sciences, Houston, Texas 77030, USA
| |
Collapse
|
37
|
Noninvasive prenatal test of single-gene disorders by linked-read direct haplotyping: application in various diseases. Eur J Hum Genet 2020; 29:463-470. [PMID: 33235377 DOI: 10.1038/s41431-020-00759-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/26/2020] [Accepted: 10/20/2020] [Indexed: 11/08/2022] Open
Abstract
Direct haplotyping enables noninvasive prenatal testing (NIPT) without analyzing proband, which is a promising strategy for pregnancies at risk of an inherited single-gene disorder. Here, we aimed to expand the scope of single-gene disorders that NIPT using linked-read direct haplotyping would be applicable to. Three families at risk of myotonic dystrophy type 1, lipoid congenital adrenal hyperplasia, and Fukuyama congenital muscular dystrophy were recruited. All cases exhibited distinct characteristics that are often encountered as hurdles (i.e., repeat expansion, identical variants in both parents, and novel variants with retrotransposon insertion) in the universal clinical application of NIPT. Direct haplotyping of parental genomes was performed by linked-read sequencing, combined with allele-specific PCR, if necessary. Target DMPK, STAR, and FKTN genes in the maternal plasma DNA were sequenced. Posterior risk calculations and an Anderson-Darling test were performed to deduce the maternal and paternal inheritance, respectively. In all cases, we could predict the inheritance of maternal mutant allele with > 99.9% confidence, while paternal mutant alleles were not predicted to be inherited. Our study indicates that direct haplotyping and posterior risk calculation can be applied with subtle modifications to NIPT for the detection of an expanded range of diseases.
Collapse
|
38
|
Chang L, Zhu X, Li R, Wu H, Chen W, Chen J, Liu H, Li S, Liu P. A novel method for noninvasive diagnosis of monogenic diseases from circulating fetal cells. Prenat Diagn 2020; 41:400-408. [PMID: 32673403 DOI: 10.1002/pd.5796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To establish a method for noninvasive fetal cell isolation from maternal blood and prenatal testing of monogenic diseases by a combination of direct sequencing and targeted NGS-based SNP haplotyping from single fetal cells. METHOD Peripheral blood of pregnant women in two families (congenital deafness and ichthyosis) was collected. After density-based separation and immunostaining with multiple biomarkers, candidate fetal cells were identified by high-throughput imagine analysis and picked up by automation. Individual fetal cells were subjected to STR-genotyping to identify their origin. Pathogenic mutations were identified by direct Sanger sequencing, and a combination of targeted NGS and SNP haplotyping using a custom panel. All the results were compared with amniotic fluid DNA. RESULTS Fetal trophoblasts were successfully harvested from maternal blood. STR-genotyping confirmed the fetal origin. Direct sequencing of pathogenic genetic mutations in fetal cells showed consistent results with amniotic fluid samples. For congenital deafness family, NGS-based SNP haplotyping also correctly identified the fetal haplotype. This single cell haplotyping method can be used to diagnose various genetic diseases. CONCLUSION We have established a method for noninvasive prenatal testing of monogenic diseases from circulating trophoblast cells. This cell-based NIPT can be further applied to the prenatal diagnosis of various monogenic diseases.
Collapse
Affiliation(s)
- Liang Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynaecology, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynaecology, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Han Wu
- Unimed Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Weijian Chen
- Unimed Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Jiucheng Chen
- Unimed Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Hu Liu
- Unimed Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Shunjie Li
- Unimed Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynaecology, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| |
Collapse
|
39
|
Li J, Li DZ. Prenatal diagnosis of single-gene disorders: the earlier, the better? ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 56:788-790. [PMID: 33136323 DOI: 10.1002/uog.23136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Affiliation(s)
- J Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - D-Z Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Rabinowitz T, Shomron N. Genome-wide noninvasive prenatal diagnosis of monogenic disorders: Current and future trends. Comput Struct Biotechnol J 2020; 18:2463-2470. [PMID: 33005308 PMCID: PMC7509788 DOI: 10.1016/j.csbj.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 02/09/2023] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) is a risk-free alternative to invasive methods for prenatal diagnosis, e.g. amniocentesis. NIPD is based on the presence of fetal DNA within the mother’s plasma cell-free DNA (cfDNA). Though currently available for various monogenic diseases through detection of point mutations, NIPD is limited to detecting one mutation or up to several genes simultaneously. Noninvasive prenatal whole exome/genome sequencing (WES/WGS) has demonstrated genome-wide detection of fetal point mutations in a few studies. However, Genome-wide NIPD of monogenic disorders currently has several challenges and limitations, mainly due to the small amounts of cfDNA and fetal-derived fragments, and the deep coverage required. Several approaches have been suggested for addressing these hurdles, based on various technologies and algorithms. The first relevant software tool, Hoobari, recently became available. Here we review the approaches proposed and the paths required to make genome-wide monogenic NIPD widely available in the clinic.
