1
|
Contrò G, Baroni MC, Caraffi SG, Napoli M, Artuso R, Giliberti A, Bargiacchi S, Mancano G, Traficante G, Mucciolo M, Radio FC, Cordeddu V, Mancini C, Bottillo I, Pirro FA, Bonati MT, Becker CC, Carli D, Mussa A, Gonzalez MIA, Ruiz-Arana IL, Kumps C, Maystadt I, Moortgat S, Peker A, Piccione M, Grammatico P, Rostomashvili N, Lévy J, Scala M, Capra V, Torella A, van Eyk C, Isidor B, Cogne B, Srivastava S, Quinlan A, Vaisfeld A, Licchetta L, Frattini D, Graziano C, Severi G, Bacchi I, Soliani L, Sherr EH, Argilli E, Goel H, De Luca C, Leonardi S, Brancati F, Faletra F, Mio C, Braibanti S, Gargano G, Fusco C, Novelli A, Tartaglia M, Garavelli L. CDK13-Related Disorder: Novel Insights From A Series of 27 Cases and Recommendations for Clinical Management. Clin Genet 2025. [PMID: 39971730 DOI: 10.1111/cge.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
In 2016, Sifrim and colleagues described the first group of patients carrying heterozygous pathogenic variants in CDK13 and sharing major clinical features mainly consisting of congenital heart defects, intellectual disability and peculiar facial features (Congenital Heart Defects, Dysmorphic Facial Features, and Intellectual Developmental Disorder; CHDFIDD, OMIM # 617360). This condition is generally referred to as CDK13-related disorder, and since then other reports have provided further clinical and molecular information. Here we describe a group of 27 previously unreported patients to more accurately profile the clinical spectrum associated with CDK13 variants, disclosing novel associated findings, such as complex craniosynostosis and variable skeletal features (e.g., cranio-cervical anomalies). We also focused on the ocular phenotype that appears to include bilateral congenital glaucoma, posterior embriotoxon, buphthalmos and Duane anomaly. Finally, we observed two cases of mother-to-daughter transmission. Our work clarifies some novel features of CHDFIDD, defines the differential diagnosis of this disorder, and provides recommendations for its clinical management.
Collapse
Affiliation(s)
- Gianluca Contrò
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Chiara Baroni
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Manuela Napoli
- Neuroradiology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, Meyer Children's Hospital IRCSS, Florence, Italy
| | | | - Sara Bargiacchi
- Medical Genetics Unit, Meyer Children's Hospital IRCSS, Florence, Italy
| | - Giorgia Mancano
- Medical Genetics Unit, Meyer Children's Hospital IRCSS, Florence, Italy
| | | | - Mafalda Mucciolo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Clementina Radio
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Irene Bottillo
- Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Federica Anna Pirro
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa Bonati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Diana Carli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | | | - Inge Lore Ruiz-Arana
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Camille Kumps
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (IPG), Gosselies (Charleroi), Charleroi, Belgium
| | - Stephanie Moortgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (IPG), Gosselies (Charleroi), Charleroi, Belgium
| | - Alp Peker
- Medicine Faculty Hospital, Department of Medical Genetics, Akdeniz University, Antalya, Türkiye
| | - Maria Piccione
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, University of Palermo, Palermo, Italy
| | - Paola Grammatico
- Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Nino Rostomashvili
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Gaslini, Genoa, Italy
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università Degli Studi Della Campania 'Luigi Vanvitelli', Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Clare van Eyk
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | | | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aisling Quinlan
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Vaisfeld
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Licchetta
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Giulia Severi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Isabelle Bacchi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Luca Soliani
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, California, USA
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, California, USA
| | - Himanshu Goel
- Hunter New England Local Health District, Waratah, Australia
| | - Chiara De Luca
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Leonardi
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Brancati
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Human Functional Genomics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Roma, Rome, Italy
| | - Flavio Faletra
- Institute of Medical Genetics Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Catia Mio
- Institute of Medical Genetics Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Silvia Braibanti
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
3
|
Jia Y, Liu W, Wang J, Zhang R, Li M, Liu S. A pair of twins with multicystic dysplastic kidney and hydrocephalus caused by a novel homozygous mutation in SPATA33 and CDK10. QJM 2024; 117:302-303. [PMID: 38180891 DOI: 10.1093/qjmed/hcad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 01/07/2024] Open
Affiliation(s)
- Y Jia
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
| | - W Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
| | - J Wang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
| | - R Zhang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
| | - M Li
- Department of Urology, Qingdao Municipal Hospital Group, NO.5 Middle Dong Hai Road, Qingdao 266071, China
| | - S Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, NO.16 Jiang Su Road, Qingdao 266071, China
| |
Collapse
|
4
|
Flax RG, Rosston P, Rocha C, Anderson B, Capener JL, Durcan TM, Drewry DH, Prinos P, Axtman AD. Illumination of understudied ciliary kinases. Front Mol Biosci 2024; 11:1352781. [PMID: 38523660 PMCID: PMC10958382 DOI: 10.3389/fmolb.2024.1352781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cilia are cellular signaling hubs. Given that human kinases are central regulators of signaling, it is not surprising that kinases are key players in cilia biology. In fact, many kinases modulate ciliogenesis, which is the generation of cilia, and distinct ciliary pathways. Several of these kinases are understudied with few publications dedicated to the interrogation of their function. Recent efforts to develop chemical probes for members of the cyclin-dependent kinase like (CDKL), never in mitosis gene A (NIMA) related kinase (NEK), and tau tubulin kinase (TTBK) families either have delivered or are working toward delivery of high-quality chemical tools to characterize the roles that specific kinases play in ciliary processes. A better understanding of ciliary kinases may shed light on whether modulation of these targets will slow or halt disease onset or progression. For example, both understudied human kinases and some that are more well-studied play important ciliary roles in neurons and have been implicated in neurodevelopmental, neurodegenerative, and other neurological diseases. Similarly, subsets of human ciliary kinases are associated with cancer and oncological pathways. Finally, a group of genetic disorders characterized by defects in cilia called ciliopathies have associated gene mutations that impact kinase activity and function. This review highlights both progress related to the understanding of ciliary kinases as well as in chemical inhibitor development for a subset of these kinases. We emphasize known roles of ciliary kinases in diseases of the brain and malignancies and focus on a subset of poorly characterized kinases that regulate ciliary biology.
