1
|
Deng Z, Yang Z, Li L, Zeng G, Meng Z, Liu R. A lipid metabolism related gene signature predicts postoperative recurrence in pancreatic cancer through multicenter cohort validation. Sci Rep 2025; 15:11683. [PMID: 40188284 PMCID: PMC11972318 DOI: 10.1038/s41598-025-96855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
Postoperative recurrence of pancreatic adenocarcinoma (PAAD) remains a major challenge. This study aims to establish and validate a lipid metabolism-related prognostic model to predict recurrence in PAAD patients. The TCGA-PAAD database was used to establish a training cohort, which was validated using the ICGC database and multiple center cohorts. A prognostic model based on LASSO Cox regression and a nomogram was developed and further validated. Among 196 lipid metabolism-related genes, four were selected for the prognostic model. Patients were stratified into high- and low-risk groups based on the risk score. Univariate and multivariate Cox regression analyses showed that tumor site, T stage, N stage, M stage, and risk score were significantly associated with progression-free interval (PFI). High-risk patients had worse PFI, overall survival (OS), and disease-specific survival (DSS) (all P < 0.05). Time-dependent ROC and decision curve analyses confirmed the superior diagnostic capacity of the nomogram. GSEA revealed enrichment in G2M checkpoint, glycolysis, estrogen response, and hypoxia pathways for the high-risk group. Additionally, high-risk scores correlated with poor immune infiltration, gene mutations, and tumor mutational burden (TMB). Single-cell analysis suggested that risk genes interact with various cell types to promote PAAD progression. A novel lipid metabolism-related prognostic model was developed and validated to predict recurrence and survival in PAAD patients, with strong accuracy and stability.
Collapse
Affiliation(s)
- Zhaoda Deng
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zitong Yang
- Medical School of Chinese PLA, Beijing, China
| | - Lincheng Li
- Department of Surgery, Second Mobile Corps Hospital of Chinese People's Armed Police Force, Wuxi, China
| | - Guineng Zeng
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Nankai University School of Medicine, Nankai University, Tianjin, 300300, China
| | - Zihe Meng
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Inner Mongolia Medical University, Hohhot, China
| | - Rong Liu
- Medical School of Chinese PLA, Beijing, China.
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Zhang X, Qi M, Fu Q. Molecular genetics of congenital heart disease. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2861-9. [PMID: 40163266 DOI: 10.1007/s11427-024-2861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/08/2025] [Indexed: 04/02/2025]
Abstract
Congenital heart disease (CHD) is the most prevalent human birth defect and remains a leading cause of mortality in childhood. Although advancements in surgical and medical interventions have significantly reduced mortality rates among infants with critical CHDs, many survivors experience substantial cardiac and extracardiac comorbidities that affect their quality of life. The etiology of CHD is multifactorial, involving both genetic and environmental factors, yet a definitive cause remains unidentified in many cases. Recent advancements in genetic testing technologies have improved our ability to identify the genetic causes of CHD. This review presents an updated summary of the established genetic contributions to CHD, including chromosomal aberrations and mutations in genes associated with transcription factors, cardiac structural proteins, chromatin modifiers, cilia-related proteins, and cell signaling pathways. Furthermore, we discuss recent findings that support the roles of non-coding mutations and complex inheritance in the etiology of CHD.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming Qi
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
3
|
Newman T, Bond DM, Ishihara T, Rizzoli P, Gouil Q, Hore TA, Shaw G, Renfree MB. PRKACB is a novel imprinted gene in marsupials. Epigenetics Chromatin 2024; 17:29. [PMID: 39342354 PMCID: PMC11438212 DOI: 10.1186/s13072-024-00552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Genomic imprinting results in parent-of-origin-specific gene expression and, among vertebrates, is found only in therian mammals: marsupials and eutherians. A differentially methylated region (DMR), in which the methylation status of CpG dinucleotides differs between the two alleles, can mark the parental identity of imprinted genes. We developed a computational pipeline that detected CpG islands (CGIs) marked by both methylated and unmethylated signals in whole genome bisulfite sequencing data. This approach identified candidate marsupial DMRs in a publicly available koala methylome. One of these candidate DMRs was associated with PRKACB, a gene encoding the protein kinase A catalytic subunit beta. Nothing is known about the imprinting status of PRKACB in eutherian mammals although mutations of this gene are associated with endocrine neoplasia and other developmental disorders. RESULTS In the tammar wallaby and brushtail possum there was parent-of-origin-specific DNA methylation in the PRKACB DMR in which the maternal allele was methylated and the paternal allele was unmethylated. There were multiple RNAs transcribed from this locus. Allele-specific expression analysis identified paternal expression of a PRKACB lncRNA and an mRNA isoform. Comparison of the PRKACB gene start site between marsupials and eutherians demonstrated that the CGI is longer in marsupials. The PRKACB gene product functions in the same signalling pathway as the guanine nucleotide-binding protein alpha subunit encoded at the GNAS locus, a known eutherian imprinted gene. In a mouse methylome Gnas had three differentially methylated CGIs, while in the koala methylome the GNAS locus had two unmethylated CGIs. CONCLUSIONS We conclude that PRKACB is a novel, DMR-associated marsupial imprinted gene. Imprinting of PRKACB in marsupials and GNAS in eutherians may indicate a conserved selection pressure for imprinting of the protein kinase A signalling pathway in therians with the two lineages adapting by imprinting different genes.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Donna M Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Phoebe Rizzoli