Collapse
Affiliation(s)
- Tom Rabinowitz
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Mirzaei Gisomi N, Javadi G, Zare Karizi S, Miryounesi M, Keshavarz P. Evaluation of beta-thalassemia in the fetus through cffDNA with multiple polymorphisms as a haplotype in the beta-globin gene. Transfus Clin Biol 2020; 27:243-252. [PMID: 32798758 DOI: 10.1016/j.tracli.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Invasive biopsy during the pregnancy is associated with an abortion risk of approximately 1% for the fetus. Free fetal DNA in maternal plasma is an excellent source of genetic material for prenatal molecular diagnoses. This study was conducted to investigate beta-thalassemia mutation in the fetus through maternal blood with multiple polymorphisms as haplotypes in the beta-globin gene. METHODS In this study, a total of 33 beta-thalassemia carrier (minor) couples were genotyped by ARMS-PCR for IVSII-IG>A mutation. During pregnancy, 10mL of blood was collected from pregnant women, and DNA was extracted by the magnetic bead-based extraction, and fetal DNA was enriched with AMPure XP kit. Five polymorphisms in 4 haplotype groups were evaluated by the Sanger Sequencing method. Finally, results were compared with those of the invasion method. RESULTS Participants in study were 33 couples, mean age of the men was 26±5 years, and mean age of women was 23±4 years, and mean MCV, MCH, HbA2 blood parameters were 62.4±5.3, 19.6±3.1, 4.2±2.1 respectively. A total of 33 fetuses were genotyped for IVSII-IG>A mutation. Nine fetuses were affected, 10 fetuses were normal and 14 fetuses were carrier of beta-thalassemia. Sensitivity and specificity of Sanger Sequencing were equal to 88.8% and 91.6% respectively. Positive and negative predictive values were obtained as 80% and 95.6%, respectively. CONCLUSION Mutational status of the fetus can be assessed by determining inheritance of paternally-derived alleles based on detection of haplotype-associated SNP in maternal plasma. Magnetic-based DNA extraction and fetal DNA enrichment are very simple and easy to perform and have satisfactory accuracy.
Collapse
Affiliation(s)
- Nadia Mirzaei Gisomi
- Department of biology, science and research branch, Islamic Azad university, Tehran, Iran
| | - Gholamreza Javadi
- Department of biology, science and research branch, Islamic Azad university, Tehran, Iran
| | - Shohre Zare Karizi
- Department of biology, faculty of biological sciences, Islamic Azad university, Varamin-Pishva Branch, Varamin, Iran
| | - Mohammad Miryounesi
- Department of medical genetics, Shahid Beheshti university of medical sciences, Tehran, Iran
| | - Parvaneh Keshavarz
- Cellular and molecular research center, faculty of medicine, Guilan university of medical sciences, Rasht, Iran; Medical genetics laboratory, Rasht, Iran.