Collapse
Affiliation(s)
- Raymond G. Flax
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cecilia Rocha
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacob L. Capener
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Espinosa-Mojica AA, Varo Varo C. Determining the Linguistic Profile of Children With Rare Genetic Disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:170-186. [PMID: 38085694 DOI: 10.1044/2023_jslhr-23-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE Language studies on populations with rare genetic disorders are limited. Hence, there is little data on commonly found or expected developmental linguistic traits and cognitive mechanisms that may be impaired. Based on the hypothesis that there is a close connection between language and cognition and the relevance of specific genetic changes in the development of each, our goal was to provide linguistic data on relationships with other executive functioning mechanisms. METHOD This study assessed language skills, communicative behaviors, and executive functions in four children, aged 7-9 years, with rare genetic disorders, using standardized protocols and tests. RESULTS The findings revealed different levels of language impairment and executive functioning problems in each case. The overall executive function index performance for each of the four cases studied was clinically significantly high, indicating executive dysfunction. CONCLUSIONS The cases analyzed illustrate different types of atypical development that affect both language and other cognitive mechanisms and underscore the importance of executive skills and the various ways in which they are involved in diverse levels of language that might be affected to a greater or lesser degree in rare genetic disorders. In conclusion, we found that language dysfunction is a salient feature of the rare genetic disorders included in our study, although this is not necessarily true for all genetic disorders. Along with these conclusive results, we performed a qualitative analysis of the linguistic and cognitive components that enable functional communication in order to allow optimal interpretation of the data we have collected, laying the foundations for a more effective therapeutic approach.
Collapse
|
6
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
A sib-pair with Al Kaissi syndrome caused by homozygosity for a novel CDK10 splice variant. Clin Dysmorphol 2023; 32:32-35. [PMID: 36503922 DOI: 10.1097/mcd.0000000000000439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Fernández-Rhodes L, Graff M, Buchanan VL, Justice AE, Highland HM, Guo X, Zhu W, Chen HH, Young KL, Adhikari K, Palmer ND, Below JE, Bradfield J, Pereira AC, Glover L, Kim D, Lilly AG, Shrestha P, Thomas AG, Zhang X, Chen M, Chiang CW, Pulit S, Horimoto A, Krieger JE, Guindo-Martínez M, Preuss M, Schumann C, Smit RA, Torres-Mejía G, Acuña-Alonzo V, Bedoya G, Bortolini MC, Canizales-Quinteros S, Gallo C, González-José R, Poletti G, Rothhammer F, Hakonarson H, Igo R, Adler SG, Iyengar SK, Nicholas SB, Gogarten SM, Isasi CR, Papnicolaou G, Stilp AM, Qi Q, Kho M, Smith JA, Langefeld CD, Wagenknecht L, Mckean-Cowdin R, Gao XR, Nousome D, Conti DV, Feng Y, Allison MA, Arzumanyan Z, Buchanan TA, Ida Chen YD, Genter PM, Goodarzi MO, Hai Y, Hsueh W, Ipp E, Kandeel FR, Lam K, Li X, Nadler JL, Raffel LJ, Roll K, Sandow K, Tan J, Taylor KD, Xiang AH, Yao J, Audirac-Chalifour A, de Jesus Peralta Romero J, Hartwig F, Horta B, Blangero J, Curran JE, Duggirala R, Lehman DE, Puppala S, Fejerman L, John EM, Aguilar-Salinas C, Burtt NP, Florez JC, García-Ortíz H, González-Villalpando C, Mercader J, Orozco L, Tusié-Luna T, Blanco E, Gahagan S, Cox NJ, Hanis C, et alFernández-Rhodes L, Graff M, Buchanan VL, Justice AE, Highland HM, Guo X, Zhu W, Chen HH, Young KL, Adhikari K, Palmer ND, Below JE, Bradfield J, Pereira AC, Glover L, Kim D, Lilly AG, Shrestha P, Thomas AG, Zhang X, Chen M, Chiang CW, Pulit S, Horimoto A, Krieger JE, Guindo-Martínez M, Preuss M, Schumann C, Smit RA, Torres-Mejía G, Acuña-Alonzo V, Bedoya G, Bortolini MC, Canizales-Quinteros S, Gallo C, González-José R, Poletti G, Rothhammer F, Hakonarson H, Igo R, Adler SG, Iyengar SK, Nicholas SB, Gogarten SM, Isasi CR, Papnicolaou G, Stilp AM, Qi Q, Kho M, Smith JA, Langefeld CD, Wagenknecht L, Mckean-Cowdin R, Gao XR, Nousome D, Conti DV, Feng Y, Allison MA, Arzumanyan Z, Buchanan TA, Ida Chen YD, Genter PM, Goodarzi MO, Hai Y, Hsueh W, Ipp E, Kandeel FR, Lam K, Li X, Nadler JL, Raffel LJ, Roll K, Sandow K, Tan J, Taylor KD, Xiang AH, Yao J, Audirac-Chalifour A, de Jesus Peralta Romero J, Hartwig F, Horta B, Blangero J, Curran JE, Duggirala R, Lehman DE, Puppala S, Fejerman L, John EM, Aguilar-Salinas C, Burtt NP, Florez JC, García-Ortíz H, González-Villalpando C, Mercader J, Orozco L, Tusié-Luna T, Blanco E, Gahagan S, Cox NJ, Hanis C, Butte NF, Cole SA, Comuzzie AG, Voruganti VS, Rohde R, Wang Y, Sofer T, Ziv E, Grant SF, Ruiz-Linares A, Rotter JI, Haiman CA, Parra EJ, Cruz M, Loos RJ, North KE. Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits-The Hispanic/Latino Anthropometry Consortium. HGG ADVANCES 2022; 3:100099. [PMID: 35399580 PMCID: PMC8990175 DOI: 10.1016/j.xhgg.2022.100099] [Show More Authors] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/06/2022] [Indexed: 02/05/2023] Open
Abstract
Hispanic/Latinos have been underrepresented in genome-wide association studies (GWAS) for anthropometric traits despite their notable anthropometric variability, ancestry proportions, and high burden of growth stunting and overweight/obesity. To address this knowledge gap, we analyzed densely imputed genetic data in a sample of Hispanic/Latino adults to identify and fine-map genetic variants associated with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry (HISLA) Consortium (stage 1, n = 59,771) and generalized our findings in 9 additional studies (stage 2, n = 10,538). We conducted a trans-ancestral GWAS with summary statistics from HISLA stage 1 and existing consortia of European and African ancestries. In our HISLA stage 1 + 2 analyses, we discovered one BMI locus, as well as two BMI signals and another height signal each within established anthropometric loci. In our trans-ancestral meta-analysis, we discovered three BMI loci, one height locus, and one WHRadjBMI locus. We also identified 3 secondary signals for BMI, 28 for height, and 2 for WHRadjBMI in established loci. We show that 336 known BMI, 1,177 known height, and 143 known WHRadjBMI (combined) SNPs demonstrated suggestive transferability (nominal significance and effect estimate directional consistency) in Hispanic/Latino adults. Of these, 36 BMI, 124 height, and 11 WHRadjBMI SNPs were significant after trait-specific Bonferroni correction. Trans-ancestral meta-analysis of the three ancestries showed a small-to-moderate impact of uncorrected population stratification on the resulting effect size estimates. Our findings demonstrate that future studies may also benefit from leveraging diverse ancestries and differences in linkage disequilibrium patterns to discover novel loci and additional signals with less residual population stratification.
