1
|
Tang YX, Wu WZ, Zhou SS, Zeng DT, Zheng GC, He RQ, Qin DY, Huang WY, Chen JT, Dang YW, Tang YL, Chi BT, Zhan YT, Chen G. Exploring the potential function of high expression of ANAPC1 in regulating ubiquitination in hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:103594. [DOI: 10.4251/wjgo.v17.i5.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/22/2025] [Accepted: 03/14/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND ANAPC1, a key regulator of the ubiquitination in tumour development, has not been thoroughly studied in hepatocellular carcinoma (HCC).
AIM To elucidate the expression of ANAPC1 in HCC and its potential regulatory mechanism related to ubiquitination.
METHODS Bulk RNA (RNA sequencing and microarrays), immunohistochemistry (IHC) tissues, and single-cell RNA sequencing (scRNA-seq) data were integrated to comprehensively investigate ANAPC1 expression in HCC. Clustered regularly interspaced short palindromic repeats analysis was performed to assess growth in HCC cell lines following ANAPC1 knockout. Enrichment analyses were conducted to explore the functions of ANAPC1. ScRNA-seq data was used to examine the cell cycle and metabolic levels. CellChat analysis was applied to investigate the interactions between ANAPC1 and different cell types. The relationship between ANAPC1 expression and drug concentration was analyzed.
RESULTS ANAPC1 messenger RNA was found to be upregulated in bulk RNA, IHC tissues samples and malignant hepatocytes. The proliferation of JHH2 cell lines was most significantly inhibited after ANAPC1 knockdown. In biological pathways, the development of HCC was found to be linked to the regulation of ubiquitin-mediated proteolysis. Additionally, scRNA-seq results indicated that highly expressed ANAPC1 was in the G2/M phase, with increased glycolysis/gluconeogenesis activity. A CellChat analysis showed that ANAPC1 was associated with the regulation of the migration inhibitory factor-(cluster of differentiation 74 + C-X-C chemokine receptor type 4) pathway. Higher ANAPC1 expression correlated with stronger effects of sorafenib, dasatinib, ibrutinib, lapatinib, nilotinib and afatinib.
CONCLUSION The high expression level of ANAPC1 may regulate the cell cycle and metabolic levels of HCC through the ubiquitination-related pathway, thereby promoting disease progression.
Collapse
Affiliation(s)
- Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zi Wu
- Department of Pathology, People’s Hospital of Ling Shan, Nanning 535400, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Sheng Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Da-Tong Zeng
- Department of Pathology, Redcross Hospital of Yulin City, Nanning 537000, Guangxi Zhuang Autonomous Region, China
| | - Guang-Cai Zheng
- Department of Hepatobiliary Surgery, Redcross Hospital of Yulin City, Nanning 537000, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ji-Tian Chen
- Department of Pathology, People’s Hospital of Ling Shan, Nanning 535400, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan-Ting Zhan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Cui Y, Zhao S, Zhang C, Su W, Chen X, Wang Y, Yang B, Wu K, Chen ZJ, Zhang H, Zhao H. Infertile females with biallelic mutations in APC/C genes are characterized by oocyte or early embryo defects. J Assist Reprod Genet 2025:10.1007/s10815-025-03465-x. [PMID: 40238067 DOI: 10.1007/s10815-025-03465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE The objective of this study was to elucidate the role of anaphase promoting complex/cyclosome (APC/C)-related genes in cases of female infertility characterized by disturbances in oocyte maturation, failure of fertilization, and cessation of early embryonic growth among three distinct Chinese familial lineages. METHODS We conducted whole-exome sequencing of patients with female infertility from 639 unrelated Chinese families and three probands with APC/C gene mutations were screened. Structure modeling and in vitro experiments were performed to analyze the effects of CDC23 and APC13 variants. RESULTS We identified six rare missense variants in APC/C genes, including two compound heterozygous missense variants of CDC23 (c.A1277G, c.A833G, c.C182T and c.C301T) from case 1 and case 2 and one compound heterozygous variant of APC13 (c.C6A and c.116_126del) from case 3. These APC/C gene mutations all showed a recessive inheritance pattern. These mutations are conserved across different species. Mutation Taster, SIFT and PPH2 forecast that these variants are inclined towards exerting a deleterious effect. Structural analysis indicated that these mutations may result in changes in the chemical bonds between themselves and other APC/C subunits. In vitro experimental data suggested that mutations associated with CDC23 result in dysregulated protein expression, whereas missense mutation in APC13 is implicated in aberrant cellular localization patterns. CONCLUSION Our findings expand the genetic spectrum of APC/C genes, especially CDC23 and APC13 in female infertility, indicating that the significance of APC/C genes in female sterility should be emphasized in the future. And it provides a new diagnostic and therapeutic target for genetic counseling.
Collapse
Affiliation(s)
- Ying Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Shuai Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- Shandong Health Commission Key Laboratory of Major Gynaecological Disease Control, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Changlong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Xiaolei Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Yang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Bohan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honghui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Chen F, Wei R, Wang Y, Cao Q, Wang J, Wang C, Yao D, Yao Z, Ni C, Li M. Identification of deep intronic variants in junctional epidermolysis bullosa using genome sequencing and splicing assays. NPJ Genom Med 2025; 10:8. [PMID: 39915495 PMCID: PMC11802722 DOI: 10.1038/s41525-025-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Junctional epidermolysis bullosa (JEB) is characterized by mucocutaneous fragility. We enrolled 69 cases of recessive JEB, with 13.0% of these cases remained genetically undiagnosed following an initial exome sequencing. Among cases carried COL17A1 variants, this proportion can reach 31.6%. We employed genome sequencing to genetically diagnosis these cases. Four deep intronic variants (c.4156+117 G > A, c.2039-104 G > A and c.1267+237dupC in the COL17A1 gene and c.-38 + 2 T > C in the LAMB3 gene) were identified in six cases. The c.4156+117 G > A variant was found in three of the five cases, suggesting it may be a common deep intronic variant in Chinese JEB. Splicing analysis revealed that these variants caused splicing defect by inducing exon skipping, or pseudoexon insertion into the transcript in HaCaT cells, not in HEK293 cells. Our results emphasize the importance of selecting the right cell line for mRNA analysis.