| |
Collapse
|
42
|
How will new genetic technologies, such as gene editing, change reproductive decision-making? Views of high-risk couples. Eur J Hum Genet 2020; 29:39-50. [PMID: 32773775 PMCID: PMC7852899 DOI: 10.1038/s41431-020-00706-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Couples at increased risk of having offspring with a specific genetic disorder who want to avoid having an affected child have several reproductive options including prenatal diagnosis (PND) and preimplantation genetic testing (PGT). In the future, non-invasive prenatal diagnosis (NIPD), germline gene editing (GGE) and somatic gene editing (SGE) might become available. This study explores if, and how, availability of new genetic technologies, including NIPD, GGE, SGE, would change reproductive decision-making of high-risk couples. In 2018, semi-structured interviews were conducted with 25 genetically at-risk couples. Couples previously had received genetic counselling for PND and PGT, and in most cases opted for (one of) these techniques, at one Dutch Clinical Genetics Center between 2013 and 2017. Considerations participants mentioned regarding the hypothetical use of NIPD, GGE and SGE, seem similar to considerations regarding PND and PGT and are reflected in underlying concepts. These include safety and burden for mother and child, and moral considerations. Couples generally favoured NIPD over PND as this would be safe and enables earlier diagnosis. Increased opportunities of having a 'healthy' embryo and less embryo disposal were considerations in favour of GGE. Some regarded GGE as unsafe and feared slippery slope scenarios. Couples were least favourable towards SGE compared to choosing for a genetic reproductive technology, because of the perceived burden for the affected offspring. With the possibly growing number of technological options, understanding high risk couples' perspectives can assist in navigating the reproductive decision-making process. Counsellors should be prepared to counsel on more and complex reproductive options.
Collapse
|
43
|
Non-invasive prenatal diagnosis and screening for monogenic disorders. Eur J Obstet Gynecol Reprod Biol 2020; 253:320-327. [PMID: 32907778 DOI: 10.1016/j.ejogrb.2020.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Cell-free fetal DNA (cffDNA) can be detected in the maternal circulation from 4 weeks gestation, and is present with cell-free maternal DNA at a level of between 5 % and 20 %. Cell-free DNA (cfDNA) can be extracted from a maternal blood sample and, although it is not possible to separate the fetal from the maternal cfDNA, it has enabled non-invasive prenatal diagnosis (NIPD) without the associated miscarriage risk that accompanies invasive testing. NIPD for monogenic diseases was first reported in 2000 and since then there have been many proof of principle studies showing how analysis of cfDNA can provide a definitive diagnosis early in pregnancy for a wide range of single gene diseases. Testing for a number of these diseases has been available in the UK National Health Service (NHS) since 2012. This review highlights the main techniques that are being used for NIPD and discusses the technical limitations of the methods, as well as the advances that are being made to overcome some of the issues. NIPD is technologically challenging for a number of reasons. Firstly, because it requires the detection of low level fetal variants in a high maternal background. For de novo and paternally-inherited variants this has been achieved through the use of techniques such as next-generation sequencing (NGS) and digital PCR to detect variants in the cffDNA that are not present in the maternal cfDNA. However, for maternally-inherited variants this is much more challenging and relies on dosage-based techniques to detect small differences in the levels of mutant and wild-type alleles. Alongside the technical advances that are making NIPD more widely available in both the public healthcare and commercial settings, it is crucial that we continue to monitor the social and ethical impact to ensure that patients are being offered safe and accurate testing.
Collapse
|
44
|
Scotchman E, Chandler NJ, Mellis R, Chitty LS. Noninvasive Prenatal Diagnosis of Single-Gene Diseases: The Next Frontier. Clin Chem 2020; 66:53-60. [PMID: 31843868 DOI: 10.1373/clinchem.2019.304238] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cell-free fetal DNA (cffDNA) is present in the maternal blood from around 4 weeks gestation and makes up 5%-20% of the total circulating cell-free DNA (cfDNA) in maternal plasma. Presence of cffDNA has allowed development of noninvasive prenatal diagnosis (NIPD) for single-gene disorders. This can be performed from 9 weeks gestation and offers a definitive diagnosis without the miscarriage risk associated with invasive procedures. One of the major challenges is distinguishing fetal mutations in the high background of maternal cfDNA, and research is currently focusing on the technological advances required to solve this problem. CONTENT Here, we review the literature to describe the current status of NIPD for monogenic disorders and discuss how the evolving methodologies and technologies are expected to impact this field in both the commercial and public healthcare setting. SUMMARY NIPD for single-gene diseases was first reported in 2000 and took 12 years to be approved for use in a public health service. Implementation has remained slow but is expected to increase as this testing becomes cheaper, faster, and more accurate. There are still many technical and analytical challenges ahead, and it is vital that discussions surrounding the ethical and social impact of NIPD take account of the considerations required to implement these services safely into the healthcare setting, while keeping up with the technological advances.