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Quentin Gouil
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3010, Australia
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Jiang YY, Dong HH, Zhou WT, Luo JZ, Wei X, Huang YQ. Preparation of kakkatin derivatives and their anti-tumor activity. World J Clin Oncol 2024; 15:1078-1091. [PMID: 39193163 PMCID: PMC11346066 DOI: 10.5306/wjco.v15.i8.1078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Modern pharmacological studies have confirmed that plant-derived compounds from Puerariae flos (PF) has significant biological activities against liver damage, tumors and inflammation. Kakkatin is an isoflavone polyphenolic compound isolated from PF flower. However, the effect of kakkatin and its derivatives on anti-tumor has not been well explored. AIM To design and synthesize a kakkatin derivative [6-(hept-6-yn-1-yloxy)-3-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one (HK)] to explore its anti-tumor biological activity. METHODS Hept-6-yn-1-yl ethanesulfonate was introduced to replace hydrogen at the hydroxyl position of kakkatin phenol, and the derivative of kakkatin was prepared; the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to detect cell viability, a clone formation assay was adopted to detect cell proliferation, apoptosis, necrosis, and cell cycles were analyzed by Annexin V/propidium iodide staining and flow cytometry. Cell migration and invasion ability were evaluated by cell scratch assay and transwell assay. The potential mechanism of HK on hepatocellular carcinoma (HCC) SMMC-7721 cells was explored through network pharmacology and molecular docking, and finally real-time PCR assays was used to verify the potential targets and evaluate the biological activity of HK. RESULTS Compared with kakkatin, the modified HK did not significantly increase the inhibitory activity of gastric cancer MGC803 cells, but the inhibitory activity of HCC SMMC-7721 cells was increased by about 30 times, with an IC50 value of 2.5 μM, and the tumor inhibition effect was better than cisplatin, which could significantly inhibit the cloning, invasion and metastasis of HCC SMMC-7721 cells, and induce apoptosis and G2/M cycle arrest. Its mechanism of action is mainly related to the upregulation of PDE3B and NFKB1 target proteins in the cAMP pathway. CONCLUSION HK have a significant inhibitory effect on HCC SMMC-7721 cells, and the targets of their action may be PDE3B and NFKB1 proteins in the cAMP pathway, making it a good lead drug for the treatment of HCC.
Collapse
Affiliation(s)
- Yu-Ying Jiang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Hui-Hua Dong
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Wen-Ting Zhou
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Jia-Zi Luo
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Collaborative Innovation Center for Guangxi Ethnic Medicine, The School of Chemistry and Pharmaceutical Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xian Wei
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yan-Qiang Huang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Wallis M, Bodek SD, Munro J, Rafehi H, Bennett MF, Ye Z, Schneider A, Gardiner F, Valente G, Murdoch E, Uebergang E, Hunter J, Stutterd C, Huq A, Salmon L, Scheffer I, Eratne D, Meyn S, Fong CY, John T, Mullen S, White SM, Brown NJ, McGillivray G, Chen J, Richmond C, Hughes A, Krzesinski E, Fennell A, Chambers B, Santoreneos R, Le Fevre A, Hildebrand MS, Bahlo M, Christodoulou J, Delatycki M, Berkovic SF. Experience of the first adult-focussed undiagnosed disease program in Australia (AHA-UDP): solving rare and puzzling genetic disorders is ageless. Orphanet J Rare Dis 2024; 19:288. [PMID: 39095811 PMCID: PMC11297648 DOI: 10.1186/s13023-024-03297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Significant recent efforts have facilitated increased access to clinical genetics assessment and genomic sequencing for children with rare diseases in many centres, but there remains a service gap for adults. The Austin Health Adult Undiagnosed Disease Program (AHA-UDP) was designed to complement existing UDP programs that focus on paediatric rare diseases and address an area of unmet diagnostic need for adults with undiagnosed rare conditions in Victoria, Australia. It was conducted at a large Victorian hospital to demonstrate the benefits of bringing genomic techniques currently used predominantly in a research setting into hospital clinical practice, and identify the benefits of enrolling adults with undiagnosed rare diseases into a UDP program. The main objectives were to identify the causal mutation for a variety of diseases of individuals and families enrolled, and to discover novel disease genes. METHODS Unsolved patients in whom standard genomic diagnostic techniques such as targeted gene panel, exome-wide next generation sequencing, and/or chromosomal microarray, had already been performed were recruited. Genome sequencing and enhanced genomic analysis from the research setting were applied to aid novel gene discovery. RESULTS In total, 16/50 (32%) families/cases were solved. One or more candidate variants of uncertain significance were detected in 18/50 (36%) families. No candidate variants were identified in 16/50 (32%) families. Two novel disease genes (TOP3B, PRKACB) and two novel genotype-phenotype correlations (NARS, and KMT2C genes) were identified. Three out of eight patients with suspected mosaic tuberous sclerosis complex had their diagnosis confirmed which provided reproductive options for two patients. The utility of confirming diagnoses for patients with mosaic conditions (using high read depth sequencing and ddPCR) was not specifically envisaged at the onset of the project, but the flexibility to offer recruitment and analyses on an as-needed basis proved to be a strength of the AHA-UDP. CONCLUSION AHA-UDP demonstrates the utility of a UDP approach applying genome sequencing approaches in diagnosing adults with rare diseases who have had uninformative conventional genetic analysis, informing clinical management, recurrence risk, and recommendations for relatives.