Collapse
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ruoqu Wei
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yumeng Wang
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoyu Cao
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jianbo Wang
- Department of Dermatology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Dingjin Yao
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Ni
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
4
|
Ashraf R, Polasek-Sedlackova H, Marini V, Prochazkova J, Hasanova Z, Zacpalova M, Boudova M, Krejci L. RECQ4-MUS81 interaction contributes to telomere maintenance with implications to Rothmund-Thomson syndrome. Nat Commun 2025; 16:1302. [PMID: 39900600 PMCID: PMC11791078 DOI: 10.1038/s41467-025-56518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Replication stress, particularly in hard-to-replicate regions such as telomeres and centromeres, leads to the accumulation of replication intermediates that must be processed to ensure proper chromosome segregation. In this study, we identify a critical role for the interaction between RECQ4 and MUS81 in managing such stress. We show that RECQ4 physically interacts with MUS81, targeting it to specific DNA substrates and enhancing its endonuclease activity. Loss of this interaction, results in significant chromosomal segregation defects, including the accumulation of micronuclei, anaphase bridges, and ultrafine bridges (UFBs). Our data further demonstrate that the RECQ4-MUS81 interaction plays an important role in ALT-positive cells, where MUS81 foci primarily colocalise with telomeres, highlighting its role in telomere maintenance. We also observe that a mutation associated with Rothmund-Thomson syndrome, which produces a truncated RECQ4 unable to interact with MUS81, recapitulates these chromosome instability phenotypes. This underscores the importance of RECQ4-MUS81 in safeguarding genome integrity and suggests potential implications for human disease. Our findings demonstrate the RECQ4-MUS81 interaction as a key mechanism in alleviating replication stress at hard-to-replicate regions and highlight its relevance in pathological conditions such as RTS.
Collapse
Affiliation(s)
- Raghib Ashraf
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Hana Polasek-Sedlackova
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Jana Prochazkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Zdenka Hasanova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Michala Boudova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic.
| |
Collapse
|
5
|
Nakano Y, Kuiper RP, Nichols KE, Porter CC, Lesmana H, Meade J, Kratz CP, Godley LA, Maese LD, Achatz MI, Khincha PP, Savage SA, Doria AS, Greer MLC, Chang VY, Wang LL, Plon SE, Walsh MF. Update on Recommendations for Cancer Screening and Surveillance in Children with Genomic Instability Disorders. Clin Cancer Res 2024; 30:5009-5020. [PMID: 39264246 PMCID: PMC11705613 DOI: 10.1158/1078-0432.ccr-24-1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Genomic instability disorders are characterized by DNA or chromosomal instability, resulting in various clinical manifestations, including developmental anomalies, immunodeficiency, and increased risk of developing cancers beginning in childhood. Many of these genomic instability disorders also present with exquisite sensitivity to anticancer treatments such as ionizing radiation and chemotherapy, which may further increase the risk of second cancers. In July 2023, the American Association for Cancer Research held the second Childhood Cancer Predisposition Workshop, where multidisciplinary international experts discussed, reviewed, and updated recommendations for children with cancer predisposition syndromes. This article discusses childhood cancer risks and surveillance recommendations for the group of genomic instability disorders with predominantly recessive inheritance, including the DNA repair disorders ataxia telangiectasia, Nijmegen breakage syndrome, Fanconi anemia, xeroderma pigmentosum, Bloom syndrome, and Rothmund-Thomson syndrome, as well as the telomere biology disorders and mosaic variegated aneuploidy. Recognition of children with genomic instability disorders is important in order to make the proper diagnosis, enable genetic counseling, and inform cancer screening, cancer risk reduction, and choice of anticancer therapy.
Collapse
Affiliation(s)
- Yoshiko Nakano
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Harry Lesmana
- Department of Pediatric Hematology, Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA
| | - Julia Meade
- Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Lucy A. Godley
- Division of Hematology/Oncology and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Luke D. Maese
- University of Utah, Huntsman Cancer Institute, Primary Children’s Hospital, Salt Lake City, UT
| | | | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Andrea S. Doria
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Canada
| | - Mary-Louise C. Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Canada
| | - Vivian Y. Chang
- Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lisa L. Wang
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Sharon E. Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Michael F. Walsh
- Divisions of Solid Tumor and Clinical Genetics, Departments of Medicine and Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
6
|
Larizza L, Colombo EA. Interdependence between Nuclear Pore Gatekeepers and Genome Caretakers: Cues from Genome Instability Syndromes. Int J Mol Sci 2024; 25:9387. [PMID: 39273335 PMCID: PMC11394955 DOI: 10.3390/ijms25179387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
This review starts off with the first germline homozygous variants of the Nucleoporin 98 gene (NUP98) in siblings whose clinical presentation recalls Rothmund-Thomson (RTS) and Werner (WS) syndromes. The progeroid phenotype caused by a gene associated with haematological malignancies and neurodegenerative disorders primed the search for interplay between caretakers involved in genome instability syndromes and Nuclear Pore Complex (NPC) components. In the context of basic information on NPC architecture and functions, we discuss the studies on the interdependence of caretakers and gatekeepers in WS and Hereditary Fibrosing Poikiloderma (POIKTMP), both entering in differential diagnosis with RTS. In WS, the WRN/WRNIP complex interacts with nucleoporins of the Y-complex and NDC1 altering NPC architecture. In POIKTMP, the mutated FAM111B, recruited by the Y-complex's SEC13 and NUP96, interacts with several Nups safeguarding NPC structure. The linkage of both defective caretakers to the NPC highlights the attempt to activate a repair hub at the nuclear periphery to restore the DNA damage. The two separate WS and POIKTMP syndromes are drawn close by the interaction of their damage sensors with the NPC and by the shared hallmark of short fragile telomeres disclosing a major role of both caretakers in telomere maintenance.
Collapse
Affiliation(s)
- Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
| | - Elisa Adele Colombo
- Genetica Medica, Dipartimento di Scienze Della Salute, Università Degli Studi di Milano, 20142 Milano, Italy
| |
Collapse
|
7
|
Zeng J, Li J, Liu Y, Liang R, Wang L, Zhou Q, Sun J, Liu Z, Wang W, Zhu S. A Chinese patient with Rothmund-Thomson syndrome. Mol Genet Genomic Med 2024; 12:e2347. [PMID: 38131666 PMCID: PMC10767680 DOI: 10.1002/mgg3.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder that has been reported in all ethnicities, with several identifiable pathogenic variants. There have been reported cases indicating that RTS may lead to low birth weight in fetuses, but specific data on the fetal period are lacking. Genetic testing for RTS II is currently carried out by identifying pathogenic variants in RECQL4. METHODS In order to determine the cause, we performed whole-genome sequencing (WGS) analysis on the patient and his parents. Variants detected by WGS were confirmed by Sanger sequencing and examined in family members. RESULTS After analyzing the WGS data, we found a heterozygous nonsense mutation c.2752G>T (p.Glu918Ter) and a novel frameshift insertion mutation c.1547dupC (p.Leu517AlafsTer23) of RECQL4, which is a known pathogenic/disease-causing variant of RTS. Further validation indicated these were compound heterozygous mutations from parents. CONCLUSION Our study expands the mutational spectrum of the RECQL4 gene and enriches the phenotype spectrum of Chinese RTS patients. Our information can assist the patient's parents in making informed decisions regarding their future pregnancies. This case offers a new perspective for clinicians to consider whether to perform prenatal diagnosis.
