1
|
Li X, Pang M, Wen J, Zhou LY, Raffield LM, Zhou H, Yao H, Chen C, Sun Q, Li Y. Variational Autoencoder-based Model Improves Polygenic Prediction in Blood Cell Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632820. [PMID: 39868173 PMCID: PMC11760740 DOI: 10.1101/2025.01.13.632820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Genetic prediction of complex traits, enabled by large-scale genomic studies, has created new measures to understand individual genetic predisposition. Polygenic Risk Scores (PRS) offer a way to aggregate information across the genome, enabling personalized risk prediction for complex traits and diseases. However, conventional PRS calculation methods that rely on linear models are limited in their ability to capture complex patterns and interaction effects in high-dimensional genomic data. In this study, we seek to improve the predictive power of PRS through applying advanced deep learning techniques. We show that the Variational AutoEncoder-based model for PRS construction (VAE-PRS) outperforms currently state-of-the-art methods for biobank-level data in 14 out of 16 blood cell traits, while being computationally efficient. Through comprehensive experiments, we found that the VAE-PRS model offers the ability to capture interaction effects in high-dimensional data and shows robust performance across different pre-screened variant sets. Furthermore, VAE-PRS is easily interpretable via assessing the contribution of each individual marker to the final prediction score through the SHapley Additive exPlanations (SHAP) method, providing potential new insights in identifying trait-associated genetic variants. In summary, VAE-PRS presents a novel measure to genetic risk prediction by harnessing the power of deep learning methods, which could further facilitate the development of personalized medicine and genetic research.
Collapse
Affiliation(s)
- Xiaoqi Li
- Carolina Health Informatics Program, University of North Carolina, Chapel Hill, NC, USA
| | - Minxing Pang
- Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Laura Y. Zhou
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Huaxiu Yao
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Can Chen
- Carolina Health Informatics Program, University of North Carolina, Chapel Hill, NC, USA
- School of Data Science and Society, University of North Carolina, Chapel Hill, NC, USA
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors jointly supervised this work
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- These authors jointly supervised this work
| |
Collapse
|
2
|
Ha ET, Haessler J, Taylor KD, Tuftin B, Briggs M, Parikh MA, Peterson SJ, Gerszten RE, Wilson JG, Kelsey K, Tahir UA, Seeman T, Rich SS, Carson AP, Post WS, Kooperberg C, Rotter JI, Raffield LM, Auer P, Reiner AP. The Relationship of Duffy Gene Polymorphism with High-Sensitivity C-Reactive Protein, Mortality, and Cardiovascular Outcomes in Black Individuals. Genes (Basel) 2024; 15:1382. [PMID: 39596582 PMCID: PMC11594091 DOI: 10.3390/genes15111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Black adults have higher incidence of all-cause mortality and worse cardiovascular disease (CVD) outcomes when compared to other U.S. populations. The Duffy chemokine receptor is not expressed on erythrocytes in a large majority of Black adults, but the clinical implications of this are unclear. Methods: Here, we investigated the relationship of Duffy receptor status, high-sensitivity C-reactive protein (hs-CRP), and mortality and incident CVD events (coronary heart disease, stroke, and heart failure) in self-identified Black members of three contemporary, longitudinal cohort studies (the Women's Health Initiative, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis). Data on 14,358 Black participants (9023 Duffy-null and 5335 Duffy-receptor-positive, as defined using single-nucleotide polymorphism (SNP) rs2814778) were included in this analysis. Results: Duffy null was strongly associated with higher hs-CRP (meta-analysis p = 2.62 × 10-9), but the association was largely attenuated, though still marginally significant (p = 0.005), after conditioning on known CRP locus alleles in linkage disequilibrium with the Duffy gene. In our discovery cohorts, Duffy-null status appeared to be associated with a higher risk of all-cause mortality and incident stroke, though these associations were attenuated and non-significant following adjustment for traditional risk factors including hs-CRP. Moreover, the association of Duffy-null status with mortality could not be replicated in an independent sample of Black adults from the UK Biobank. Conclusions: These findings suggest that the higher levels of hs-CRP found in Duffy-null individuals may be in part independent of CRP alleles known to influence circulating levels of hs-CRP. During the follow-up of this community-based sample of Black participants, Duffy-null status was not associated with mortality or incident CVD events independently of traditional risk factors including hs-CRP.