Collapse
Affiliation(s)
- Mathew Wallis
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Simon D Bodek
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia.
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia.
| | - Jacob Munro
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Haloom Rafehi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Mark F Bennett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Zimeng Ye
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Amy Schneider
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Fiona Gardiner
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Giulia Valente
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Emma Murdoch
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Eloise Uebergang
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
| | - Jacquie Hunter
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Chloe Stutterd
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Aamira Huq
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Genetic Medicine Service, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lucinda Salmon
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Genetics Service, Royal Prince Alfred Hospital, Melbourne, Australia
| | - Ingrid Scheffer
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Paediatrics, Austin Health, Melbourne, Australia
| | - Dhamidhu Eratne
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Australia
| | - Stephen Meyn
- Centre for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Chun Y Fong
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
| | - Tom John
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Saul Mullen
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Susan M White
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - George McGillivray
- Victorian Clinical Genetics Service, Melbourne, Australia
- Genetics Service, Mercy Hospital for Women, Melbourne, Australia
| | - Jesse Chen
- Neurology Service, Austin Health, Melbourne, Australia
| | - Chris Richmond
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew Hughes
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
| | | | - Andrew Fennell
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Monash Health Genetics Clinic, Melbourne, Australia
| | - Brian Chambers
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Australia
| | - Renee Santoreneos
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
| | - Anna Le Fevre
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Martin Delatycki
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Samuel F Berkovic
- Austin Health Clinical Genetics Service, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Australia
| |
Collapse
|
6
|
Sithambaram S, Jacob P, Neethukrishna K, Bhavani GS, Dalal A, Shah H, Girisha KM. PRKACA-related, atrial defects-polydactyly-multiple congenital malformation syndrome in an Indian patient. Am J Med Genet A 2024; 194:e63566. [PMID: 38357848 DOI: 10.1002/ajmg.a.63566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
PRKACA-related, atrial defects-polydactyly-multiple congenital malformation syndrome is a recently described skeletal ciliopathy, which is caused by disease-causing variants in PRKACA. The primary phenotypic description includes atrial septal defects, and limb anomalies including polydactyly and short limbs. To date, only four molecularly proven patients have been reported in the literature with a recurrent variant, c.409G>A p.Gly137Arg in PRKACA. In this study, we report the fifth affected individual with the same variant and review the clinical features and radiographic findings of this rare syndrome.
Collapse
MESH Headings
- Humans
- Polydactyly/genetics
- Polydactyly/pathology
- Polydactyly/diagnosis
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Abnormalities, Multiple/diagnosis
- Female
- Heart Septal Defects, Atrial/genetics
- Heart Septal Defects, Atrial/diagnostic imaging
- Heart Septal Defects, Atrial/diagnosis
- Heart Septal Defects, Atrial/pathology
- Male
- Phenotype
- Mutation/genetics
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/diagnosis
- Heart Defects, Congenital/diagnostic imaging
- India
Collapse
Affiliation(s)
| | - Prince Jacob
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kausthubham Neethukrishna
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Hitesh Shah
- Department of Pediatric Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Altunoglu U, Palencia-Campos A, Güneş N, Turgut GT, Nevado J, Lapunzina P, Valencia M, Iturrate A, Otaify G, Elhossini R, Ashour A, K Amin A, Elnahas RF, Fernandez-Nuñez E, Flores CL, Arias P, Tenorio J, Chamorro Fernández CI, Güven Y, Özsu E, Eklioğlu BS, Ibarra-Ramirez M, Diness BR, Burnyte B, Ajmi H, Yüksel Z, Yıldırım R, Ünal E, Abdalla E, Aglan M, Kayserili H, Tuysuz B, Ruiz-Pérez V. Variant characterisation and clinical profile in a large cohort of patients with Ellis-van Creveld syndrome and a family with Weyers acrofacial dysostosis. J Med Genet 2024; 61:633-644. [PMID: 38531627 DOI: 10.1136/jmg-2023-109546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.