Collapse
Affiliation(s)
- Juan Zeng
- Obstetrics DepartmentShenzhen Maternity and Child Healthcare HospitalShenzhenGuangdong ProvinceChina
| | - Jiayi Li
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yuwei Liu
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | | | | | | | | | - Sujun Zhu
- Obstetrics DepartmentShenzhen Maternity and Child Healthcare HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
8
|
Ledvin L, Gassaway BM, Tawil J, Urso O, Pizzo D, Welsh KA, Bolhuis DL, Fisher D, Bonni A, Gygi SP, Brown NG, Ferguson CJ. The anaphase-promoting complex controls a ubiquitination-phosphoprotein axis in chromatin during neurodevelopment. Dev Cell 2023; 58:2666-2683.e9. [PMID: 37875116 PMCID: PMC10872926 DOI: 10.1016/j.devcel.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Mutations in the degradative ubiquitin ligase anaphase-promoting complex (APC) alter neurodevelopment by impairing proteasomal protein clearance, but our understanding of their molecular and cellular pathogenesis remains limited. Here, we employ the proteomic-based discovery of APC substrates in APC mutant mouse brain and human cell lines and identify the chromosome-passenger complex (CPC), topoisomerase 2a (Top2a), and Ki-67 as major chromatin factors targeted by the APC during neuronal differentiation. These substrates accumulate in phosphorylated form, suggesting that they fail to be eliminated after mitosis during terminal differentiation. The accumulation of the CPC kinase Aurora B within constitutive heterochromatin and hyperphosphorylation of its target histone 3 are corrected in the mutant brain by pharmacologic Aurora B inhibition. Surprisingly, the reduction of Ki-67, but not H3S10ph, rescued the function of constitutive heterochromatin in APC mutant neurons. These results expand our understanding of how ubiquitin signaling regulates chromatin during neurodevelopment and identify potential therapeutic targets in APC-related disorders.
Collapse
Affiliation(s)
- Leya Ledvin
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brandon M Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Tawil
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Olivia Urso
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Donald Pizzo
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaeli A Welsh
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | - Azad Bonni
- Neuroscience Department, Washington University, St. Louis, MO 63110, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas G Brown
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Cole J Ferguson
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Martins DJ, Di Lazzaro Filho R, Bertola DR, Hoch NC. Rothmund-Thomson syndrome, a disorder far from solved. FRONTIERS IN AGING 2023; 4:1296409. [PMID: 38021400 PMCID: PMC10676203 DOI: 10.3389/fragi.2023.1296409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Di Lazzaro Filho
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Dasa Genômica/Genera, Genômica, São Paulo, Brazil
| | - Debora Romeo Bertola
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Children’s Institute, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Nícolas Carlos Hoch
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Di Lazzaro Filho R, Yamamoto GL, Silva TJ, Rocha LA, Linnenkamp BDW, Castro MAA, Bartholdi D, Schaller A, Leeb T, Kelmann S, Utagawa CY, Steiner CE, Steinmetz L, Honjo RS, Kim CA, Wang L, Abourjaili-Bilodeau R, Campeau PM, Warman M, Passos-Bueno MR, Hoch NC, Bertola DR. Biallelic variants in DNA2 cause poikiloderma with congenital cataracts and severe growth failure reminiscent of Rothmund-Thomson syndrome. J Med Genet 2023; 60:1127-1132. [PMID: 37055165 DOI: 10.1136/jmg-2022-109119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare, heterogeneous autosomal recessive genodermatosis, with poikiloderma as its hallmark. It is classified into two types: type I, with biallelic variants in ANAPC1 and juvenile cataracts, and type II, with biallelic variants in RECQL4, increased cancer risk and no cataracts. We report on six Brazilian probands and two siblings of Swiss/Portuguese ancestry presenting with severe short stature, widespread poikiloderma and congenital ocular anomalies. Genomic and functional analysis revealed compound heterozygosis for a deep intronic splicing variant in trans with loss of function variants in DNA2, with reduction of the protein levels and impaired DNA double-strand break repair. The intronic variant is shared by all patients, as well as the Portuguese father of the European siblings, indicating a probable founder effect. Biallelic variants in DNA2 were previously associated with microcephalic osteodysplastic primordial dwarfism. Although the individuals reported here present a similar growth pattern, the presence of poikiloderma and ocular anomalies is unique. Thus, we have broadened the phenotypical spectrum of DNA2 mutations, incorporating clinical characteristics of RTS. Although a clear genotype-phenotype correlation cannot be definitively established at this moment, we speculate that the residual activity of the splicing variant allele could be responsible for the distinct manifestations of DNA2-related syndromes.
Collapse
Affiliation(s)
- Ricardo Di Lazzaro Filho
- Departamento de Genética e Biologia Evolutiva do Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
- Genômica/Genera, Diagnósticos da América SA, Barueri, Brazil
| | - Guilherme Lopes Yamamoto
- Genômica/Genera, Diagnósticos da América SA, Barueri, Brazil
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Tiago J Silva
- Departamento de Bioquímica do Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia A Rocha
- Departamento de Genética e Biologia Evolutiva do Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Bianca D W Linnenkamp
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Matheus Augusto Araújo Castro
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - André Schaller
- Department of Human Genetics, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - Samantha Kelmann
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | | | | | - Leandra Steinmetz
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Rachel Sayuri Honjo
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Lisa Wang
- 9Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | - Matthew Warman
- Department of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
- Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva do Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Nicolas C Hoch
- Departamento de Bioquímica do Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Departamento de Genética e Biologia Evolutiva do Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Malavašič P, Polajžer S, Lovšin N. Anaphase-Promoting Complex Subunit 1 Associates with Bone Mineral Density in Human Osteoporotic Bone. Int J Mol Sci 2023; 24:12895. [PMID: 37629076 PMCID: PMC10454667 DOI: 10.3390/ijms241612895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Genome-wide association studies (GWAS) are one of the most common approaches to identify genetic loci that are associated with bone mineral density (BMD). Such novel genetic loci represent new potential targets for the prevention and treatment of fragility fractures. GWAS have identified hundreds of associations with BMD; however, only a few have been functionally evaluated. A locus significantly associated with femoral neck BMD at the genome-wide level is intronic SNP rs17040773 located in the intronic region of the anaphase-promoting complex subunit 1 (ANAPC1) gene (p = 1.5 × 10-9). Here, we functionally evaluate the role of ANAPC1 in bone remodelling by examining the expression of ANAPC1 in human bone and muscle tissues and during the osteogenic differentiation of human primary mesenchymal stem cells (MSCs). The expression of ANAPC1 was significantly decreased 2.3-fold in bone tissues and 6.2-fold in muscle tissue from osteoporotic patients as compared to the osteoarthritic and control tissues. Next, we show that the expression of ANAPC1 changes during the osteogenic differentiation process of human MSCs. Moreover, the silencing of ANAPC1 in human osteosarcoma (HOS) cells reduced RUNX2 expression, suggesting that ANAPC1 affects osteogenic differentiation through RUNX2. Altogether, our results indicate that ANAPC1 plays a role in bone physiology and in the development of osteoporosis.