Collapse
Affiliation(s)
- Edward T. Ha
- Division of Cardiology, Department of Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (M.B.); (M.A.P.); (S.J.P.)
| | - Jeffery Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (J.H.); (C.K.)
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (K.D.T.); (J.I.R.)
| | - Bjoernar Tuftin
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.T.); (L.M.R.)
| | - Matt Briggs
- Division of Cardiology, Department of Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (M.B.); (M.A.P.); (S.J.P.)
| | - Manish A. Parikh
- Division of Cardiology, Department of Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (M.B.); (M.A.P.); (S.J.P.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stephen J. Peterson
- Division of Cardiology, Department of Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (M.B.); (M.A.P.); (S.J.P.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (R.E.G.); (J.G.W.); (U.A.T.)
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - James G. Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (R.E.G.); (J.G.W.); (U.A.T.)
| | - Karl Kelsey
- Department of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA;
| | - Usman A. Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (R.E.G.); (J.G.W.); (U.A.T.)
| | - Teresa Seeman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (J.H.); (C.K.)
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (K.D.T.); (J.I.R.)
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.T.); (L.M.R.)
| | - Paul Auer
- Division of Biostatistics and Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Alex P. Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
3
|
Jiang MZ, Gaynor SM, Li X, Van Buren E, Stilp A, Buth E, Wang FF, Manansala R, Gogarten SM, Li Z, Polfus LM, Salimi S, Bis JC, Pankratz N, Yanek LR, Durda P, Tracy RP, Rich SS, Rotter JI, Mitchell BD, Lewis JP, Psaty BM, Pratte KA, Silverman EK, Kaplan RC, Avery C, North KE, Mathias RA, Faraday N, Lin H, Wang B, Carson AP, Norwood AF, Gibbs RA, Kooperberg C, Lundin J, Peters U, Dupuis J, Hou L, Fornage M, Benjamin EJ, Reiner AP, Bowler RP, Lin X, Auer PL, Raffield LM. Whole genome sequencing based analysis of inflammation biomarkers in the Trans-Omics for Precision Medicine (TOPMed) consortium. Hum Mol Genet 2024; 33:1429-1441. [PMID: 38747556 PMCID: PMC11305684 DOI: 10.1093/hmg/ddae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 05/28/2024] Open
Abstract
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Collapse
Affiliation(s)
- Min-Zhi Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Sheila M Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, United States
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Xihao Li
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
- Department of Biostatistics, 135 Dauer Drive, 4115D McGavran-Greenberg Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, United States
| | - Adrienne Stilp
- Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
| | - Erin Buth
- Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
| | - Fei Fei Wang
- Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
| | - Regina Manansala
- Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO) WHO Collaborating Centre, University of Antwerp, Campus Drie Eiken - Building S; Universiteitsplein 1 2610 Antwerpen, Belgium
| | - Stephanie M Gogarten
- Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
| | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, JL 130024, China
| | - Linda M Polfus
- Advanced Analytics, Ambry Genetics, 1 Enterprise, Aliso Viejo, CA 92656, United States
| | - Shabnam Salimi
- Department of Epidemiology and Public Health, Division of Gerontology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA 98195, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, United States
| | - Lisa R Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St Rm 8024, Baltimore, MD 21287, United States
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT 05446, United States
| | - Russell P Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT 05446, United States
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA 22903, United States
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, United States
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD 21201, United States
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD 21201, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA 98195, United States
- Departments of Epidemiology and Health Systems and Population Health, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA 98101, United States
| | - Katherine A Pratte
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, United States
| | - Edwin K Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Christy Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, 137 East Franklin Street, Chapel Hill, NC 27599, United States
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, 137 East Franklin Street, Chapel Hill, NC 27599, United States
| | - Rasika A Mathias
- Department of Medicine, Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir JHAAC Room 3B53, Baltimore, MD 21287, United States
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21287, United States