Collapse
Affiliation(s)
- Umut Altunoglu
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Fatih, Turkey
| | - Adrian Palencia-Campos
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Nilay Güneş
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul Universitesi-Cerrahpasa, Istanbul, Turkey
| | - Gozde Tutku Turgut
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Fatih, Turkey
| | - Julian Nevado
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Maria Valencia
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Asier Iturrate
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Ghada Otaify
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Rasha Elhossini
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Adel Ashour
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Asmaa K Amin
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rania F Elnahas
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Elisa Fernandez-Nuñez
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Carmen-Lisset Flores
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Arias
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Jair Tenorio
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | - Yeliz Güven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Ankara University, Ankara, Turkey
| | - Beray Selver Eklioğlu
- Division of Pediatric Endocrinology, Department of Pediatrics, Necmettin Erbakan University, Konya, Turkey
| | - Marisol Ibarra-Ramirez
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico
| | - Birgitte Rode Diness
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Kobenhavn, Denmark
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Houda Ajmi
- Service de Pédiatrie, Centre Hôspitalier Universitaire (CHU) Sahloul, Sousse, Tunisia
| | - Zafer Yüksel
- Human Genetics Department, Bioscientia Healthcare GmbH, Ingelheim, Germany
| | - Ruken Yıldırım
- Department of Pediatric Endocrinology, Ministry of Health Diyarbakir Children's Hospital, Diyarbakir, Turkey
| | - Edip Ünal
- Department of Pediatric Endocrinology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona Aglan
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Hulya Kayserili
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
| | - Beyhan Tuysuz
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul Universitesi-Cerrahpasa, Istanbul, Turkey
| | - Victor Ruiz-Pérez
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| |
Collapse
|
8
|
Glebov-McCloud AGP, Saide WS, Gaine ME, Strack S. Protein Kinase A in neurological disorders. J Neurodev Disord 2024; 16:9. [PMID: 38481146 PMCID: PMC10936040 DOI: 10.1186/s11689-024-09525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Cyclic adenosine 3', 5' monophosphate (cAMP)-dependent Protein Kinase A (PKA) is a multi-functional serine/threonine kinase that regulates a wide variety of physiological processes including gene transcription, metabolism, and synaptic plasticity. Genomic sequencing studies have identified both germline and somatic variants of the catalytic and regulatory subunits of PKA in patients with metabolic and neurodevelopmental disorders. In this review we discuss the classical cAMP/PKA signaling pathway and the disease phenotypes that result from PKA variants. This review highlights distinct isoform-specific cognitive deficits that occur in both PKA catalytic and regulatory subunits, and how tissue-specific distribution of these isoforms may contribute to neurodevelopmental disorders in comparison to more generalized endocrine dysfunction.
Collapse
Affiliation(s)
- Alexander G P Glebov-McCloud
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Walter S Saide
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy Building, College of Pharmacy, University of Iowa, 180 S. Grand Ave, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, Iowa City, IA, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, Iowa City, IA, USA.
| |
Collapse
|
9
|
Sharma KR, Colvis CM, Rodgers GP, Sheeley DM. Illuminating the druggable genome: Pathways to progress. Drug Discov Today 2024; 29:103805. [PMID: 37890715 PMCID: PMC10939933 DOI: 10.1016/j.drudis.2023.103805] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
There are ∼4500 genes within the 'druggable genome', the subset of the human genome that expresses proteins able to bind drug-like molecules, yet existing drugs only target a few hundred. A substantial subset of druggable proteins are largely uncharacterized or understudied, with many falling within G protein-coupled receptor (GPCR), ion channel, and kinase protein families. To improve scientific understanding of these three understudied protein families, the US National Institutes of Health launched the Illuminating the Druggable Genome Program. Now, as the program draws to a close, this review will lay out resources developed by the program that are intended to equip the scientific community with the tools necessary to explore previously understudied biology with the potential to rapidly impact human health.
Collapse
Affiliation(s)
- Karlie R Sharma
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Blvd, Bethesda, MD 20892, USA.