Collapse
Affiliation(s)
- Petra Malavašič
- General Hospital Novo Mesto, Šmihelska Cesta 1, 8000 Novo Mesto, Slovenia;
| | - Sara Polajžer
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Averdunk L, Huetzen MA, Moreno-Andrés D, Kalb R, McKee S, Hsieh TC, Seibt A, Schouwink M, Lalani S, Faqeih EA, Brunet T, Boor P, Neveling K, Hoischen A, Hildebrandt B, Graf E, Lu L, Jin W, Schaper J, Omer JA, Demaret T, Fleischer N, Schindler D, Krawitz P, Mayatepek E, Wieczorek D, Wang LL, Antonin W, Jachimowicz RD, von Felbert V, Distelmaier F. Biallelic variants in CRIPT cause a Rothmund-Thomson-like syndrome with increased cellular senescence. Genet Med 2023; 25:100836. [PMID: 37013901 DOI: 10.1016/j.gim.2023.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Rothmund-Thomson syndrome (RTS) is characterized by poikiloderma, sparse hair, small stature, skeletal defects, cancer, and cataracts, resembling features of premature aging. RECQL4 and ANAPC1 are the 2 known disease genes associated with RTS in >70% of cases. We describe RTS-like features in 5 individuals with biallelic variants in CRIPT (OMIM 615789). METHODS Two newly identified and 4 published individuals with CRIPT variants were systematically compared with those with RTS using clinical data, computational analysis of photographs, histologic analysis of skin, and cellular studies on fibroblasts. RESULTS All CRIPT individuals fulfilled the diagnostic criteria for RTS and additionally had neurodevelopmental delay and seizures. Using computational gestalt analysis, CRIPT individuals showed greatest facial similarity with individuals with RTS. Skin biopsies revealed a high expression of senescence markers (p53/p16/p21) and the senescence-associated ß-galactosidase activity was elevated in CRIPT-deficient fibroblasts. RECQL4- and CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors and no or only mild sensitivity to genotoxic stress by ionizing radiation, mitomycin C, hydroxyurea, etoposide, and potassium bromate. CONCLUSION CRIPT causes an RTS-like syndrome associated with neurodevelopmental delay and epilepsy. At the cellular level, RECQL4- and CRIPT-deficient cells display increased senescence, suggesting shared molecular mechanisms leading to the clinical phenotypes.
Collapse
Affiliation(s)
- Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Maxim A Huetzen
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne and Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Reinhard Kalb
- Institute for Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast HSC Trust, Belfast, United Kingdom
| | - Tzung-Chien Hsieh
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marten Schouwink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Seema Lalani
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - Eissa Ali Faqeih
- Division of Medical Genetics, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Theresa Brunet
- Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Peter Boor
- Institute of Pathology and Electron Microscopy Facility, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Hildebrandt
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Elisabeth Graf
- Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany
| | - Linchao Lu
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Weidong Jin
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Joerg Schaper
- Center of Rare Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jamal A Omer
- Department of General Pediatrics, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tanguy Demaret
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | | | - Detlev Schindler
- Institute for Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Peter Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lisa L Wang
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Ron D Jachimowicz
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne and Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Verena von Felbert
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
13
|
Xu X, Chang CW, Li M, Omabe K, Le N, Chen YH, Liang F, Liu Y. DNA replication initiation factor RECQ4 possesses a role in antagonizing DNA replication initiation. Nat Commun 2023; 14:1233. [PMID: 36871012 PMCID: PMC9985596 DOI: 10.1038/s41467-023-36968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Deletion of the conserved C-terminus of the Rothmund-Thomson syndrome helicase RECQ4 is highly tumorigenic. However, while the RECQ4 N-terminus is known to facilitate DNA replication initiation, the function of its C-terminus remains unclear. Using an unbiased proteomic approach, we identify an interaction between the RECQ4 N-terminus and the anaphase-promoting complex/cyclosome (APC/C) on human chromatin. We further show that this interaction stabilizes APC/C co-activator CDH1 and enhances APC/C-dependent degradation of the replication inhibitor Geminin, allowing replication factors to accumulate on chromatin. In contrast, the function is blocked by the RECQ4 C-terminus, which binds to protein inhibitors of APC/C. A cancer-prone, C-terminal-deleted RECQ4 mutation increases origin firing frequency, accelerates G1/S transition, and supports abnormally high DNA content. Our study reveals a role of the human RECQ4 C-terminus in antagonizing its N-terminus, thereby suppressing replication initiation, and this suppression is impaired by oncogenic mutations.
Collapse
Affiliation(s)
- Xiaohua Xu
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008, USA
| | - Chou-Wei Chang
- Vesigen Therapeutics, 790 Memorial Drive, Suite 103, Cambridge, MA, 02139, USA
| | - Min Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Kenneth Omabe
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Nhung Le
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Yi-Hsuan Chen
- Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Feng Liang
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA.
| |
Collapse
|
14
|
De novo myelodysplastic syndrome in a Rothmund-Thomson Syndrome patient with novel pathogenic RECQL4 variants. BLOOD SCIENCE 2023; 5:125-130. [DOI: 10.1097/bs9.0000000000000152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
|
15
|
Colombo EA, Valiante M, Uggeri M, Orro A, Majore S, Grammatico P, Gentilini D, Finelli P, Gervasini C, D’Ursi P, Larizza L. Germline NUP98 Variants in Two Siblings with a Rothmund-Thomson-Like Spectrum: Protein Functional Changes Predicted by Molecular Modeling. Int J Mol Sci 2023; 24:4028. [PMID: 36835439 PMCID: PMC9965077 DOI: 10.3390/ijms24044028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Two adult siblings born to first-cousin parents presented a clinical phenotype reminiscent of Rothmund-Thomson syndrome (RTS), implying fragile hair, absent eyelashes/eyebrows, bilateral cataracts, mottled pigmentation, dental decay, hypogonadism, and osteoporosis. As the clinical suspicion was not supported by the sequencing of RECQL4, the RTS2-causative gene, whole exome sequencing was applied and disclosed the homozygous variants c.83G>A (p.Gly28Asp) and c.2624A>C (p.Glu875Ala) in the nucleoporin 98 (NUP98) gene. Though both variants affect highly conserved amino acids, the c.83G>A looked more intriguing due to its higher pathogenicity score and location of the replaced amino acid between phenylalanine-glycine (FG) repeats within the first NUP98 intrinsically disordered region. Molecular modeling studies of the mutated NUP98 FG domain evidenced a dispersion of the intramolecular cohesion elements and a more elongated conformational state compared to the wild type. This different dynamic behavior may affect the NUP98 functions as the minor plasticity of the mutated FG domain undermines its role as a multi-docking station for RNA and proteins, and the impaired folding can lead to the weakening or the loss of specific interactions. The clinical overlap of NUP98-mutated and RTS2/RTS1 patients, accounted by converging dysregulated gene networks, supports this first-described constitutional NUP98 disorder, expanding the well-known role of NUP98 in cancer.