Collapse
Affiliation(s)
- Elizabeth Scotchman
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Natalie J Chandler
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Rhiannon Mellis
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK.,Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lyn S Chitty
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK.,Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
45
|
Chen M, Chen C, Huang X, Sun J, Jiang L, Li Y, Zhu Y, Tian C, Li Y, Lu Z, Wang Y, Zeng F, Yang Y, Song X, Peng Z, Yin C, Chen D. Noninvasive prenatal diagnosis for Duchenne muscular dystrophy based on the direct haplotype phasing. Prenat Diagn 2020; 40:918-924. [PMID: 31916613 DOI: 10.1002/pd.5641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE We aimed to investigate the validity of noninvasive prenatal diagnosis (NIPD) based on direct haplotype phasing without the proband or other family members and its feasibility for clinical application in the case of Duchenne muscular dystrophy (DMD). METHODS Thirteen singleton-pregnancy families affected by DMD were recruited. The pathogenic variants in the pregnant females have been identified by multiplex ligation-dependent probe amplification (MLPA). We resolved maternal haplotypes for each family by performing targeted linked-read sequencing of their high molecular weight DNA, respectively. Then, we integrated the maternal haplotypes and the targeted sequencing results of maternal plasma DNA to infer the fetal haplotype and the DMD gene variant status. The fetal genotypes were further validated by using chorionic villus sampling. RESULTS The method of directly resolving maternal haplotype through targeted linked-read sequencing was smoothly performed in 12 participated families, but one failed (F11). The predicted variant status of 12 fetuses was correct, which had been confirmed by invasive prenatal diagnosis. CONCLUSION Direct haplotyping of NIPD based on linked-read sequencing for DMD is accurate.
Collapse
Affiliation(s)
- Min Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Obstetrics and Gynecology Institute of Guangzhou, Guangzhou, China.,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Chao Chen
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | | | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Lu Jiang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Yingting Li
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaping Zhu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | | | - Yufan Li
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Obstetrics and Gynecology Institute of Guangzhou, Guangzhou, China.,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Zhe Lu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Yaoshen Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | | | - Yun Yang
- Wuhan BGI Clinical Laboratory Co., Ltd, BGI-Wuhan, BGI-Shenzhen, Wuhan, China
| | - Xiwei Song
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Dunjin Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Obstetrics and Gynecology Institute of Guangzhou, Guangzhou, China.,The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China.,Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| |
Collapse
|
46
|
Huang Y, Situ B, Huang L, Cao Y, Sui H, Ye X, Jiang X, Liang A, Tao M, Luo S, Zhang Y, Zhong M, Zheng L. Nondestructive Identification of Rare Trophoblastic Cells by Endoplasmic Reticulum Staining for Noninvasive Prenatal Testing of Monogenic Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903354. [PMID: 32274316 PMCID: PMC7141004 DOI: 10.1002/advs.201903354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Indexed: 05/06/2023]
Abstract
Noninvasive prenatal detection of monogenic diseases based on cell-free DNA is hampered by challenges in obtaining a sufficient fraction and adequate quality of fetal DNA. Analyzing rare trophoblastic cells from Papanicolaou smears carrying the entire fetal genome provides an alternative method for noninvasive detection of monogenic diseases. However, intracellular labeling for identification of target cells can affect the quality of DNA in varying degrees. Here, a new approach is developed for nondestructive identification of rare fetal cells from abundant maternal cells based on endoplasmic reticulum staining and linear discriminant analysis (ER-LDA). Compared with traditional methods, ER-LDA has little effect on cell quality, allowing trophoblastic cells to be analyzed on the single-cell level. Using ER-LDA, high-purity of trophoblastic cells can be identified and isolated at single cell resolution from 60 pregnancies between 4 and 38 weeks of gestation. Pathogenic variants, including -SEA/ deletion mutation and point mutations, in 11 fetuses at risk for α- or β-thalassemia can be accurately detected by this test. The detection platform can also be extended to analyze the mutational profiles of other monogenic diseases. This simple, low-cost, and noninvasive test can provide valuable fetal cells for fetal genotyping and holds promise for prenatal detection of monogenic diseases.