| | - Christine M Colvis
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Blvd, Bethesda, MD 20892, USA
| | - Griffin P Rodgers
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Douglas M Sheeley
- Office of Strategic Coordination, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Salcedo MV, Gravel N, Keshavarzi A, Huang LC, Kochut KJ, Kannan N. Predicting protein and pathway associations for understudied dark kinases using pattern-constrained knowledge graph embedding. PeerJ 2023; 11:e15815. [PMID: 37868056 PMCID: PMC10590106 DOI: 10.7717/peerj.15815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/10/2023] [Indexed: 10/24/2023] Open
Abstract
The 534 protein kinases encoded in the human genome constitute a large druggable class of proteins that include both well-studied and understudied "dark" members. Accurate prediction of dark kinase functions is a major bioinformatics challenge. Here, we employ a graph mining approach that uses the evolutionary and functional context encoded in knowledge graphs (KGs) to predict protein and pathway associations for understudied kinases. We propose a new scalable graph embedding approach, RegPattern2Vec, which employs regular pattern constrained random walks to sample diverse aspects of node context within a KG flexibly. RegPattern2Vec learns functional representations of kinases, interacting partners, post-translational modifications, pathways, cellular localization, and chemical interactions from a kinase-centric KG that integrates and conceptualizes data from curated heterogeneous data resources. By contextualizing information relevant to prediction, RegPattern2Vec improves accuracy and efficiency in comparison to other random walk-based graph embedding approaches. We show that the predictions produced by our model overlap with pathway enrichment data produced using experimentally validated Protein-Protein Interaction (PPI) data from both publicly available databases and experimental datasets not used in training. Our model also has the advantage of using the collected random walks as biological context to interpret the predicted protein-pathway associations. We provide high-confidence pathway predictions for 34 dark kinases and present three case studies in which analysis of meta-paths associated with the prediction enables biological interpretation. Overall, RegPattern2Vec efficiently samples multiple node types for link prediction on biological knowledge graphs and the predicted associations between understudied kinases, pseudokinases, and known pathways serve as a conceptual starting point for hypothesis generation and testing.
Collapse
Affiliation(s)
- Mariah V. Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Abbas Keshavarzi
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Krzysztof J. Kochut
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
11
|
Green TE, Fujita A, Ghaderi N, Heinzen EL, Matsumoto N, Klein KM, Berkovic SF, Hildebrand MS. Brain mosaicism of hedgehog signalling and other cilia genes in hypothalamic hamartoma. Neurobiol Dis 2023; 185:106261. [PMID: 37579995 DOI: 10.1016/j.nbd.2023.106261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Hypothalamic hamartoma (HH) is a rare benign developmental brain lesion commonly associated with a well characterized epilepsy phenotype. Most individuals with HH are non-syndromic without additional developmental anomalies nor a family history of disease. Nonetheless, HH is a feature of Pallister-Hall (PHS) and Oro-Facial-Digital Type VI (OFD VI) syndromes, both characterized by additional developmental anomalies. Initial genetic of analysis HH began with syndromic HH, where germline inherited or de novo variants in GLI3, encoding a central transcription factor in the sonic hedgehog (Shh) signalling pathway, were identified in most individuals with PHS. Following these discoveries in syndromic HH, the hypothesis that post-zygotic mosaicism in related genes may underly non-syndromic HH was tested. We discuss the identified mosaic variants within individuals with non-syndromic HH, review the analytical methodologies and diagnostic yields, and explore understanding of the functional role of the implicated genes with respect to Shh signalling, and cilia development and function. We also outline future challenges in studying non-syndromic HH and suggest potential novel strategies to interrogate brain mosaicism in HH.
Collapse
Affiliation(s)
- Timothy E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Navid Ghaderi
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Erin L Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University and University Hospital Frankfurt, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Barbeito P, Martin-Morales R, Palencia-Campos A, Cerrolaza J, Rivas-Santos C, Gallego-Colastra L, Caparros-Martin JA, Martin-Bravo C, Martin-Hurtado A, Sánchez-Bellver L, Marfany G, Ruiz-Perez VL, Garcia-Gonzalo FR. EVC-EVC2 complex stability and ciliary targeting are regulated by modification with ubiquitin and SUMO. Front Cell Dev Biol 2023; 11:1190258. [PMID: 37576597 PMCID: PMC10413113 DOI: 10.3389/fcell.2023.1190258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Ellis van Creveld syndrome and Weyers acrofacial dysostosis are two rare genetic diseases affecting skeletal development. They are both ciliopathies, as they are due to malfunction of primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae and are required for Hedgehog signaling, a key pathway during skeletal morphogenesis. These ciliopathies are caused by mutations affecting the EVC-EVC2 complex, a transmembrane protein heterodimer that regulates Hedgehog signaling from inside primary cilia. Despite the importance of this complex, the mechanisms underlying its stability, targeting and function are poorly understood. To address this, we characterized the endogenous EVC protein interactome in control and Evc-null cells. This proteomic screen confirmed EVC's main known interactors (EVC2, IQCE, EFCAB7), while revealing new ones, including USP7, a deubiquitinating enzyme involved in Hedgehog signaling. We therefore looked at EVC-EVC2 complex ubiquitination. Such ubiquitination exists but is independent of USP7 (and of USP48, also involved in Hh signaling). We did find, however, that monoubiquitination of EVC-EVC2 cytosolic tails greatly reduces their protein levels. On the other hand, modification of EVC-EVC2 cytosolic tails with the small ubiquitin-related modifier SUMO3 has a different effect, enhancing complex accumulation at the EvC zone, immediately distal to the ciliary transition zone, possibly via increased binding to the EFCAB7-IQCE complex. Lastly, we find that EvC zone targeting of EVC-EVC2 depends on two separate EFCAB7-binding motifs within EVC2's Weyers-deleted peptide. Only one of these motifs had been characterized previously, so we have mapped the second herein. Altogether, our data shed light on EVC-EVC2 complex regulatory mechanisms, with implications for ciliopathies.