Collapse
Affiliation(s)
- Lindsay Fernández-Rhodes
- Department of Biobehavioral Health, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA 16802, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria L. Buchanan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anne E. Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, PA 17822, USA
| | - Heather M. Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Wanying Zhu
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristin L. Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, MK7 6AA Milton Keynes, UK
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jennifer E. Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan Bradfield
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo, São Paulo 05508-220, Brazil
| | - LáShauntá Glover
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daeeun Kim
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adam G. Lilly
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Poojan Shrestha
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alvin G. Thomas
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xinruo Zhang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minhui Chen
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charleston W.K. Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Sara Pulit
- Vertex Pharmaceuticals, W2 6BD Oxford, UK
| | - Andrea Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo, São Paulo 05508-220, Brazil
| | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo, São Paulo 05508-220, Brazil
| | - Marta Guindo-Martínez
- The Charles Bronfman Institutes for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael Preuss
- The Charles Bronfman Institutes for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claudia Schumann
- Hasso Plattner Institute, University of Potsdam, Digital Health Center, 14482 Potsdam, Germany
| | - Roelof A.J. Smit
- The Charles Bronfman Institutes for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Torres-Mejía
- Department of Research in Cardiovascular Diseases, Diabetes Mellitus, and Cancer, Population Health Research Center, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | | | - Gabriel Bedoya
- Molecular Genetics Investigation Group, University of Antioquia, Medellín 1226, Colombia
| | - Maria-Cátira Bortolini
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Samuel Canizales-Quinteros
- Population Genomics Applied to Health Unit, The National Institute of Genomic Medicine and the Faculty of Chemistry at the National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Rolando González-José
- Patagonian Institute of the Social and Human Sciences, Patagonian National Center, Puerto Madryn U9120, Argentina
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sharon G. Adler
- Division of Nephrology and Hypertension, Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA
| | - Sudha K. Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | | | - Carmen R. Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Lynne Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Roberta Mckean-Cowdin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Xiaoyi Raymond Gao
- Department of Ophthalmology and Visual Sciences, Department of Biomedical Informatics, Division of Human Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Darryl Nousome
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - David V. Conti
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ye Feng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Matthew A. Allison
- Department of Family Medicine, University of California, San Diego, CA 92161, USA
| | - Zorayr Arzumanyan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Thomas A. Buchanan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Pauline M. Genter
- Department of Medicine, Division of Endocrinology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yang Hai
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Willa Hsueh
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Eli Ipp
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Endocrinology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Fouad R. Kandeel
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Kelvin Lam
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Jerry L. Nadler
- Department of Pharmacology at New York Medical College School of Medicine, Valhalla, NY 10595, USA
| | - Leslie J. Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Kathryn Roll
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Kevin Sandow
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Anny H. Xiang
- Research and Evaluation Branch, Kaiser Permanente of Southern California, Pasadena, CA 91101, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Astride Audirac-Chalifour
- Medical Research Unit in Biochemistry, Specialty Hospital, National Medical Center of the Twenty-First Century, Mexican Institute of Social Security, Mexico City 06725, Mexico
| | - Jose de Jesus Peralta Romero
- Medical Research Unit in Biochemistry, Specialty Hospital, National Medical Center of the Twenty-First Century, Mexican Institute of Social Security, Mexico City 06725, Mexico
| | - Fernando Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | - Bernando Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville and Edinburg, TX 78520 and 78539, USA
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville and Edinburg, TX 78520 and 78539, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville and Edinburg, TX 78520 and 78539, USA
| | - Donna E. Lehman
- Department of Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Sobha Puppala
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
| | - Laura Fejerman
- Department of Public Health Sciences, School of Medicine, and the Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Esther M. John
- Departments of Epidemiology & Population Health and Medicine-Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carlos Aguilar-Salinas
- Division of Nutrition, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | - Noël P. Burtt
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jose C. Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Humberto García-Ortíz
- Laboratory of Immunogenomics and Metabolic Diseases, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Clicerio González-Villalpando
- Center for Diabetes Studies, Research Unit for Diabetes and Cardiovascular Risk, Center for Population Health Studies, National Institute of Public Health, Mexico City 14080, Mexico
| | - Josep Mercader
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorena Orozco
- Laboratory of Immunogenomics and Metabolic Diseases, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Teresa Tusié-Luna
- Molecular Biology and Medical Genomics Unity, Institute of Biomedical Research, The National Autonomous University of Mexico and the Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | - Estela Blanco
- Center for Community Health, Division of Academic General Pediatrics, University of California at San Diego, San Diego, CA 92093, USA
| | - Sheila Gahagan
- Center for Community Health, Division of Academic General Pediatrics, University of California at San Diego, San Diego, CA 92093, USA
| | - Nancy J. Cox
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig Hanis
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nancy F. Butte
- United States Department of Agriculture, Agricultural Research Service, The Children’s Nutrition Research Center, and the Department Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - V. Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yujie Wang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tamar Sofer