Collapse
Affiliation(s)
- Yifang Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Liping Huang
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Yingsi Cao
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Hong Sui
- Department of Laboratory MedicineDongguan Kanghua HospitalDongguan523080P. R. China
| | - Xinyi Ye
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Xiujuan Jiang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Aifen Liang
- Department of Laboratory MedicineDongguan Kanghua HospitalDongguan523080P. R. China
| | - Maliang Tao
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Shihua Luo
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Ye Zhang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Mei Zhong
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| |
Collapse
|
47
|
van Campen J, Silcock L, Yau S, Daniel Y, Ahn JW, Ogilvie C, Mann K, Oteng-Ntim E. A novel non-invasive prenatal sickle cell disease test for all at-risk pregnancies. Br J Haematol 2020; 190:119-124. [PMID: 32097993 DOI: 10.1111/bjh.16529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is the most common genetic haematological disorder. The availability of non-invasive prenatal diagnosis (NIPD) is predicted to increase uptake of prenatal diagnosis for SCD, as it has no perceived procedure-related miscarriage risk. We report the development of a targeted massively parallel sequencing (MPS) assay for the NIPD of fetal SCD using fetal cell-free (cf)DNA from maternal plasma, with no requirement for paternal or proband samples. In all, 64 plasma samples from pregnant women were analysed: 42 from SCD carriers, 15 from women with homozygous (Hb SS) SCD and seven from women with compound heterozygous (Hb SC) SCD. Our assay incorporated a relative mutation dosage assay for maternal carriers and a wild type allele detection assay for affected women (Hb SS/Hb SC). Selective analysis of only smaller cfDNA fragments and modifications to DNA fragment hybridisation capture improved diagnostic accuracy. Clinical sensitivity was 100% and clinical specificity was 100%. One sample with a fetal fraction of <4% was correctly called as 'unaffected', but with a discordant genotype (Hb AA rather than Hb AS). Six samples gave inconclusive results, of which two had a fetal fraction of <4%. This study demonstrates that NIPD for SCD is approaching clinical utility.
Collapse
Affiliation(s)
- Julia van Campen
- Genetics Laboratories, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Lee Silcock
- Nonacus Ltd., Birmingham Research Park, Birmingham, UK
| | - Shu Yau
- Viapath Genetics Laboratories, Guy's Hospital, London, UK
| | - Yvonne Daniel
- Viapath Haematological Sciences Laboratories, Guy's Hospital, London, UK
| | - Joo Wook Ahn
- Genetics Laboratories, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Caroline Ogilvie
- Genetics Laboratories, Guy's and St. Thomas' NHS Foundation Trust, London, UK.,Department of Medical and Molecular Genetics, King's College, London, UK
| | - Kathy Mann
- Viapath Genetics Laboratories, Guy's Hospital, London, UK
| | - Eugene Oteng-Ntim
- Department of Women and Children's Health, King's College, London, UK.,Department of Women's Services, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
48
|
Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA. Genet Med 2020; 22:962-973. [PMID: 32024963 DOI: 10.1038/s41436-019-0748-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/27/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Whereas noninvasive prenatal screening for aneuploidies is widely implemented, there is an increasing need for universal approaches for noninvasive prenatal screening for monogenic diseases. Here, we present a cost-effective, generic cell-free fetal DNA (cffDNA) haplotyping approach to scan the fetal genome for the presence of inherited monogenic diseases. METHODS Families participating in the preimplantation genetic testing for monogenic disorders (PGT-M) program were recruited for this study. Two hundred fifty thousand single-nucleotide polymorphisms (SNPs) captured from maternal plasma DNA along with genomic DNA from family members were massively parallel sequenced. Parental genotypes were phased via an available genotype from a close relative, and the fetal genome-wide haplotype and copy number were determined using cffDNA haplotyping analysis based on estimation and segmentation of fetal allele presence in the maternal plasma. RESULTS In all families tested, mutational profiles from cffDNA haplotyping are consistent with embryo biopsy profiles. Genome-wide fetal haplotypes are on average 97% concordant with the newborn haplotypes and embryo haplotypes. CONCLUSION We demonstrate that genome-wide targeted capture and sequencing of polymorphic SNPs from maternal plasma cell-free DNA (cfDNA) allows haplotyping and copy-number profiling of the fetal genome during pregnancy. The method enables the accurate reconstruction of the fetal haplotypes and can be easily implemented in clinical practice.