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA 01655, United States
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA 01655, United States
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS 39213, United States
| | - Arnita F Norwood
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS 39213, United States
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States
| | - Jessica Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N Lake Shore Drive, Chicago, IL 60611, United States
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, United States
| | - Emelia J Benjamin
- Department of Medicine, Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, 72 East Newton Street, Boston, MA 02118, United States
- Department of Epidemiology, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States
- Boston University and National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mount Wayte Ave #2, Framingham, MA 01702, United States
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA 98105, United States
| | - Russell P Bowler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, United States
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, United States
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | | |
Collapse
|
4
|
Li X, Ploner A, Wang Y, Mak JKL, Lu Y, Magnusson PKE, Jylhävä J, Hägg S. Rare functional variants in the CRP and G6PC genes modify the relationship between obesity and serum C-reactive protein in white British population. Mol Genet Genomic Med 2023; 11:e2255. [PMID: 37493001 PMCID: PMC10724514 DOI: 10.1002/mgg3.2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND C-reactive protein (CRP) is a sensitive biomarker of inflammation with moderate heritability. The role of rare functional genetic variants in relation to serum CRP is understudied. We aimed to examine gene mutation burden of protein-altering (PA) and loss-of-function (LOF) variants in association with serum CRP, and to further explore the clinical relevance. METHODS We included 161,430 unrelated participants of European ancestry from the UK Biobank. Of the rare (minor allele frequency <0.1%) and functional variants, 1,776,249 PA and 266,226 LOF variants were identified. Gene-based burden tests, linear regressions, and logistic regressions were performed to identify the candidate mutations at the gene and variant levels, to estimate the potential interaction effect between the identified PA mutation and obesity, and to evaluate the relative risk of 16 CRP-associated diseases. RESULTS At the gene level, PA mutation burdens of the CRP (β = -0.685, p = 2.87e-28) and G6PC genes (β = 0.203, p = 1.50e-06) were associated with reduced and increased serum CRP concentration, respectively. At the variant level, seven PA alleles in the CRP gene decreased serum CRP, of which the per-allele effects were approximately three to seven times greater than that of a common variant in the same locus. The effects of obesity and central obesity on serum CRP concentration were smaller among the PA mutation carriers in the CRP (pinteraction = 0.008) and G6PC gene (pinteraction = 0.034) compared to the corresponding non-carriers. CONCLUSION PA mutation burdens in the CRP and G6PC genes are strongly associated with decreased serum CRP concentrations. As serum CRP and obesity are important predictors of cardiovascular risks in clinics, our observations suggest taking rare genetic factors into consideration might improve the delivery of precision medicine.
Collapse
Affiliation(s)
- Xia Li
- School of Public Health and Emergency ManagementSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cardiovascular Health and Precision MedicineSouthern University of Science and TechnologyShenzhenChina
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Alexander Ploner
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Yunzhang Wang
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Jonathan K. L. Mak
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Yi Lu
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Social Sciences (Health Sciences) and Gerontology Research Center (GEREC)University of TampereTampereFinland
| | - Sara Hägg
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| |
Collapse
|
5
|
Jiang MZ, Gaynor SM, Li X, Van Buren E, Stilp A, Buth E, Wang FF, Manansala R, Gogarten SM, Li Z, Polfus LM, Salimi S, Bis JC, Pankratz N, Yanek LR, Durda P, Tracy RP, Rich SS, Rotter JI, Mitchell BD, Lewis JP, Psaty BM, Pratte KA, Silverman EK, Kaplan RC, Avery C, North K, Mathias RA, Faraday N, Lin H, Wang B, Carson AP, Norwood AF, Gibbs RA, Kooperberg C, Lundin J, Peters U, Dupuis J, Hou L, Fornage M, Benjamin EJ, Reiner AP, Bowler RP, Lin X, Auer PL, Raffield LM. Whole Genome Sequencing Based Analysis of Inflammation Biomarkers in the Trans-Omics for Precision Medicine (TOPMed) Consortium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.555215. [PMID: 37745480 PMCID: PMC10515765 DOI: 10.1101/2023.09.10.555215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38,465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program. We identified 22 distinct single-variant associations across 6 traits - E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin - that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Collapse