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Struan F.A. Grant
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andres Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
- Department of Genetics, Evolution and Environment, and Genetics Institute of the University College London, London WC1E 6BT, UK
- Laboratory of Biocultural Anthropology, Law, Ethics, and Health, Aix-Marseille University, Marseille 13385, France
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto- Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Miguel Cruz
- Medical Research Unit in Biochemistry, Specialty Hospital, National Medical Center of the Twenty-First Century, Mexican Institute of Social Security, Mexico City 06725, Mexico
| | - Ruth J.F. Loos
- The Charles Bronfman Institutes for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
9
|
Düster R, Ji Y, Pan KT, Urlaub H, Geyer M. Functional characterization of the human Cdk10/Cyclin Q complex. Open Biol 2022; 12:210381. [PMID: 35291876 PMCID: PMC8924752 DOI: 10.1098/rsob.210381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation and transcription. The CDK-family member Cdk10 is important for neural development and can act as a tumour suppressor, but the underlying molecular mechanisms are largely unknown. Here, we provide an in-depth analysis of Cdk10 substrate specificity and function. Using recombinant Cdk10/CycQ protein complexes, we characterize RNA pol II CTD, c-MYC and RB1 as in vitro protein substrates. Using an analogue-sensitive mutant kinase, we identify 89 different Cdk10 phosphosites in HEK cells originating from 66 different proteins. Among these, proteins involved in cell cycle, translation, stress response, growth signalling, as well as rRNA, and mRNA transcriptional regulation, are found. Of a set of pan-selective CDK- and Cdk9-specific inhibitors tested, all inhibited Cdk10/CycQ at least five times weaker than their proposed target kinases. We also identify Cdk10 as an in vitro substrate of Cdk1 and Cdk5 at multiple sites, allowing for a potential cross-talk between these CDKs. With this functional characterization, Cdk10 adopts a hybrid position in both cell cycle and transcriptional regulation.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Yanlong Ji
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, 37077 Göttingen, Germany,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Kuan-Ting Pan
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, 37077 Göttingen, Germany,Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
10
|
Analysis of recent shared ancestry in a familial cohort identifies coding and noncoding autism spectrum disorder variants. NPJ Genom Med 2022; 7:13. [PMID: 35190550 PMCID: PMC8861044 DOI: 10.1038/s41525-022-00284-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders characterized by deficits in social communication and restricted, repetitive patterns of behavior or interests. ASD is highly heritable, but genetically and phenotypically heterogeneous, reducing the power to identify causative genes. We performed whole genome sequencing (WGS) in an ASD cohort of 68 individuals from 22 families enriched for recent shared ancestry. We identified an average of 3.07 million variants per genome, of which an average of 112,512 were rare. We mapped runs of homozygosity (ROHs) in affected individuals and found an average genomic homozygosity of 9.65%, consistent with expectations for multiple generations of consanguineous unions. We identified potentially pathogenic rare exonic or splice site variants in 12 known (including KMT2C, SCN1A, SPTBN1, SYNE1, ZNF292) and 12 candidate (including CHD5, GRB10, PPP1R13B) ASD genes. Furthermore, we annotated noncoding variants in ROHs with brain-specific regulatory elements and identified putative disease-causing variants within brain-specific promoters and enhancers for 5 known ASD and neurodevelopmental disease genes (ACTG1, AUTS2, CTNND2, CNTNAP4, SPTBN4). We also identified copy number variants in two known ASD and neurodevelopmental disease loci in two affected individuals. In total we identified potentially etiological variants in known ASD or neurodevelopmental disease genes for ~61% (14/23) of affected individuals. We combined WGS with homozygosity mapping and regulatory element annotations to identify candidate ASD variants. Our analyses add to the growing number of ASD genes and variants and emphasize the importance of leveraging recent shared ancestry to map disease variants in complex neurodevelopmental disorders.
Collapse
|
11
|
Liu S, Zhang J, Kherraf ZE, Sun S, Zhang X, Cazin C, Coutton C, Zouari R, Zhao S, Hu F, Fourati Ben Mustapha S, Arnoult C, Ray PF, Liu M. CFAP61 is required for sperm flagellum formation and male fertility in human and mouse. Development 2021; 148:273455. [PMID: 34792097 DOI: 10.1242/dev.199805] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
Defects in the structure or motility of cilia and flagella may lead to severe diseases such as primary ciliary dyskinesia (PCD), a multisystemic disorder with heterogeneous manifestations affecting primarily respiratory and reproductive functions. We report that CFAP61 is a conserved component of the calmodulin- and radial spoke-associated complex (CSC) of cilia. We find that a CFAP61 splice variant, c.143+5G>A, causes exon skipping/intron retention in human, inducing a multiple morphological abnormalities of the flagella (MMAF) phenotype. We generated Cfap61 knockout mice that recapitulate the infertility phenotype of the human CFAP61 mutation, but without other symptoms usually observed in PCD. We find that CFAP61 interacts with the CSC, radial spoke stalk and head. During early stages of Cfap61-/- spermatid development, the assembly of radial spoke components is impaired. As spermiogenesis progresses, the axoneme in Cfap61-/- cells becomes unstable and scatters, and the distribution of intraflagellar transport proteins is disrupted. This study reveals an organ-specific mechanism of axoneme stabilization that is related to male infertility.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zine Eddine Kherraf
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Shuya Sun
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Caroline Cazin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Charles Coutton
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM de Génétique Chromosomique, Grenoble, F-38000, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | | | - Christophe Arnoult
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France
| | - Pierre F Ray
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, F-38000, France.,CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
12
|
Mitani T, Isikay S, Gezdirici A, Gulec EY, Punetha J, Fatih JM, Herman I, Akay G, Du H, Calame DG, Ayaz A, Tos T, Yesil G, Aydin H, Geckinli B, Elcioglu N, Candan S, Sezer O, Erdem HB, Gul D, Demiral E, Elmas M, Yesilbas O, Kilic B, Gungor S, Ceylan AC, Bozdogan S, Ozalp O, Cicek S, Aslan H, Yalcintepe S, Topcu V, Bayram Y, Grochowski CM, Jolly A, Dawood M, Duan R, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Marafi D, Akdemir ZC, Karaca E, Carvalho CMB, Gibbs RA, Posey JE, Lupski JR, Pehlivan D. High prevalence of multilocus pathogenic variation in neurodevelopmental disorders in the Turkish population. Am J Hum Genet 2021; 108:1981-2005. [PMID: 34582790 PMCID: PMC8546040 DOI: 10.1016/j.ajhg.2021.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.