Collapse
Affiliation(s)
- Elisa Adele Colombo
- Genetica Medica, Dipartimento di Scienze Della Salute, Università Degli Studi di Milano, 20142 Milano, Italy
| | - Michele Valiante
- Laboratory of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, 00152 Roma, Italy
| | - Matteo Uggeri
- Department of Biomedical Sciences National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Alessandro Orro
- Department of Biomedical Sciences National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Silvia Majore
- Laboratory of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, 00152 Roma, Italy
| | - Paola Grammatico
- Laboratory of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, 00152 Roma, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Palma Finelli
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze Della Salute, Università Degli Studi di Milano, 20142 Milano, Italy
| | - Pasqualina D’Ursi
- Department of Biomedical Sciences National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
| |
Collapse
|
16
|
Marmolejo Castañeda DH, Cruellas Lapeña M, Carrasco López E, Aparicio Español G, Valverde Morales C, López-Fernández A, Pérez Ballesteros E, Torres-Esquius S, Pardo Muñoz M, Balmaña Gelpi J. A case of Rothmund-Thomson syndrome originally thought to be a case of Bloom syndrome. Fam Cancer 2023; 22:99-102. [PMID: 35781852 DOI: 10.1007/s10689-022-00303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023]
Abstract
Rothmund-Thomson syndrome, a heterogeneous genodermatosis with autosomal recessive hereditary pattern, is an uncommon cancer susceptibility genetic syndrome. To date, only 400 cases have been reported in the literature, and the severity of the features varies among individuals with the condition. Here, we describe a 55-year-old male who had been diagnosed with Bloom Syndrome during childhood due to the suggestive physical features such as short stature, chronic facial erythema, poikiloderma in face and extremities, microtia and microcephaly. However, the genetic test demonstrated that the patient carried two pathogenic variants resulting in compound heterozygous in the RECQL4 gene (c.2269C>T and c.2547_2548delGT). He subsequently developed a calcaneal osteosarcoma, which was successfully treated, and has currently been oncologic disease-free for 3 years.
Collapse
Affiliation(s)
| | - Mara Cruellas Lapeña
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall dHebron 119-129, 08035, Barcelona, Spain.,Hereditary Cancer Genetics Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Estela Carrasco López
- Hereditary Cancer Genetics Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Claudia Valverde Morales
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall dHebron 119-129, 08035, Barcelona, Spain
| | - Adrià López-Fernández
- Hereditary Cancer Genetics Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Sara Torres-Esquius
- Hereditary Cancer Genetics Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mónica Pardo Muñoz
- Hereditary Cancer Genetics Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judith Balmaña Gelpi
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall dHebron 119-129, 08035, Barcelona, Spain. .,Hereditary Cancer Genetics Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
17
|
Genome-Wide Association Screening Determines Peripheral Players in Male Fertility Maintenance. Int J Mol Sci 2022; 24:ijms24010524. [PMID: 36613967 PMCID: PMC9820667 DOI: 10.3390/ijms24010524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Deciphering the functional relationships of genes resulting from genome-wide screens for polymorphisms that are associated with phenotypic variations can be challenging. However, given the common association with certain phenotypes, a functional link should exist. We have tested this prediction in newly sequenced exomes of altogether 100 men representing different states of fertility. Fertile subjects presented with normal semen parameters and had naturally fathered offspring. In contrast, infertile probands were involuntarily childless and had reduced sperm quantity and quality. Genome-wide association study (GWAS) linked twelve non-synonymous single-nucleotide polymorphisms (SNPs) to fertility variation between both cohorts. The SNPs localized to nine genes for which previous evidence is in line with a role in male fertility maintenance: ANAPC1, CES1, FAM131C, HLA-DRB1, KMT2C, NOMO1, SAA1, SRGAP2, and SUSD2. Most of the SNPs residing in these genes imply amino acid exchanges that should only moderately affect protein functionality. In addition, proteins encoded by genes from present GWAS occupied peripheral positions in a protein-protein interaction network, the backbone of which consisted of genes listed in the Online Mendelian Inheritance in Man (OMIM) database for their implication in male infertility. Suggestive of an indirect impact on male fertility, the genes focused were indeed linked to each other, albeit mediated by other interactants. Thus, the chances of identifying a central player in male infertility by GWAS could be limited in general. Furthermore, the SNPs determined and the genes containing these might prove to have potential as biomarkers in the diagnosis of male fertility.
Collapse
|
18
|
Pediatric Cutaneous Oncology. Dermatol Clin 2022; 41:175-185. [DOI: 10.1016/j.det.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Morrill K, Hekman J, Li X, McClure J, Logan B, Goodman L, Gao M, Dong Y, Alonso M, Carmichael E, Snyder-Mackler N, Alonso J, Noh HJ, Johnson J, Koltookian M, Lieu C, Megquier K, Swofford R, Turner-Maier J, White ME, Weng Z, Colubri A, Genereux DP, Lord KA, Karlsson EK. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022; 376:eabk0639. [PMID: 35482869 DOI: 10.1126/science.abk0639] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h2) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Hekman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse McClure
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linda Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Mingshi Gao
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yinan Dong
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marjie Alonso
- The International Association of Animal Behavior Consultants, Cranberry Township, PA 16066, USA.,IAABC Foundation, Cranberry Township, PA 16066, USA
| | - Elena Carmichael
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Rice University, Houston, TX 77005, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85251, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ 85251, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Jacob Alonso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Charlie Lieu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Michelle E White
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Andrés Colubri
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
20
|
Vagher J, Gammon A, Kohlmann W, Jeter J. Non-Melanoma Skin Cancers and Other Cutaneous Manifestations in Bone Marrow Failure Syndromes and Rare DNA Repair Disorders. Front Oncol 2022; 12:837059. [PMID: 35359366 PMCID: PMC8960432 DOI: 10.3389/fonc.2022.837059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Although most non-melanoma skin cancers are felt to be sporadic in origin, these tumors do play a role in several cancer predisposition syndromes. The manifestations of skin cancers in these hereditary populations can include diagnosis at extremely early ages and/or multiple primary cancers, as well as tumors at less common sites. Awareness of baseline skin cancer risks for these individuals is important, particularly in the setting of treatments that may compromise the immune system and further increase risk of cutaneous malignancies. Additionally, diagnosis of these disorders and management of non-cutaneous manifestations of these diseases have profound implications for both the patient and their family. This review highlights the current literature on the diagnosis, features, and non-melanoma skin cancer risks associated with lesser-known cancer predisposition syndromes, including bone marrow failure disorders, genomic instability disorders, and base excision repair disorders.