Affiliation(s)
- Min-Zhi Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Sheila M. Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Xihao Li
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Adrienne Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Erin Buth
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Regina Manansala
- Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO) WHO Collaborating Centre, University of Antwerp, Antwerp, BE
| | | | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Linda M. Polfus
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shabnam Salimi
- Department of Epidemiology and Public Health, Division of Gerontology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA, 98195, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Lisa R. Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St Rm 8024, Baltimore, MD, 21287, USA
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT, 05446, USA
| | - Russell P. Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT, 05446, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Joshua P. Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA, 98195, USA
- Departments of Epidemiology and Health Systems and Population Health, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA, 98101, USA
| | - Katherine A. Pratte
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Edwin K. Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christy Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rasika A. Mathias
- Department of Medicine, Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir JHAAC Room 3B53, Baltimore, MD, 21287, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS, 39213, USA
| | - Arnita F. Norwood
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS, 39213, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jessica Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, H3A 1G1, Canada
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Emelia J. Benjamin
- Department of Medicine, Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, 01702, USA
| | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98105, USA
| | - Russell P. Bowler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Paul L. Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|
6
|
Ha ET, Taylor KD, Raffield LM, Briggs M, Yee A, Elemento O, Parikh M, Peterson SJ, Frishman W, Gerszten RE, Wilson JG, Kelsey K, Tahir UA, Reiner A, Auer P, Seeman T, Rich SS, Carson AP, Post WS, Rotter JI, Aronow WS. The Relationship of Duffy Gene Polymorphism, High Sensitivity C-Reactive Protein, and Long-term Outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.03.23293626. [PMID: 37609271 PMCID: PMC10441500 DOI: 10.1101/2023.08.03.23293626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Black adults have higher incidence of all-cause death and worse cardiovascular outcomes when compared to other populations. The Duffy chemokine receptor is not expressed in a large majority of Black adults and the clinical implications of this are unclear. Methods Here, we investigated the relationship of Duffy receptor status, high-sensitivity C-reactive protein (hs-CRP), and long-term cardiovascular outcomes in Black members of two contemporary, longitudinal cohort studies (the Jackson Heart Study and Multi-Ethnic Study of Atherosclerosis). Data on 4,307 Black participants (2,942 Duffy null and 1,365 Duffy receptor positive, as defined using Single Nucleotide Polymorphism (SNP) rs2814778) were included in this analysis. Results Duffy null was not independently associated with elevated levels of serum hs-CRP levels once conditioning for known CRP locus alleles in linkage disequilibrium with the Duffy gene. Duffy null status was not found to be independently associated with higher incidence of all-cause mortality or secondary outcomes after adjusting for possible confounders in Black participants. Conclusions These findings suggest that increased levels of hs-CRP found in Duffy null individuals is due to co-inheritance of CRP alleles known to influence circulating levels hs-CRP and that Duffy null status was not associated with worse adverse outcomes over the follow-up period in this cohort of well-balanced Black participants.
Collapse
|
7
|
Li Z, Li X, Zhou H, Gaynor SM, Selvaraj MS, Arapoglou T, Quick C, Liu Y, Chen H, Sun R, Dey R, Arnett DK, Auer PL, Bielak LF, Bis JC, Blackwell TW, Blangero J, Boerwinkle E, Bowden DW, Brody JA, Cade BE, Conomos MP, Correa A, Cupples LA, Curran JE, de Vries PS, Duggirala R, Franceschini N, Freedman BI, Göring HHH, Guo X, Kalyani RR, Kooperberg C, Kral BG, Lange LA, Lin BM, Manichaikul A, Manning AK, Martin LW, Mathias RA, Meigs JB, Mitchell BD, Montasser ME, Morrison AC, Naseri T, O'Connell JR, Palmer ND, Peyser PA, Psaty BM, Raffield LM, Redline S, Reiner AP, Reupena MS, Rice KM, Rich SS, Smith JA, Taylor KD, Taub MA, Vasan RS, Weeks DE, Wilson JG, Yanek LR, Zhao W, Rotter JI, Willer CJ, Natarajan P, Peloso GM, Lin X. A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. Nat Methods 2022; 19:1599-1611. [PMID: 36303018 PMCID: PMC10008172 DOI: 10.1038/s41592-022-01640-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.