Collapse
Affiliation(s)
- Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sedat Isikay
- Department of Pediatric Neurology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akif Ayaz
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey; Departments of Medical Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Tulay Tos
- University of Health Sciences Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Gozde Yesil
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul 34093, Turkey
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Private Reyap Istanbul Hospital, Istanbul 34515, Turkey
| | - Bilgen Geckinli
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Nursel Elcioglu
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey; Eastern Mediterranean University Medical School, Magosa, Mersin 10, Turkey
| | - Sukru Candan
- Medical Genetics Section, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Ozlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun 55100, Turkey
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Emine Demiral
- Department of Medical Genetics, School of Medicine, University of Inonu, Malatya 44280, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Bezmialem Foundation University, Istanbul 34093, Turkey; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Betul Kilic
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Serdal Gungor
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Ahmet C Ceylan
- Department of Medical Genetics, University of Health Sciences, Ankara Training and Research Hospital, Ankara 06110, Turkey
| | - Sevcan Bozdogan
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana 01330, Turkey
| | - Ozge Ozalp
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Salih Cicek
- Department of Medical Genetics, Konya Training and Research Hospital, Konya 42250, Turkey
| | - Huseyin Aslan
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, School of Medicine, Trakya University, Edirne 22130, Turkey
| | - Vehap Topcu
- Department of Medical Genetics, Ankara City Hospital, Ankara 06800, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
14
|
Li D, Hu M, Chen H, Wu X, Wei X, Lin H, Gao X, Wang H, Li M, Ong ACM, Yue Z, Sun L. An Nphp1 knockout mouse model targeting exon 2-20 demonstrates characteristic phenotypes of human Nephronophthisis. Hum Mol Genet 2021; 31:232-243. [PMID: 34415307 DOI: 10.1093/hmg/ddab239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Nephronophthisis (NPH) is the most prevalent monogenetic disorder leading to end-stage renal failure (ESRD) in childhood. Mutations in Nphp1, encoding a cilia-localized protein, account for the majority of NPH cases. Despite its identification many years ago, Nphp1 deletions targeting exon 4 or exon 20 have not reproduced the histological features of human NPH in murine models. In this study, we deleted exon 2-20 of Nphp1 by CRISPR/Cas9 gene editing to create a near-total knockout (KO) mouse model (Nphp1del2-20/del2-20). Nphp1del2-20/del2-20 mice faithfully reproduced the renal and extrarenal phenotypes associated with human NPH, including renal cyst development, tubular basement membrane thickening, retinal degeneration and abnormal spermatogenesis. Importantly, Nphp1 re-expression using an adenoviral-associated-virus-9 (AAV9) vector could partially rescue both renal and retinal phenotypes in Nphp1del2-20/del2-20 mice. Our results reported the first relevant Nphp1 mouse model with renal phenotypes for human disease. It will be a valuable model for future studies of Nphp1 function and to develop novel treatments for this common childhood disease.
Collapse
Affiliation(s)
- Dantong Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaoyue Hu
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongrong Lin
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyan Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Min Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Zhihui Yue
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Robert T, Dock-Bregeon AC, Colas P. Functional characterization of CDK10 and cyclin M truncated variants causing severe developmental disorders. Mol Genet Genomic Med 2021; 9:e1782. [PMID: 34369103 PMCID: PMC8580092 DOI: 10.1002/mgg3.1782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022] Open
Abstract
Background CDK10 is a poorly known cyclin M (CycM)‐dependent kinase. Loss‐of‐function mutations in the genes encoding CycM or CDK10 cause, respectively, STAR or Al Kaissi syndromes, which present a constellation of malformations and dysfunctions. Most reported mutations abolish gene expression, but two mutations found in 3’ exons could allow the expression of CDK10 and CycM truncated variants. Methods We built a structural model that predicted a preserved ability of both variants to form a CDK10/CycM heterodimer. Hence, we functionally characterized these two truncated variants by determining their capacity to heterodimerize and form an active protein kinase when expressed in insect cells, by examining their two‐hybrid interaction profiles when expressed in yeast, and by observing their expression level and stability when expressed in human cells. Results Both truncated variants retain their ability to form a CDK10/CycM heterodimer. While the CycM variant partially activates CDK10 activity in vitro, the CDK10 variant remains surprisingly inactive. Expression in human cells revealed that the CDK10 and CycM variants are strongly and partially degraded by the proteasome, respectively. Conclusion Our results point to a total loss of CDK10/CycM activity in the Al Kaissi patient and a partial loss in the STAR patients.