Collapse
Affiliation(s)
- Pablo Barbeito
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Raquel Martin-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Cerrolaza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Celia Rivas-Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Leticia Gallego-Colastra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Jose Antonio Caparros-Martin
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carolina Martin-Bravo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Ana Martin-Hurtado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Laura Sánchez-Bellver
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina—Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- DBGen Ocular Genomics, Barcelona, Spain
| | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
13
|
Omar MH, Kihiu M, Byrne DP, Lee KS, Lakey TM, Butcher E, Eyers PA, Scott JD. Classification of Cushing's syndrome PKAc mutants based upon their ability to bind PKI. Biochem J 2023; 480:875-890. [PMID: 37306403 PMCID: PMC11136536 DOI: 10.1042/bcj20230183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
Cushing's syndrome is an endocrine disorder caused by excess production of the stress hormone cortisol. Precision medicine strategies have identified single allele mutations within the PRKACA gene that drive adrenal Cushing's syndrome. These mutations promote perturbations in the catalytic core of protein kinase A (PKAc) that impair autoinhibition by regulatory subunits and compartmentalization via recruitment into AKAP signaling islands. PKAcL205R is found in ∼45% of patients, whereas PKAcE31V, PKAcW196R, and L198insW and C199insV insertion mutants are less prevalent. Mass spectrometry, cellular, and biochemical data indicate that Cushing's PKAc variants fall into two categories: those that interact with the heat-stable protein kinase inhibitor PKI, and those that do not. In vitro activity measurements show that wild-type PKAc and W196R activities are strongly inhibited by PKI (IC50 < 1 nM). In contrast, PKAcL205R activity is not blocked by the inhibitor. Immunofluorescent analyses show that the PKI-binding variants wild-type PKAc, E31V, and W196R are excluded from the nucleus and protected against proteolytic processing. Thermal stability measurements reveal that upon co-incubation with PKI and metal-bound nucleotide, the W196R variant tolerates melting temperatures 10°C higher than PKAcL205. Structural modeling maps PKI-interfering mutations to a ∼20 Å diameter area at the active site of the catalytic domain that interfaces with the pseudosubstrate of PKI. Thus, Cushing's kinases are individually controlled, compartmentalized, and processed through their differential association with PKI.
Collapse
Affiliation(s)
- Mitchell H. Omar
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Maryanne Kihiu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Dominic P. Byrne
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Kyung-Soon Lee
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Tyler M. Lakey
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Erik Butcher
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Patrick A. Eyers
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
14
|
Wredenhagen MS, Goldstein A, Mathieu H, Miranda V, Morali B, Santerre J, Maftei C, Delrue MA, Schmittbuhl M, Vu DD, Moldovan F, Campeau PM. The Quebec Dental Anomalies Registry: Identifying genes for rare disorders. PNAS NEXUS 2023; 2:pgad196. [PMID: 37361548 PMCID: PMC10290489 DOI: 10.1093/pnasnexus/pgad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
There are more than 900 genetic syndromes associated with oral manifestations. These syndromes can have serious health implications, and left undiagnosed, can hamper treatment and prognosis later in life. About 6.67% of the population will develop a rare disease during their lifetime, some of which are difficult to diagnose. The establishment of a data and tissue bank of rare diseases with oral manifestations in Quebec will help medical professionals identify the genes involved, will improve knowledge on the rare genetic diseases, and will also lead to improved patient management. It will also allow samples and information sharing with other clinicians and investigators. As an example of a condition requiring additional research, dental ankylosis is a condition in which the tooth's cementum fuses to the surrounding alveolar bone. This can be secondary to traumatic injury but is often idiopathic, and the genes involved in the idiopathic cases, if any, are poorly known. To date, patients with both identified and unidentified genetic etiology for their dental anomalies were recruited through dental and genetics clinics for the study. They underwent sequencing of selected genes or exome sequencing depending on the manifestation. We recruited 37 patients and we identified pathogenic or likely pathogenic variants in WNT10A, EDAR, AMBN, PLOD1, TSPEAR, PRKAR1A, FAM83H, PRKACB, DLX3, DSPP, BMP2, TGDS. Our project led to the establishment of the Quebec Dental Anomalies Registry, which will help researchers, medical and dental practitioners alike understand the genetics of dental anomalies and facilitate research collaborations into improved standards of care for patients with rare dental anomalies and any accompanying genetic diseases.