Collapse
Grants
- R01 DK078616 NIDDK NIH HHS
- U01 HG007417 NHGRI NIH HHS
- KL2 TR001100 NCATS NIH HHS
- R01 HL112064 NHLBI NIH HHS
- N01-HC-95160 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HG010692 NHGRI NIH HHS
- U01-HL054472 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL142711 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-DK071891 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- F30 HL149180 NHLBI NIH HHS
- R01 NR019628 NINR NIH HHS
- R01 HL113323 NHLBI NIH HHS
- N01-HC-95166 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UL1RR033176 U.S. Department of Health & Human Services | NIH | National Center for Research Resources (NCRR)
- R01 HL132947 NHLBI NIH HHS
- P30 DK040561 NIDDK NIH HHS
- U01 HL137183 NHLBI NIH HHS
- R01-HL127564 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 CA016672 NCI NIH HHS
- R01-HL071051 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL104135 NHLBI NIH HHS
- T32 HL144442 NHLBI NIH HHS
- R35 CA197449 NCI NIH HHS
- P30 ES010126 NIEHS NIH HHS
- DP5 OD029586 NIH HHS
- R01-NS058700 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 HL123915 NHLBI NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01HL071259 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL046380 NHLBI NIH HHS
- R01HL071251, R01HL071258, R01HL071259 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 HG003067 NHGRI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- K01 AG059898 NIA NIH HHS
- U01 DK085524 NIDDK NIH HHS
- KL2 TR002542 NCATS NIH HHS
- R01-HL055673-18S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R03 HL141439 NHLBI NIH HHS
- HHSN268201500001I NHLBI NIH HHS
- R01-MH078143, R01-MH078111, R01-MH083824 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U01 DK062413 NIDDK NIH HHS
- R01 HL109946 NHLBI NIH HHS
- U01-HL054495 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K01 HL136700 NHLBI NIH HHS
- U19 CA203654 NCI NIH HHS
- R01-DK078616 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U01 HL080295 NHLBI NIH HHS
- NO1-HC-25195 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HG006703 NHGRI NIH HHS
- UL1-TR-001420 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- U01 HG012064 NHGRI NIH HHS
- R35-CA197449 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- P30 ES005605 NIEHS NIH HHS
- R01 AR042742 NIAMS NIH HHS
- R21 HL140385 NHLBI NIH HHS
- HHSN268201800015I NHLBI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- R01 HL117191 NHLBI NIH HHS
- R01 HG009974 NHGRI NIH HHS
- U01-HL054473 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 DK113003 NIDDK NIH HHS
- UL1RR033176 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL059367 NHLBI NIH HHS
- R24 AG047115 NIA NIH HHS
- U01-HL137181 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL107202 NHLBI NIH HHS
- NR0224103 U.S. Department of Health & Human Services | NIH | National Institute of Nursing Research (NINR)
- P50 HL118006 NHLBI NIH HHS
- U01-HL72518, HL087698, HL49762, HL59684, HL58625, HL071025, HL112064 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01 HL120393 NHLBI NIH HHS
- R01 DK117445 NIDDK NIH HHS
- R01-AG058921 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R03-HL154284 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR-001881 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- R01 AG058921 NIA NIH HHS
- R01 HL129132 NHLBI NIH HHS
- R01 HL113338 NHLBI NIH HHS
- HHSN268201800012I NHLBI NIH HHS
- R01 HL153805 NHLBI NIH HHS
- R01 DK072193 NIDDK NIH HHS
- R01 HL137922 NHLBI NIH HHS
- R01 AI079139 NIAID NIH HHS
- N01-HC-95164 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01-DK085524 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U19 AI111224 NIAID NIH HHS
- R35 HL135824 NHLBI NIH HHS
- 75N92019D00031 NHLBI NIH HHS
- R01 DK110113 NIDDK NIH HHS
- N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95165 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138737 NHLBI NIH HHS
- P30 DK079626 NIDDK NIH HHS
- R01 NS058700 NINDS NIH HHS
- R01 HL127564 NHLBI NIH HHS
- T32 HG000040 NHGRI NIH HHS
- DK063491 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 HL141845 NHLBI NIH HHS
- R01 DK075787 NIDDK NIH HHS
- R01 AR072199 NIAMS NIH HHS
- R01 HL120854 NHLBI NIH HHS
- R01 HL163560 NHLBI NIH HHS
- R01HL071258 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01-HG009088 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- R01 HL163972 NHLBI NIH HHS
- K23 HL123778 NHLBI NIH HHS
- U01 HL137181 NHLBI NIH HHS
- R01 MH078111 NIMH NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- N01-HC-95159 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01-HL113323 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL141944 NHLBI NIH HHS