Collapse
Affiliation(s)
- Thomas Robert
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Anne-Catherine Dock-Bregeon
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| |
Collapse
|
16
|
Zhang Z, Mei Y, Feng M, Wang C, Yang P, Tian R. The relationship between common variants in the DPEP1 gene and the susceptibility and clinical severity of osteoarthritis. Int J Rheum Dis 2021; 24:1192-1199. [PMID: 34291562 DOI: 10.1111/1756-185x.14182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
AIM Previous studies have provided evidence linking the DPEP1 gene to the risk of osteoarthritis (OA) in Europeans. In this study, we aimed to examine the relationship between DPEP1 gene and the susceptibility and clinical severity of OA in a Chinese Han population. METHODS This study comprised two independent samples. For the discovery stage, 1022 patients with knee OA and 1864 controls were recruited. Fourteen tag single nucleotide polymorphisms (SNPs) covering the DPEP1 gene were selected and genotyped. Associated SNPs in the discovery data set were subsequently genotyped in the replication data set consisting of 826 hip OA cases and 1662 controls. Both genotypic and allelic genetic associations were tested. The relationship of significant SNPs to the expression of DPEP1 and its neighboring genes was examined using the GTEx database. RESULTS A nonsynonymous SNP, rs1126464, was determined to be associated with the disease status of OA in both the discovery and replication stages (odds ratio [OR] 0.75, 95% confidence interval [95% CI] 0.68-0.82, P = 7.16 × 10-11 ). This SNP was further characterized as being significantly related to a higher Kellgren-Lawrence grade in OA patients (OR 0.64, 95% CI 0.55-0.74, P = 2.53 × 10-9 ). According to the GTEx data, SNP rs1126464 was significantly related to the gene expression of 15 genes in multiple types of human tissues. CONCLUSION We reported a common DNA variant in the DPEP1 gene that contributes to the risk of OA, providing additional evidence that the DPEP1 gene plays a significant role in the pathological mechanisms of OA.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yufeng Mei
- Department of Rheumatology and Immune Joint Surgery, Honghui Hospital, Xi'an, China
| | - Min Feng
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chunsheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei Yang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Run Tian
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Darcha C, Laffargue F, Boutaud L, Gallot D, Dauphin C, Garcier JM, Achaiaa A, Nitschke P, Fourrage C, Goumy C, Attie-Bitach T. Novel CDK10 variants with multicystic dysplastic kidney, left ventricular non-compaction, and a solitary median maxillary central incisor. Clin Genet 2021; 100:348-349. [PMID: 34114225 DOI: 10.1111/cge.13996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Claude Darcha
- Service d'Anatomopathologie, CHU Estaing, Clermont-Ferrand, France
| | - Fanny Laffargue
- Service de Génétique Médicale, CHU Estaing, Clermont-Ferrand, France
| | - Lucile Boutaud
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryo-Foetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France.,Université de Paris, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Denis Gallot
- Genetics, Reproduction and Development (GReD) Laboratory, Clermont Auvergne University, CNRS UMR 6293, Inserm U1103, translational approach to epithelial injury and repair team, Clermont-Ferrand, France
| | - Claire Dauphin
- Service de Cardiologie, Centre de Compétence M3C, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean Marc Garcier
- Laboratoire d'Anatomie, UFR de Médecine, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Amale Achaiaa
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryo-Foetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Patrick Nitschke
- Bioinformatics Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Cécile Fourrage
- Bioinformatics Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Carole Goumy
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Tania Attie-Bitach
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryo-Foetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France.,Université de Paris, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
18
|
Chengyu Y, Long Z, Bin Z, Hong L, Xuefei S, Congjuan L, Caixia C, Yan X. Linarin Protects the Kidney against Ischemia/Reperfusion Injury via the Inhibition of Bioactive ETS2/IL-12. Biol Pharm Bull 2021; 44:25-31. [PMID: 33390546 DOI: 10.1248/bpb.b20-00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia/reperfusion injury (IRI), a participant in acute kidney injury (AKI), can occur as a series of pathological processes such as inflammation. Linarin (LIN) has been widely used for different diseases. To confirm the anti-inflammatory value and relevant mechanism of LIN during IRI, in vivo and vitro models were established. LIN or dissolvent was given, and histologic analysis, quantitative (q)RT-PCR, serum creatinine and blood urea nitrogen testing were used to evaluate kidney injury. Microarray analysis, protein-protein interaction (PPI) analysis and molecular docking were used to identify the target protein of LIN, and small interfering RNA (siRNA) transfection was applied to explore the crucial role of identified protein. First, we found that LIN inhibited kidney injury in an in vivo IRI model and decreased the expression of interleukin-12 (IL-12) p40 in vivo and in vitro IRI models. To explore the mechanism of LIN, we collected raw data from a public microarray database and identified E26 oncogene homolog 2 (ETS2) as a crucial protein of LIN according to microarray analysis and PPI. Meanwhile, qRT-PCR indicated that IL-12 p40 showed no significant difference between ETS2 knock down group and LIN treated ETS2 knock down group after hypoxia reoxygenation treatment. In addition, according to molecular docking the contact area is highly conserved and located on a PPI domain of ETS2 which indicates that LIN may alter the interaction with synergistic proteins in the regulation of IL-12 p40 expression. Our study demonstrated the anti-inflammatory effect of LIN during IRI-AKI, broadening the medicinal value of LIN and the therapeutic options for IRI-AKI.
Collapse
Affiliation(s)
- Yang Chengyu
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Zhao Long
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Zhou Bin
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Luan Hong
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Shen Xuefei
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Luo Congjuan
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Cao Caixia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Xu Yan
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| |
Collapse
|
19
|
Colas P. Cyclin-dependent kinases and rare developmental disorders. Orphanet J Rare Dis 2020; 15:203. [PMID: 32762766 PMCID: PMC7410148 DOI: 10.1186/s13023-020-01472-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies in the past 30 years have established that cyclin-dependent kinases (CDKs) exert many diverse, important functions in a number of molecular and cellular processes that are at play during development. Not surprisingly, mutations affecting CDKs or their activating cyclin subunits have been involved in a variety of rare human developmental disorders. These recent findings are reviewed herein, giving a particular attention to the discovered mutations and their demonstrated or hypothesized functional consequences, which can account for pathological human phenotypes. The review highlights novel, important CDK or cyclin functions that were unveiled by their association with human disorders, and it discusses the shortcomings of mouse models to reveal some of these functions. It explains how human genetics can be used in combination with proteome-scale interaction databases to loom regulatory networks around CDKs and cyclins. Finally, it advocates the use of these networks to profile pathogenic CDK or cyclin variants, in order to gain knowledge on protein function and on pathogenic mechanisms.
Collapse
Affiliation(s)
- Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université / CNRS, Roscoff, France.
| |
Collapse
|
20
|
Zhao M, Havrilla JM, Fang L, Chen Y, Peng J, Liu C, Wu C, Sarmady M, Botas P, Isla J, Lyon GJ, Weng C, Wang K. Phen2Gene: rapid phenotype-driven gene prioritization for rare diseases. NAR Genom Bioinform 2020; 2:lqaa032. [PMID: 32500119 PMCID: PMC7252576 DOI: 10.1093/nargab/lqaa032] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Human Phenotype Ontology (HPO) terms are increasingly used in diagnostic settings to aid in the characterization of patient phenotypes. The HPO annotation database is updated frequently and can provide detailed phenotype knowledge on various human diseases, and many HPO terms are now mapped to candidate causal genes with binary relationships. To further improve the genetic diagnosis of rare diseases, we incorporated these HPO annotations, gene-disease databases and gene-gene databases in a probabilistic model to build a novel HPO-driven gene prioritization tool, Phen2Gene. Phen2Gene accesses a database built upon this information called the HPO2Gene Knowledgebase (H2GKB), which provides weighted and ranked gene lists for every HPO term. Phen2Gene is then able to access the H2GKB for patient-specific lists of HPO terms or PhenoPacket descriptions supported by GA4GH (http://phenopackets.org/), calculate a prioritized gene list based on a probabilistic model and output gene-disease relationships with great accuracy. Phen2Gene outperforms existing gene prioritization tools in speed and acts as a real-time phenotype-driven gene prioritization tool to aid the clinical diagnosis of rare undiagnosed diseases. In addition to a command line tool released under the MIT license (https://github.com/WGLab/Phen2Gene), we also developed a web server and web service (https://phen2gene.wglab.org/) for running the tool via web interface or RESTful API queries. Finally, we have curated a large amount of benchmarking data for phenotype-to-gene tools involving 197 patients across 76 scientific articles and 85 patients' de-identified HPO term data from the Children's Hospital of Philadelphia.