Collapse
Affiliation(s)
- Jennie Vagher
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Amanda Gammon
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Wendy Kohlmann
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Joanne Jeter
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
21
|
Cancer risk among RECQL4 heterozygotes. Cancer Genet 2022; 262-263:107-110. [DOI: 10.1016/j.cancergen.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/23/2022]
|
22
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
23
|
Kaneko H, Takemoto M, Murakami H, Ihara K, Kosaki R, Motegi SI, Taniguchi A, Matsuo M, Yamazaki N, Nishigori C, Takita J, Koshizaka M, Maezawa Y, Yokote K. Rothmund-Thomson syndrome investigated by two nationwide surveys in Japan. Pediatr Int 2022; 64:e15120. [PMID: 35616152 DOI: 10.1111/ped.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/04/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma of the face, small stature, sparse scalp hair, juvenile cataract, radial aplasia, and predisposition to cancers. Due to the rarity of RTS, the situation of patients with RTS in Japan has not been elucidated. METHODS In 2010 and 2020, following the results of a primary questionnaire survey, a secondary questionnaire survey on RTS was conducted nationwide to investigate the number of RTS cases and their associated skin lesions, bone lesions, other clinical features, and quality of life in Japan. RESULTS In 2010 and 2020, 10 and eight patients with RTS were recruited, respectively. Skin lesions such as poikiloderma, erythema, pigmentation, and abnormal scalp hair were observed in almost all cases. Bone lesions were observed in four cases in the 2010 and 2020 surveys, respectively. Two cases had mutations in the RECQL4 gene in the 2020 survey. CONCLUSIONS Two nationwide surveys have shown the actual situation of patients with RTS in Japan. Cutaneous and bone manifestations are important for the diagnosis of RTS. However, many patients have no RECQL4 mutations. The novel causative gene of RTS should be further elucidated.
Collapse
Affiliation(s)
- Hideo Kaneko
- Department of Pediatric Medical Care, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Minoru Takemoto
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare, Chiba, Japan
| | - Hiroaki Murakami
- Department of Pediatric Medical Care, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Kenji Ihara
- Department of Pediatrics, Faculty of Medicine, Oita University, Oita, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akira Taniguchi
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chikako Nishigori
- Division of Dermatology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
24
|
Xu X, Chang CW, Li M, Liu C, Liu Y. Molecular Mechanisms of the RECQ4 Pathogenic Mutations. Front Mol Biosci 2021; 8:791194. [PMID: 34869606 PMCID: PMC8637615 DOI: 10.3389/fmolb.2021.791194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022] Open
Abstract
The human RECQ4 gene encodes an ATP-dependent DNA helicase that contains a conserved superfamily II helicase domain located at the center of the polypeptide. RECQ4 is one of the five RECQ homologs in human cells, and its helicase domain is flanked by the unique amino and carboxyl termini with sequences distinct from other members of the RECQ helicases. Since the identification of the RECQ4 gene in 1998, multiple RECQ4 mutations have been linked to the pathogenesis of three clinical diseases, which are Rothmund-Thomson syndrome, Baller-Gerold syndrome, and RAPADILINO. Patients with these diseases show various developmental abnormalities. In addition, a subset of RECQ4 mutations are associated with high cancer risks, especially for osteosarcoma and/or lymphoma at early ages. The discovery of clinically relevant RECQ4 mutations leads to intriguing questions: how is the RECQ4 helicase responsible for preventing multiple clinical syndromes? What are the mechanisms by which the RECQ4 disease mutations cause tissue abnormalities and drive cancer formation? Furthermore, RECQ4 is highly overexpressed in many cancer types, raising the question whether RECQ4 acts not only as a tumor suppressor but also an oncogene that can be a potential new therapeutic target. Defining the molecular dysfunctions of different RECQ4 disease mutations is imperative to improving our understanding of the complexity of RECQ4 clinical phenotypes and the dynamic roles of RECQ4 in cancer development and prevention. We will review recent progress in examining the molecular and biochemical properties of the different domains of the RECQ4 protein. We will shed light on how the dynamic roles of RECQ4 in human cells may contribute to the complexity of RECQ4 clinical phenotypes.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Chou-Wei Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Min Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
25
|
Jewell BE, Xu A, Zhu D, Huang MF, Lu L, Liu M, Underwood EL, Park JH, Fan H, Gingold JA, Zhou R, Tu J, Huo Z, Liu Y, Jin W, Chen YH, Xu Y, Chen SH, Rainusso N, Berg NK, Bazer DA, Vellano C, Jones P, Eltzschig HK, Zhao Z, Kaipparettu BA, Zhao R, Wang LL, Lee DF. Patient-derived iPSCs link elevated mitochondrial respiratory complex I function to osteosarcoma in Rothmund-Thomson syndrome. PLoS Genet 2021; 17:e1009971. [PMID: 34965247 PMCID: PMC8716051 DOI: 10.1371/journal.pgen.1009971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.
Collapse
Affiliation(s)
- Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Linchao Lu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Mo Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Erica L Underwood
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Julian A Gingold
- Department of Obstetrics & Gynecology and Women's Health, Einstein/Montefiore Medical Center, New York City, New York, United States of America
| | - Ruoji Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jian Tu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zijun Huo
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ying Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Weidong Jin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Yi-Hung Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yitian Xu
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Shu-Hsia Chen
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Nathaniel K Berg
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Christopher Vellano
- TRACTION Platform, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Philip Jones
- TRACTION Platform, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Holger K Eltzschig
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lisa L Wang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
26
|
Luong TT, Bernstein KA. Role and Regulation of the RECQL4 Family during Genomic Integrity Maintenance. Genes (Basel) 2021; 12:1919. [PMID: 34946868 PMCID: PMC8701316 DOI: 10.3390/genes12121919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
RECQL4 is a member of the evolutionarily conserved RecQ family of 3' to 5' DNA helicases. RECQL4 is critical for maintaining genomic stability through its functions in DNA repair, recombination, and replication. Unlike many DNA repair proteins, RECQL4 has unique functions in many of the central DNA repair pathways such as replication, telomere, double-strand break repair, base excision repair, mitochondrial maintenance, nucleotide excision repair, and crosslink repair. Consistent with these diverse roles, mutations in RECQL4 are associated with three distinct genetic diseases, which are characterized by developmental defects and/or cancer predisposition. In this review, we provide an overview of the roles and regulation of RECQL4 during maintenance of genome homeostasis.