Collapse
Affiliation(s)
- Madeleine S Wredenhagen
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada, H3T1C5 and University of Ottawa, 75 Laurier Ave E, Ottawa, ON, Canada K1N 6N5
| | - Andee Goldstein
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada, H3T1C5 and Université de Montréal, 2900 Edouard Montpetit Boulevard, Montreal, QC, Canada, H3T1C5
| | - Hélène Mathieu
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada, H3T1C5 and Université de Montréal, 2900 Edouard Montpetit Boulevard, Montreal, QC, Canada, H3T1C5
| | - Valancy Miranda
- Department of Pediatrics, CHU Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada, H3T1C5
| | - Burcin Morali
- Department of Pediatrics, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada, H3T1C5
| | - Jacinthe Santerre
- Department of Pediatrics, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada, H3T1C5
| | - Catalina Maftei
- CHU Sainte-Justine, Genetic Service, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada, H3T1C5
| | - Marie-Ange Delrue
- Department of Pediatrics, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada, H3T1C5
| | - Matthieu Schmittbuhl
- Faculty of Dentistry, Department of Stomatology, Université of Montréal, 2900 Edouard Montpetit Boulevard, Montreal, QC, Canada H3T 1J4
| | - Duy Dat Vu
- Faculty of Dentistry, Université of Montréal, 2900 Edouard Montpetit Boulevard, Montreal, QC, Canada H3T 1J4
| | | | | |
Collapse
|
15
|
Yan Z, Cao X, Sun S, Sun B, Gao J. Inhibition of GSK3B phosphorylation improves glucose and lipid metabolism disorder. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166726. [PMID: 37146915 DOI: 10.1016/j.bbadis.2023.166726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Hepatic glycolipid metabolism disorder is considered as one of the key pathogenic factors for many chronic diseases. Revealing the molecular mechanism of metabolic disorder and exploring drug targets are crucial for the treatment of glucose and lipid metabolic diseases. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to be associated with the pathogenesis of various metabolic diseases. Herein, GAPDH-knockdown ZFL cells and GAPDH-downregulation zebrafish exhibited significant lipid deposition increase and glycogen reduction, thus inducing glucose and lipid metabolism disorders. Using high-sensitivity mass spectrometry-based proteomic and phosphoproteomic analysis, we identified 6838 proteins and 3738 phosphorylated proteins in GAPDH-knockdown ZFL cells. The protein-protein interaction network and DEPPs analyses showed that gsk3baY216 were involved in lipid and glucose metabolism, which was verified by In vitro study. The enzyme activity analysis and cell staining results showed that HepG2 and NCTC-1469 cells transfected with GSK3BY216F plasmid had significantly lower glucose and insulin levels, the decreased lipid deposition, and the increased glycogen synthesis than those transfected with GSK3BY216E plasmid, suggesting that inhibition of GSK3B phosphorylation could significantly improve GSK3B hyperphosphorylation-induced glucose tolerance impairment and insulin sensitivity reduction. To our knowledge, this is the first multi-omic study of GAPDH-knockdown ZFL cells. This study provides insights into the molecular mechanism of glucose and lipid metabolic disorder, and provides potential targets (kinases) for the treatments of human glucose and lipid metabolic diseases.
Collapse
Affiliation(s)
- Ze Yan
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouxiang Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Aubert-Mucca M, Huber C, Baujat G, Michot C, Zarhrate M, Bras M, Boutaud L, Malan V, Attie-Bitach T, Cormier-Daire V. Ellis-Van Creveld Syndrome: Clinical and Molecular Analysis of 50 Individuals. J Med Genet 2023; 60:337-345. [PMID: 35927022 DOI: 10.1136/jmg-2022-108435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Ellis-Van Creveld (EVC) syndrome is one of the entities belonging to the skeletal ciliopathies short rib-polydactyly subgroup. Major signs are ectodermal dysplasia, chondrodysplasia, polydactyly and congenital cardiopathy, with a high degree of variability in phenotypes ranging from lethal to mild clinical presentations. The EVC and EVC2 genes are the major genes causative of EVC syndrome. However, an increased number of genes involved in the ciliopathy complex have been identified in EVC syndrome, leading to a better understanding of its physiopathology, namely, WDR35, GLI1, DYNC2LI1, PRKACA, PRKACB and SMO. They all code for proteins located in the primary cilia, playing a key role in signal transduction of the Hedgehog pathways. METHODS The aim of this study was the analysis of 50 clinically identified EVC cases from 45 families to further define the phenotype and molecular bases of EVC. RESULTS Our detection rate in the cohort of 45 families was of 91.11%, with variants identified in EVC/EVC2 (77.8%), DYNC2H1 (6.7%), DYNC2LI1 (2.2%), SMO (2.2%) or PRKACB (2.2%). No distinctive feature was remarkable of a specific genotype-phenotype correlation. Interestingly, we identified a high proportion of heterozygous deletions in EVC/EVC2 of variable sizes (26.92%), mostly inherited from the mother, and probably resulting from recombinations involving Alu sequences. CONCLUSION We confirmed that EVC and EVC2 are the major genes involved in the EVC phenotype and highlighted the high prevalence of previously unreported CNVs (Copy Number Variation).