Collapse
Affiliation(s)
- Mengge Zhao
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James M Havrilla
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Li Fang
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ying Chen
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jacqueline Peng
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cong Liu
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Chao Wu
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pablo Botas
- Foundation 29, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Julián Isla
- Foundation 29, Pozuelo de Alarcon, 28223 Madrid, Spain
- Dravet Syndrome European Federation, 29200 Brest, France
| | - Gholson J Lyon
- Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY 10314, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Kai Wang
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4572687. [PMID: 32309432 PMCID: PMC7140121 DOI: 10.1155/2020/4572687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/09/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Background TSC1-related signaling plays a pivotal role in intramembranous and endochondral ossification processes during skeletogenesis. This study was aimed at determining the significance of the TSC1 gene at different stages of spinal development. Materials and Methods. TSC1-floxed mice (TSC1flox/flox) were crossed with Prrx1-Cre or BGLAP-Cre transgenic mice or mesenchymal stem cell- and osteoblast-specific TSC1-deficient mice, respectively. Somatic and vertebral differences between WT and Prrx1-TSC1 null mice were examined at 4 weeks after birth. Results No apparent body size abnormalities were apparent in newborn and 4-week- to 2-month-old mice with BGLAP-Cre driver-depleted TSC1. Vertebral and intervertebral discs displayed strong dysplasia in Prrx1-TSC1 null mice. In contrast, vertebrae were only slightly affected, and intervertebral discs from skeletal preparations displayed no apparent changes in BGLAP-TSC1 null mice. Conclusion Our data suggest that the TSC1 gene is crucial for endochondral ossification during postnatal spine development but plays discriminative roles at different stages. Mesenchymal stem cell-specific ablation of TSC1 led to severe spinal dysplasia at early stages of endochondral ossification while osteoblast-specific deletion of TSC1 affected vertebrae slightly and had no detectable effects on intervertebral discs.
Collapse
|
22
|
Robert T, Johnson JL, Guichaoua R, Yaron TM, Bach S, Cantley LC, Colas P. Development of a CDK10/CycM in vitro Kinase Screening Assay and Identification of First Small-Molecule Inhibitors. Front Chem 2020; 8:147. [PMID: 32175313 PMCID: PMC7056863 DOI: 10.3389/fchem.2020.00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) constitute a family of 20 serine/threonine protein kinases that play pivotal roles in the regulation of numerous important molecular and cellular processes. CDKs have long been considered promising therapeutic targets in a variety of pathologies, and the recent therapeutic success of CDK4/6 inhibitors in breast cancers has renewed interest in their therapeutic potential. Small-molecule inhibitors have been identified for every human CDK, except for CDK10. The only recent discovery of an activating cyclin (CycM) for CDK10 enabled us to identify its first phosphorylation substrates and gain insights into its biological functions. Yet, our knowledge of this kinase remains incomplete, despite it being the only member of its family that causes severe human developmental syndromes, when mutated either on the cyclin or the CDK moiety. CDK10 small-molecule inhibitors would be useful in exploring the functions of this kinase and gauging its potential as a therapeutic target for some cancers. Here, we report the identification of an optimized peptide phosphorylation substrate of CDK10/CycM and the development of the first homogeneous, miniaturized CDK10/CycM in vitro kinase assay. We reveal the ability of known CDK inhibitors, among which clinically tested SNS-032, riviciclib, flavopiridol, dinaciclib, AZD4573 and AT7519, to potently inhibit CDK10/CycM. We also show that NVP-2, a strong, remarkably selective CDK9 inhibitor is an equally potent CDK10/CycM inhibitor. Finally, we validate this kinase assay for applications in high-throughput screening campaigns to discover new, original CDK10 inhibitors.
Collapse
Affiliation(s)
- Thomas Robert
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France.,Kinase Inhibitor Specialized Screening Facility (KISSf), Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Roxane Guichaoua
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Stéphane Bach
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France.,Kinase Inhibitor Specialized Screening Facility (KISSf), Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| |
Collapse
|
23
|
Association of Cyclin Dependent Kinase 10 and Transcription Factor 2 during Human Corneal Epithelial Wound Healing in vitro model. Sci Rep 2019; 9:11802. [PMID: 31413335 PMCID: PMC6694192 DOI: 10.1038/s41598-019-48092-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/25/2019] [Indexed: 11/28/2022] Open
Abstract
Proper wound healing is dynamic in order to maintain the corneal integrity and transparency. Impaired or delayed corneal epithelial wound healing is one of the most frequently observed ocular defect and difficult to treat. Cyclin dependen kinase (cdk), a known cell cycle regulator, required for proper proliferating and migration of cell. We therefore investigated the role of cell cycle regulator cdk10, member of cdk family and its functional association with transcriptional factor (ETS2) at active phase of corneal epithelial cell migration. Our data showed that cdk10 was associated with ETS2, while its expression was upregulated at the active phase (18 hours) of cell migration and gradually decrease as the wound was completely closed. Topical treatment with anti-cdk10 and ETS2 antibodies delayed the wound closure time at higest concentration (10 µg/ml) compared to control. Further, our results also showed increased mRNA expression of cdk10 and ETS2 at active phase of migration at approximately 2 fold. Collectively, our data reveals that cdk10 and ETS2 efficiently involved during corneal wound healing. Further studies are warranted to better understand the mechanism and safety of topical cdk10 and ETS2 proteins in corneal epithelial wound-healing and its potential role for human disease treatment.