Collapse
Affiliation(s)
| | - Kara A. Bernstein
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|
27
|
金子 英. [Rothmund-Thomson syndrome]. Nihon Ronen Igakkai Zasshi 2021; 58:413-416. [PMID: 34483168 DOI: 10.3143/geriatrics.58.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Balajee AS. Human RecQL4 as a Novel Molecular Target for Cancer Therapy. Cytogenet Genome Res 2021; 161:305-327. [PMID: 34474412 DOI: 10.1159/000516568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Human RecQ helicases play diverse roles in the maintenance of genomic stability. Inactivating mutations in 3 of the 5 human RecQ helicases are responsible for the pathogenesis of Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). WS, BS, and RTS patients are at increased risk for developing many age-associated diseases including cancer. Mutations in RecQL1 and RecQL5 have not yet been associated with any human diseases so far. In terms of disease outcome, RecQL4 deserves special attention because mutations in RecQL4 result in 3 autosomal recessive syndromes (RTS type II, RAPADILINO, and BGS). RecQL4, like other human RecQ helicases, has been demonstrated to play a crucial role in the maintenance of genomic stability through participation in diverse DNA metabolic activities. Increased incidence of osteosarcoma in RecQL4-mutated RTS patients and elevated expression of RecQL4 in sporadic cancers including osteosarcoma suggest that loss or gain of RecQL4 expression is linked with cancer susceptibility. In this review, current and future perspectives are discussed on the potential use of RecQL4 as a novel cancer therapeutic target.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| |
Collapse
|
29
|
Ha JH, Jayaraman M, Yan M, Dhanasekaran P, Isidoro C, Song YS, Dhanasekaran DN. Identification of GNA12-driven gene signatures and key signaling networks in ovarian cancer. Oncol Lett 2021; 22:719. [PMID: 34429759 PMCID: PMC8371953 DOI: 10.3892/ol.2021.12980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
With the focus on defining the oncogenic network stimulated by lysophosphatidic acid (LPA) in ovarian cancer, the present study sought to interrogate the oncotranscriptome regulated by the LPA-mediated signaling pathway. LPA, LPA-receptor (LPAR) and LPAR-activated G protein 12 α-subunit, encoded by G protein subunit α 12 (GNA12), all serve an important role in ovarian cancer progression. While the general signaling mechanism regulated by LPA/LPAR/GNA12 has previously been characterized, the global transcriptomic network regulated by GNA12 in ovarian cancer pathophysiology remains largely unknown. To define the LPA/LPAR/GNA12-orchestrated oncogenic networks in ovarian cancer, transcriptomic and bioinformatical analyses were conducted using SKOV3 cells, in which the expression of GNA12 was silenced. Array analysis was performed in Agilent SurePrint G3 Human Comparative Genomic Hybridization 8×60 microarray platform. The array results were validated using Kuramochi cells. Gene and functional enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery, Search Tool for Retrieval of Interacting Genes and Cytoscape algorithms. The results indicated a paradigm in which GNA12 drove ovarian cancer progression by upregulating a pro-tumorigenic network with AKT1, VEGFA, TGFB1, BCL2L1, STAT3, insulin-like growth factor 1 and growth hormone releasing hormone as critical hub and/or bottleneck nodes. Moreover, GNA12 downregulated a growth-suppressive network involving proteasome 20S subunit (PSM) β6, PSM α6, PSM ATPase 5, ubiquitin conjugating enzyme E2 E1, PSM non-ATPase 10, NDUFA4 mitochondrial complex-associated, NADH:ubiquinone oxidoreductase subunit B8 and anaphase promoting complex subunit 1 as hub or bottleneck nodes. In addition to providing novel insights into the LPA/LPAR/GNA12-regulated oncogenic networks in ovarian cancer, the present study identified several potential nodes in this network that could be assessed for targeted therapy.
Collapse
Affiliation(s)
- Ji-Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Mingda Yan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Padmaja Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, University of Eastern Piedmont, I-17-28100 Novara, Italy
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Republic of Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
30
|
Zhang Y, Qin W, Wang H, Lin Z, Tang Z, Xu Z. Novel pathogenic variants in the RECQL4 gene causing Rothmund-Thomson syndrome in three Chinese patients. J Dermatol 2021; 48:1511-1517. [PMID: 34155702 DOI: 10.1111/1346-8138.16015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/29/2022]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal-recessive disorder characterized by poikiloderma, short stature, sparse hair, skeletal abnormalities, and cancer predisposition. Mutations in ANAPC1 or RECQL4 have been identified to underlie RTS. Either Sanger sequencing or next-generation sequencing (NGS) was performed for three Chinese RTS patients. Copy number variants were called by the eXome-Hidden Markov Model using read-depth data of NGS, and the putative heterozygous deletion was confirmed by PCR with multiple primers. The breakpoints were identified by Sanger sequencing. All patients presented with characteristic features of poikiloderma, short stature, and sparse hair, eyelashes, and eyebrows. In addition, patient 1 had intellectual disability and speech delay, and patient 2 developed osteosarcoma when she was 13 years old. Biallelic RECQL4 variants were identified in all three patients. Five of the six variants were novel, including c.119-1G>A, c.2886-1G>A, c.2290C>T (p.Gln764*), and c.3552dupG (p.Arg1185Glufs*42), and a gross deletion encompassing exons 6 to 10. Our study expands the genetic and clinical spectrums of RTS. Furthermore, we reported the first heterozygous gross deletion in RECQL4.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Dermatology, Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Wen Qin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhe Xu
- Department of Dermatology, Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China.,Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
31
|
Bodrug T, Welsh KA, Hinkle M, Emanuele MJ, Brown NG. Intricate Regulatory Mechanisms of the Anaphase-Promoting Complex/Cyclosome and Its Role in Chromatin Regulation. Front Cell Dev Biol 2021; 9:687515. [PMID: 34109183 PMCID: PMC8182066 DOI: 10.3389/fcell.2021.687515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.
Collapse
Affiliation(s)
- Tatyana Bodrug
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaeli A Welsh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Megan Hinkle
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Michael J Emanuele
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Nicholas G Brown
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
32
|
Rayinda T, van Steensel M, Danarti R. Inherited skin disorders presenting with poikiloderma. Int J Dermatol 2021; 60:1343-1353. [PMID: 33739439 DOI: 10.1111/ijd.15498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
Poikiloderma is a skin condition that combines atrophy, telangiectasia, and macular pigment changes (hypo- as well as hyperpigmentation). It is often mistaken for mottled pigmentation by general practitioners or nondermatology specialists. Poikiloderma can be a key presenting symptom of Rothmund-Thomson syndrome (RTS), dyskeratosis congenita (DC), hereditary sclerosing poikiloderma (HSP), hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP), xeroderma pigmentosum (XP), Bloom syndrome (BS), Kindler syndrome (KS), and Clericuzio-type poikiloderma with neutropenia (PN). In these conditions, poikiloderma starts early in life, usually before the second or third year. They may also be associated with photosensitivity and other significant multi-organ manifestation developed later in life. Poikiloderma could indicate the presence of a genetic disorder with potentially serious consequences. Poikiloderma almost always precedes more severe manifestations of these genodermatoses. Prompt diagnosis at the time of presentation could help to prevent complications and mitigate the course of the disease. This review discusses these to help the practicing clinician manage patients presenting with the symptom. To further facilitate early recognition, this paper also proposes a simple diagnostic algorithm.