- R01 HL119443 NHLBI NIH HHS
- R01-HL071051, R01-HL071205, R01HL071250 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P60-AG10484 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- 75N92020D00007 NHLBI NIH HHS
- UM1 AI068634 NIAID NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- HHSN268201700004I NHLBI NIH HHS
- N01-HC-95163 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL071205 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30 HL107066 NHLBI NIH HHS
- R01-HL153805 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL105756 NHLBI NIH HHS
- K01 HL125751 NHLBI NIH HHS
- R01 HL067348 NHLBI NIH HHS
- T32 HL007208 NHLBI NIH HHS
- R01 HL142711 NHLBI NIH HHS
- R35 HL135818 NHLBI NIH HHS
- R01-HL92301 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 GM074897 NIGMS NIH HHS
- I01 BX005295 BLRD VA
- 75N92020D00001 NHLBI NIH HHS
- R01 HL113326 NHLBI NIH HHS
- R00 HL129045 NHLBI NIH HHS
- UL1-TR-000040 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- UL1-TR-001079 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- U01 HL072524 NHLBI NIH HHS
- R35-HL135818 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL140203 NHLBI NIH HHS
- N01-HC-95162 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141601 NHLBI NIH HHS
- 75N92020D00005 NHLBI NIH HHS
- R01-DK117445 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01-AR48797 U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
- R56 AG058543 NIA NIH HHS
- U19 AI077439 NIAID NIH HHS
- R01 HL142028 NHLBI NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- HHSN268201800011I NHLBI NIH HHS
- R35 GM127131 NIGMS NIH HHS
- U01 HL137880 NHLBI NIH HHS
- R01 HG010869 NHGRI NIH HHS
- R01-HL133040 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHSN268201700003I NHLBI NIH HHS
- R01HL071250 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95168 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL148239 NHLBI NIH HHS
- U01-HL137162 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 AI132476 NIAID NIH HHS
- T32 GM007205 NIGMS NIH HHS
- HHSN268201800010I NHLBI NIH HHS
- R01-HL092577-06S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UL1-TR-001881 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- R01-HL104135-04S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL132320 NHLBI NIH HHS
- U01 DK078616 NIDDK NIH HHS
- HHSN268201700001I NHLBI NIH HHS
- R01-HL141944 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01 HL137162 NHLBI NIH HHS
- R01 HG005701 NHGRI NIH HHS
- 75N92020D00001, 75N92020D00002, 75N92020D00003, 75N92020D00004 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 HL143221 NHLBI NIH HHS
- R01 HL142992 NHLBI NIH HHS
- K01 HL129039 NHLBI NIH HHS
- R01 HL133870 NHLBI NIH HHS
- R01 DA037904 NIDA NIH HHS
- R21 HL123677 NHLBI NIH HHS
- R01 DK071891 NIDDK NIH HHS
- HHSN268201800001I U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00002 NHLBI NIH HHS
- K01 HL130609 NHLBI NIH HHS
- N01-HC-95167 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 HL007374 NHLBI NIH HHS
- N01-HC-95169 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01-DK078616 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 AR063611 NIAMS NIH HHS
- KL2TR002490 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- R03 HL154284 NHLBI NIH HHS
- M01-RR000052 U.S. Department of Health & Human Services | NIH | National Center for Research Resources (NCRR)
- 75N92020D00006 NHLBI NIH HHS
- S10 OD020069 NIH HHS
- R01 MD012765 NIMHD NIH HHS
- N01-HC-95161 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHSN268201700002I NHLBI NIH HHS
- R01 HL151855 NHLBI NIH HHS
- K23 HL138461 NHLBI NIH HHS
- U01 CA182913 NCI NIH HHS
- UG3 HL151865 NHLBI NIH HHS
- F32 HL150992 NHLBI NIH HHS
- R01-MD012765 U.S. Department of Health & Human Services | NIH | National Institute on Minority Health and Health Disparities (NIMHD)
- 75N92020D00005, 75N92020D00006, 75N92020D00007 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 MH101244 NIMH NIH HHS
- U01 HG009088 NHGRI NIH HHS
- N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P42 ES016454 NIEHS NIH HHS
- UM1 DK078616 NIDDK NIH HHS
- U01-HL054509 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35-HL135824 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- M01-RR07122 U.S. Department of Health & Human Services | NIH | National Center for Research Resources (NCRR)
- U01 DK105561 NIDDK NIH HHS
- U01-HL072524 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P20 GM121334 NIGMS NIH HHS