Collapse
|
24
|
Al-Shaer AE, Flentke GR, Berres ME, Garic A, Smith SM. Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder. PLoS Comput Biol 2019; 15:e1006937. [PMID: 30973878 PMCID: PMC6478348 DOI: 10.1371/journal.pcbi.1006937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/23/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Gestational alcohol exposure causes fetal alcohol spectrum disorder (FASD) and is a prominent cause of neurodevelopmental disability. Whole transcriptome sequencing (RNA-Seq) offer insights into mechanisms underlying FASD, but gene-level analysis provides limited information regarding complex transcriptional processes such as alternative splicing and non-coding RNAs. Moreover, traditional analytical approaches that use multiple hypothesis testing with a false discovery rate adjustment prioritize genes based on an adjusted p-value, which is not always biologically relevant. We address these limitations with a novel approach and implemented an unsupervised machine learning model, which we applied to an exon-level analysis to reduce data complexity to the most likely functionally relevant exons, without loss of novel information. This was performed on an RNA-Seq paired-end dataset derived from alcohol-exposed neural fold-stage chick crania, wherein alcohol causes facial deficits recapitulating those of FASD. A principal component analysis along with k-means clustering was utilized to extract exons that deviated from baseline expression. This identified 6857 differentially expressed exons representing 1251 geneIDs; 391 of these genes were identified in a prior gene-level analysis of this dataset. It also identified exons encoding 23 microRNAs (miRNAs) having significantly differential expression profiles in response to alcohol. We developed an RDAVID pipeline to identify KEGG pathways represented by these exons, and separately identified predicted KEGG pathways targeted by these miRNAs. Several of these (ribosome biogenesis, oxidative phosphorylation) were identified in our prior gene-level analysis. Other pathways are crucial to facial morphogenesis and represent both novel (focal adhesion, FoxO signaling, insulin signaling) and known (Wnt signaling) alcohol targets. Importantly, there was substantial overlap between the exomes themselves and the predicted miRNA targets, suggesting these miRNAs contribute to the gene-level expression changes. Our novel application of unsupervised machine learning in conjunction with statistical analyses facilitated the discovery of signaling pathways and miRNAs that inform mechanisms underlying FASD.
Collapse
Affiliation(s)
- Abrar E. Al-Shaer
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - George R. Flentke
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Mark E. Berres
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ana Garic
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Smith
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| |
Collapse
|
25
|
Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 2019; 8:rsob.180112. [PMID: 30185601 PMCID: PMC6170502 DOI: 10.1098/rsob.180112] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Since their characterization as conserved modules that regulate progression through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs) in higher eukaryotic cells are now also emerging as significant regulators of transcription, metabolism and cell differentiation. The cyclins, though originally characterized as CDK partners, also have CDK-independent roles that include the regulation of DNA damage repair and transcriptional programmes that direct cell differentiation, apoptosis and metabolic flux. This review compares the structures of the members of the CDK and cyclin families determined by X-ray crystallography, and considers what mechanistic insights they provide to guide functional studies and distinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a hallmark of a number of diseases, and structural studies can provide important insights to identify novel routes to therapy.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
26
|
Abstract
Mutations in CDK13 have recently been identified as a novel cause of syndromic intellectual disability. In this chapter, we review the 44 cases of CDK13-related disorder reported to date, highlighting key clinical pointers to this diagnosis including characteristic craniofacial features, feeding difficulties in infancy, and the presence of structural heart or brain malformations. The spectrum of reported mutations is also described, demonstrating an excess of missense mutations arising in the protein kinase domain. Exploration of genotype-phenotype correlations suggests a trend toward milder phenotypes in patients with mutations predicted to cause haploinsufficiency of CDK13, while missense mutations affecting amino acid residue 842 appear most likely to be associated with structural malformations. The greater phenotypic impact of missense variants is hypothesized to occur due to a dominant-negative mechanism, by which the mutant protein acts to sequester cyclin K in inactive complexes. Functional studies to validate this hypothesis have not yet been carried out, however. Differential diagnosis and recommendations for clinical care of patients with CDK13-related disorder are also described, emphasizing baseline echocardiography, vigilance for feeding and swallowing difficulties, and regular developmental evaluation as key components of care. Finally, future directions for CDK13 research are discussed, including the need to resolve uncertainty regarding pathogenicity of CDK13 haploinsufficiency, and to gather further longitudinal data from large cohorts in order to inform the clinical care of patients with this diagnosis.
Collapse
Affiliation(s)
- Mark James Hamilton
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.
| |
Collapse
|
27
|
Diao H, Zhu P, Dai Y, Chen W. Identification of 11 potentially relevant gene mutations involved in growth retardation, intellectual disability, joint contracture, and hepatopathy. Medicine (Baltimore) 2018; 97:e13117. [PMID: 30431579 PMCID: PMC6257554 DOI: 10.1097/md.0000000000013117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The multisystemic clinical characteristics of growth retardation, intellectual disability, joint contracture, and hepatopathy in humans are rare and there are no clear diagnoses of these conditions. However, previous studies using exome sequencing have suggested that they are caused by gene mutations, and some related pathogenic gene variants have been found.Here, we performed resequencing and genome-wide variation analysis of 3 individuals (an affected proband and unaffected parents) from a consanguineous family using Solexa sequencing technology to identify mutated genes.The following genetic features were identified: 3,586,775 single-nucleotide polymorphisms (SNPs), 583,416 insertion/deletion polymorphisms (InDels), and 8579 structural variations (SVs) in the genome of the father; 3,624,800 SNPs, 608,685 InDels, and 8,827 SVs in the genome of the mother; 3,574,431 SNPs, 571,196 InDels, and 8371 SVs in the genome of the proband. Variations between samples were determined by comparative analysis of authentic collections of SNPs and were functionally annotated. Variations in several important genes, including SEC22B, FLG, ZNF717, MUC4, TRIL, CTAGE4, FOXG1, LOC100287399, KRTAP1-3, and LRRC37A3, were surveyed by alignment analysis.The results present new evidence that mutations in 11 genes may be associated with characteristic clinical growth retardation, intellectual disability, joint contracture, and hepatopathy.
Collapse
Affiliation(s)
- Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
| | - Peng Zhu
- Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, PR China
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Guangdong
| | - Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
| |
Collapse
|