Collapse
Affiliation(s)
- Tuntas Rayinda
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Maurice van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,National Skin Center, Singapore, Singapore
| | - Retno Danarti
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
33
|
Zirn B, Bernbeck U, Alt K, Oeffner F, Gerhardinger A, Has C. Rothmund-Thomson syndrome type 1 caused by biallelic ANAPC1 gene mutations. SKIN HEALTH AND DISEASE 2021; 1:e12. [PMID: 35664819 PMCID: PMC9060067 DOI: 10.1002/ski2.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 01/02/2023]
Abstract
Background Rare syndromic skin disorders may represent a diagnostic challenge. Aims We report a unique case associating cutaneous manifestations and developmental delay. Materials & Methods The affected 14 months old boy had poikiloderma, facial dysmorphism with deep‐set eyes, atrichia, as well as nail dysplasia and non‐descended testes. In addition, his psychomotor development was delayed. Exome sequencing and molecular karyotyping via array‐CGH (oligo‐array, 180k Agilent, design 22060) were performed. Results Mutations in RECQL4 (found in patients with RTS2) were first excluded. In the ANAPC1 gene, a novel combination of a recurrent intronic mutation (c.2705‐198C>T) and a deletion of the second ANAPC1 allele was detected, thus confirming the clinical diagnosis of RTS1. The deletion on chromosome 2q13 comprised further genes and spanned 1,7 megabases. Heterozygous deletions in this region are known as 2q13 microdeletion syndrome and are associated with developmental delay, autism and facial dysmorphism. Discussion The genetic findings most probably explain both, the RTS1 features and the developmental delay. Genetic diagnosis in RTS is indispensable to confirm the specific subtype and its associated risks: juvenile cataracts are features of RTS1 (ANAPC1 gene), whereas a high risk of osteosarcoma is part of RTS2 (RECQL4 gene). Thus, the patient described here is at high risk for the development of juvenile cataracts and requires regular ophthalmologic examination. Conclusion This case report underlines the necessity of thorough clinical diagnosis prior to genetic diagnosis of RTS1, since the recurrent intronic ANAPC1 mutation is otherwise missed.
Collapse
Affiliation(s)
- B Zirn
- Genetikum Stuttgart Genetic Counselling and Diagnostics Stuttgart Germany
| | - U Bernbeck
- Department of Pediatrics Rems-Murr-Klinikum Winnenden Germany
| | - K Alt
- Genetikum Neu-Ulm Genetic Counselling and Diagnostics Neu-Ulm Germany
| | - F Oeffner
- Genetikum Neu-Ulm Genetic Counselling and Diagnostics Neu-Ulm Germany
| | - A Gerhardinger
- Genetikum Neu-Ulm Genetic Counselling and Diagnostics Neu-Ulm Germany
| | - C Has
- Department of Dermatology Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
34
|
Rothmund-Thomson Syndrome-Like RECQL4 Truncating Mutations Cause a Haploinsufficient Low-Bone-Mass Phenotype in Mice. Mol Cell Biol 2021; 41:e0059020. [PMID: 33361189 PMCID: PMC8088275 DOI: 10.1128/mcb.00590-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rothmund-Thomson syndrome (RTS) is an autosomal recessive disorder characterized by defects in the skeletal system, such as bone hypoplasia, short stature, low bone mass, and an increased incidence of osteosarcoma. RTS type 2 patients have germ line compound biallelic protein-truncating mutations of RECQL4. As existing murine models employ Recql4 null alleles, we have attempted to more accurately model RTS by generating mice with patient-mimicking truncating Recql4 mutations. Truncating mutations impaired the stability and subcellular localization of RECQL4 and resulted in homozygous embryonic lethality and a haploinsufficient low-bone mass phenotype. Combination of a truncating mutation with a conditional Recql4 null allele demonstrated that the skeletal defects were intrinsic to the osteoblast lineage. However, the truncating mutations did not promote tumorigenesis. We utilized murine Recql4 null cells to assess the impact of human RECQL4 mutations using an in vitro complementation assay. While some mutations created unstable protein products, others altered subcellular localization of the protein. Interestingly, the severity of the phenotypes correlated with the extent of protein truncation. Collectively, our results reveal that truncating RECQL4 mutations in mice lead to an osteoporosis-like phenotype through defects in early osteoblast progenitors and identify RECQL4 gene dosage as a novel regulator of bone mass.
Collapse
|
35
|
Schmit M, Bielinsky AK. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci 2021; 22:E911. [PMID: 33477564 PMCID: PMC7831139 DOI: 10.3390/ijms22020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
36
|
Franks JL, Martinez-Chacin RC, Wang X, Tiedemann RL, Bonacci T, Choudhury R, Bolhuis DL, Enrico TP, Mouery RD, Damrauer JS, Yan F, Harrison JS, Major MB, Hoadley KA, Suzuki A, Rothbart SB, Brown NG, Emanuele MJ. In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLoS Biol 2020; 18:e3000975. [PMID: 33306668 PMCID: PMC7758050 DOI: 10.1371/journal.pbio.3000975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 11/05/2020] [Indexed: 01/07/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.
Collapse
Affiliation(s)
- Jennifer L Franks
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raquel C Martinez-Chacin
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rochelle L Tiedemann
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rajarshi Choudhury
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Derek L Bolhuis
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Taylor P Enrico
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan D Mouery
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, California, United States of America
| | - M Ben Major
- Department of Cell Biology and Physiology, Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas G Brown
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael J Emanuele
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
37
|
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin Genet 2020; 99:3-28. [PMID: 32860237 DOI: 10.1111/cge.13837] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Progeroid disorders make up a heterogeneous group of very rare hereditary diseases characterized by clinical signs that often mimic physiological aging in a premature manner. Apart from Hutchinson-Gilford progeria syndrome, one of the best-investigated progeroid disorders, a wide spectrum of other premature aging phenotypes exist, which differ significantly in their clinical presentation and molecular pathogenesis. Next-generation sequencing (NGS)-based approaches have made it feasible to determine the molecular diagnosis in the early stages of a disease. Nevertheless, a broad clinical knowledge on these disorders and their associated symptoms is still fundamental for a comprehensive patient management and for the interpretation of variants of unknown significance from NGS data sets. This review provides a detailed overview on characteristic clinical features and underlying molecular genetics of well-known as well as only recently identified premature aging disorders and also highlights novel findings towards future therapeutic options.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
38
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
39
|
Lu L, Jin W, Wang LL. RECQ DNA Helicases and Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:37-54. [PMID: 32767233 DOI: 10.1007/978-3-030-43085-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RECQ family of DNA helicases is a conserved group of enzymes that plays an important role in maintaining genomic stability. Humans possess five RECQ helicase genes, and mutations in three of them - BLM, WRN, and RECQL4 - are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. These syndromes share overlapping clinical features, and importantly they are all associated with an increased risk of cancer. Patients with RTS have the highest specific risk of developing osteosarcoma compared to all other cancer predisposition syndromes; therefore, RTS serves as a relevant model to study the pathogenesis and molecular genetics of osteosarcoma. The "tumor suppressor" function of the RECQ helicases continues to be an area of active investigation. This chapter will focus primarily on the known cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways will provide insight into avenues for novel cancer therapies in the future.
Collapse
Affiliation(s)
- Linchao Lu
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Weidong Jin
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lisa L Wang
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|