Collapse
|
49
|
Han L, Chen C, Guo F, Ye J, Peng Z, Qiu W, Wang Y, Li W, Zhang H, Liang L, Wang Y, Wang H, Ji X, Sun J, Gu X. Noninvasive prenatal diagnosis of cobalamin C (cblC) deficiency through target region sequencing of cell-free DNA in maternal plasma. Prenat Diagn 2019; 40:324-332. [PMID: 31697851 DOI: 10.1002/pd.5601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aimed to validate the feasibility of haplotype-based noninvasive prenatal diagnosis (NIPD) of cobalamin C (cblC) deficiency. METHOD This method includes three steps: First, targeted sequencing was performed on 21 families affected by cblC deficiency (including the couples and probands). Second, parental haplotypes linked with the pathogenic variant were determined using the genotypes of trios. Then, the fetal haplotypes were inferred through a parental haplotype assisted hidden Markov model (HMM). The NIPD results were confirmed by using the invasive procedures. RESULTS Twenty-one fetal genotypes were successfully inferred by NIPD including three compound heterozygotes with cblC deficiency, nine heterozygote carriers of cblC deficiency, and nine normal fetuses. The NIPD results were confirmed using the invasive procedures with 100% concordant rate. CONCLUSION This result has shown that haplotype-based NIPD of cblC deficiency has high concordant rate and indicated potential clinical utility as a pregnancy diagnosis method for high-risk carrier couples.
Collapse
Affiliation(s)
- Lianshu Han
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Chen
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China.,Wuhan BGI Clinical Laboratory Co, Ltd, BGI-Wuhan, BGI-Shenzhen, Wuhan, China
| | - Fengyu Guo
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China.,Wuhan BGI Clinical Laboratory Co, Ltd, BGI-Wuhan, BGI-Shenzhen, Wuhan, China
| | - Jun Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Wenjuan Qiu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaoshen Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Wei Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Huiwen Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Liang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanhuan Wang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Ji
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China.,Wuhan BGI Clinical Laboratory Co, Ltd, BGI-Wuhan, BGI-Shenzhen, Wuhan, China
| | - Xuefan Gu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Abstract
The last decade has seen incredible advances in the genetic era, in next-generation sequencing of cell-free DNA in the maternal plasma, detecting abnormal fetal chromosomes. Non-invasive prenatal testing (NIPT) has showed increased sensitivity and specificity for Down syndrome superior to any other screening test. Technical advances have made possible the detection of other conditions which does not necessarily mean clinical benefit for the patient. Private laboratories have added multiple conditions in the panel of NIPT, but some of these abnormalities are so rare, that their prevalence is not even clear. Data regarding clinical performance of extended NIPT is lacking. Implementation of such a test has to be carefully weighed, and not only the benefits but also the harm should be taken into account.
Collapse
Affiliation(s)
- Ioan Dumitru Suciu
- Department of General Surgery, Floreasca Emergency Hospital, Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oana Daniela Toader
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Obstetrics and Gynecology, Alessandrescu-Rusescu Institute of Mother and Child Care, Bucharest, Romania
| | - Slavyana Galeva
- Department of Obstetrics and Gynecology, Il Sagbal Sheynovo Hospital, Sofia, Brunei Darussalam
| | - Lucian Pop
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu Institute of Mother and Child Care, Bucharest, Romania
| |
Collapse
|