- N01-HC-95167, N01-HC-95168, N01-HC-95169 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL131565 NHLBI NIH HHS
- R01HL071251 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R13 CA124365 NCI NIH HHS
- R01-HL045522 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL132825 NHLBI NIH HHS
- R01 HL118267 NHLBI NIH HHS
- HHSN268201800013I NIMHD NIH HHS
- R01-HL67348 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 GM115428 NIGMS NIH HHS
- R01 HL055673 NHLBI NIH HHS
- HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UM1-DK078616 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 HL149683 NHLBI NIH HHS
- R01 HL092301 NHLBI NIH HHS
- P30 DK020595 NIDDK NIH HHS
- R01 HL149836 NHLBI NIH HHS
- K08 HL145095 NHLBI NIH HHS
- K01 HL135405 NHLBI NIH HHS
- R03 OD030608 NIH HHS
- HHSN268201800014I NHLBI NIH HHS
- R01-HL113338 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F32-HL085989 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UM1 AI068636 NIAID NIH HHS
- R01 AG057381 NIA NIH HHS
- U19-CA203654 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
Collapse
Affiliation(s)
- Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheila M Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margaret Sunitha Selvaraj
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Theodore Arapoglou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Corbin Quick
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yaowu Liu
- School of Statistics, Southwestern University of Finance and Economics, Chengdu, China
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rounak Dey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky, College of Public Health, Lexington, KY, USA
| | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Harald H H Göring
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rita R Kalyani
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Metabolism Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa W Martin
- Division in Cardiology, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Daniel E Weeks
- Department of Human Genetics and Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Cristen J Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Huang L, Rosen JD, Sun Q, Chen J, Wheeler MM, Zhou Y, Min YI, Kooperberg C, Conomos MP, Stilp AM, Rich SS, Rotter JI, Manichaikul A, Loos RJF, Kenny EE, Blackwell TW, Smith AV, Jun G, Sedlazeck FJ, Metcalf G, Boerwinkle E, Raffield LM, Reiner AP, Auer PL, Li Y. TOP-LD: A tool to explore linkage disequilibrium with TOPMed whole-genome sequence data. Am J Hum Genet 2022; 109:1175-1181. [PMID: 35504290 PMCID: PMC9247832 DOI: 10.1016/j.ajhg.2022.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (∼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.
Collapse
Affiliation(s)
- Le Huang
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan D Rosen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Ying Zhou
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Goo Jun
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ginger Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Mikhaylova AV, McHugh CP, Polfus LM, Raffield LM, Boorgula MP, Blackwell TW, Brody JA, Broome J, Chami N, Chen MH, Conomos MP, Cox C, Curran JE, Daya M, Ekunwe L, Glahn DC, Heard-Costa N, Highland HM, Hobbs BD, Ilboudo Y, Jain D, Lange LA, Miller-Fleming TW, Min N, Moon JY, Preuss MH, Rosen J, Ryan K, Smith AV, Sun Q, Surendran P, de Vries PS, Walter K, Wang Z, Wheeler M, Yanek LR, Zhong X, Abecasis GR, Almasy L, Barnes KC, Beaty TH, Becker LC, Blangero J, Boerwinkle E, Butterworth AS, Chavan S, Cho MH, Choquet H, Correa A, Cox N, DeMeo DL, Faraday N, Fornage M, Gerszten RE, Hou L, Johnson AD, Jorgenson E, Kaplan R, Kooperberg C, Kundu K, Laurie CA, Lettre G, Lewis JP, Li B, Li Y, Lloyd-Jones DM, Loos RJF, Manichaikul A, Meyers DA, Mitchell BD, Morrison AC, Ngo D, Nickerson DA, Nongmaithem S, North KE, O'Connell JR, Ortega VE, Pankratz N, Perry JA, Psaty BM, Rich SS, Soranzo N, Rotter JI, Silverman EK, Smith NL, Tang H, Tracy RP, Thornton TA, Vasan RS, Zein J, Mathias RA, Reiner AP, Auer PL. Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:1836-1851. [PMID: 34582791 PMCID: PMC8546043 DOI: 10.1016/j.ajhg.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.
Collapse
MESH Headings
- Asthma/epidemiology
- Asthma/genetics
- Asthma/metabolism
- Asthma/pathology
- Biomarkers/metabolism
- Dermatitis, Atopic/epidemiology
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Genetic Predisposition to Disease
- Genome, Human
- Genome-Wide Association Study
- Humans
- Leukocytes/pathology
- National Heart, Lung, and Blood Institute (U.S.)
- Phenotype
- Polymorphism, Single Nucleotide
- Prognosis
- Proteome/analysis
- Proteome/metabolism
- Pulmonary Disease, Chronic Obstructive/epidemiology
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Quantitative Trait Loci
- United Kingdom/epidemiology
- United States/epidemiology
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Anna V Mikhaylova
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Linda M Polfus
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Corey Cox
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Michelle Daya
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA 02155, USA
| | - Nancy Heard-Costa
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yann Ilboudo
- Montréal Heart Institute, Montréal, Québec H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Jonathon Rosen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Albert V Smith
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Klaudia Walter
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Sameer Chavan
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Nancy Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lifang Hou
- Institute for Public Health and Medicine, Northwestern University, Chicago, IL 60661, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | | | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Guillaume Lettre
- Montréal Heart Institute, Montréal, Québec H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Donald M Lloyd-Jones
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60661, USA; Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60661, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Debby Ngo
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Suraj Nongmaithem
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victor E Ortega
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Department of Health Service, University of Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicole Soranzo
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Department of Haematology, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB1 8RN, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Department of Health Service, University of Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine and Department of Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT 05446, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA; Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Ramachandran S Vasan
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexander P Reiner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin, Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
10
|
Gingras MC, Sabo A, Cardenas M, Rana A, Dhingra S, Meng Q, Hu J, Muzny DM, Doddapaneni H, Perez L, Korchina V, Nessner C, Liu X, Chao H, Goss J, Gibbs RA. Sequencing of a central nervous system tumor demonstrates cancer transmission in an organ transplant. Life Sci Alliance 2021; 4:4/9/e202000941. [PMID: 34301805 PMCID: PMC8321656 DOI: 10.26508/lsa.202000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
This study uses DNA sequencing to trace a donor organ transplant–mediated cancer transmission and illustrates how precise molecular pathology profiles might reduce future risk for transplant recipients. Four organ transplant recipients from an organ donor diagnosed with anaplastic pleomorphic xanthoastrocytoma developed fatal malignancies for which the origin could not be confirmed by standard methods. We identified the somatic mutational profiles of the neoplasms using next-generation sequencing technologies and tracked the relationship between the different samples. The data were consistent with the presence of an aggressive clonal entity in the donor and the subsequent proliferation of descendent tumors in each recipient. Deleterious mutations in BRAF, PIK3CA, SDHC, DDR2, and FANCD2, and a chromosomal deletion spanning the CDKN2A/B genes, were shared between the recipients’ lesions. In addition to demonstrating that DNA sequencing tracked a donor/recipient cancer transmission, this study established that the genetic profile of a donor tumor and its potential aggressive phenotype could have been determined before transplantation was considered. As the genetic correlates of tumor invasion and metastases become better known, adding genetic profiling by DNA sequencing to the data considered for transplant safety should be considered.
Collapse
Affiliation(s)
- Marie-Claude Gingras
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA .,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Abbas Rana
- Abdominal Transplant Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sadhna Dhingra
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Harshavardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lesette Perez
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Caitlin Nessner
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xiuping Liu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John Goss
- Abdominal Transplant Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Honig G, Heller C, Hurtado-Lorenzo A. Defining the Path Forward for Biomarkers to Address Unmet Needs in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:1451-1462. [PMID: 32812036 PMCID: PMC7500521 DOI: 10.1093/ibd/izaa210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Despite major advances in the inflammatory bowel diseases field, biomarkers to enable personalized and effective management are inadequate. Disease course and treatment response are highly variable, with some patients experiencing mild disease progression, whereas other patients experience severe or complicated disease. Periodic endoscopy is performed to assess disease activity; as a result, it takes months to ascertain whether a treatment is having a positive impact on disease progression. Minimally invasive biomarkers for prognosis of disease course, prediction of treatment response, monitoring of disease activity, and accurate diagnosis based on improved disease phenotyping and classification could improve outcomes and accelerate the development of novel therapeutics. Rapidly developing technologies have great potential in this regard; however, the discovery, validation, and qualification of biomarkers will require partnerships including academia, industry, funders, and regulators. The Crohn's & Colitis Foundation launched the IBD Biomarker Summit to bring together key stakeholders to identify and prioritize critical unmet needs; prioritize promising technologies and consortium approaches to address these needs; and propose harmonization approaches to improve comparability of data across studies. Here, we summarize the outcomes of the 2018 and 2019 meetings, including consensus-based unmet needs in the clinical and drug development context. We highlight ongoing consortium efforts and promising technologies with the potential to address these needs in the near term. Finally, we summarize actionable recommendations for harmonization, including data collection tools for improved consistency in disease phenotyping; standardization of informed consenting; and development of guidelines for sample management and assay validation. Taken together, these outcomes demonstrate that there is an exceptional alignment of priorities across stakeholders for a coordinated effort to address unmet needs of patients with inflammatory bowel diseases through biomarker science.
Collapse
|