Collapse
Affiliation(s)
- Marion Aubert-Mucca
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Céline Huber
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Genevieve Baujat
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Caroline Michot
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Imagine Institute, Paris, France
| | - Marc Bras
- Bioinformatics Platform, Imagine Institute, Paris, France
| | - Lucile Boutaud
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | - Valérie Malan
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | - Tania Attie-Bitach
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | | | - Valerie Cormier-Daire
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
17
|
Piceci-Sparascio F, Micale L, Torres B, Guida V, Consoli F, Torrente I, Onori A, Frustaci E, D'Asdia MC, Petrizzelli F, Bernardini L, Mancini C, Soli F, Cocciadiferro D, Guadagnolo D, Mastromoro G, Putotto C, Fontana F, Brunetti-Pierri N, Novelli A, Pizzuti A, Marino B, Digilio MC, Mazza T, Dallapiccola B, Ruiz-Perez VL, Tartaglia M, Castori M, De Luca A. Clinical variability in DYNC2H1-related skeletal ciliopathies includes Ellis-van Creveld syndrome. Eur J Hum Genet 2023; 31:479-484. [PMID: 36599940 PMCID: PMC10133340 DOI: 10.1038/s41431-022-01276-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by DYNC2H1 variants presumably acting as hypomorphic alleles.
Collapse
Affiliation(s)
- Francesca Piceci-Sparascio
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Barbara Torres
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Guida
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Consoli
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Isabella Torrente
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annamaria Onori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuela Frustaci
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Cecilia D'Asdia
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Laura Bernardini
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fiorenza Soli
- Medical Genetic Unit, Santa Chiara Hospital APSS, Trento, Italy
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | | | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Victor Luis Ruiz-Perez
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, Madrid, Spain
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro De Luca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
18
|
Tong SY, Fan K, Zhou ZW, Liu LY, Zhang SQ, Fu Y, Wang GZ, Zhu Y, Yu YC. mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:414-426. [PMID: 35940520 PMCID: PMC10626173 DOI: 10.1016/j.gpb.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Next-generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed Pathogenicity Prediction Tool for missense variants (mvPPT), a highly sensitive and accurate missense variant classifier based on gradient boosting. mvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, frequencies (allele frequencies, amino acid frequencies, and genotype frequencies), and genomic context. Compared with established predictors, mvPPT achieves superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights into variant pathogenicity. mvPPT is freely available at http://www.mvppt.club/.
Collapse
Affiliation(s)
- Shi-Yuan Tong
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ke Fan
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zai-Wei Zhou
- Shanghai Xunyin Biotechnology Co., Ltd., Shanghai 201802, China
| | - Lin-Yun Liu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shu-Qing Zhang
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yinghui Fu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Zhu
- Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yong-Chun Yu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Identification of Circular RNA Circ_0003256 as a Novel Player in Pediatric Acute Myeloid Leukemia. J Pediatr Hematol Oncol 2023; 45:29-37. [PMID: 36598961 DOI: 10.1097/mph.0000000000002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/26/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Aberrant expression of circular RNAs (circRNAs) is tightly associated with the pathogenesis of human cancers, including pediatric acute myeloid leukemia (AML). In this report, we sought to define the precise action of circ_0003256 in the pathogenesis of pediatric AML. MATERIALS AND METHODS Circ_0003256, microRNA (miR)-582-3p, and protein kinase cAMP-activated catalytic subunit beta (PRKACB) were quantified by quantitative real-time polymerase chain reaction and Western blot. Cell proliferation, cycle distribution, and apoptosis were estimated by MTT, 5-ethynyl-2'-deoxyuridine, and flow cytometry assays, respectively. Direct relationships among circ_0003256, miR-582-3p, and PRKACB were verified by a dual-luciferase reporter and RNA pull-down assays. RESULTS Our data indicated that circ_0003256 was highly expressed in pediatric AML patients and cells. Suppression of circ_0003256 hindered cell proliferation and promoted apoptosis in THP-1 and MV4-11 cells. Mechanistically, circ_0003256 contained functional binding sites for miR-582-3p, and circ_0003256 suppression influenced cell behaviors by upregulating miR-582-3p. MiR-582-3p directly targeted and inhibited PRKACB and the inhibition of PRKACB phenocopied miR-582-3p overexpression in regulating cell functional behaviors. Moreover, circ_0003256 involved the posttranscriptional regulation of PRKACB through miR-582-3p. CONCLUSION Our findings identify that suppression of circ_0003256 impedes the malignant behaviors of pediatric AML cells by regulating PRKACB expression by competing for shared miR-582-3p.
Collapse
|
20
|
McGlacken-Byrne SM, Abdelmaksoud A, Haini M, Palm L, Ashworth M, Li J, Wang W, Wang X, Wang J, Callaghan B, Kinsler VA, Faravelli F, Dattani MT. Mosaic PRKACA duplication causing a novel and distinct phenotype of early-onset Cushing's syndrome and acral cutaneous mucinosis. Eur J Endocrinol 2022; 187:K55-K61. [PMID: 36691942 DOI: 10.1530/eje-22-0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE STATEMENT We describe a mosaic PRKACA duplication in a young infant who presented with a Carney-like complex: bilateral non-pigmented micronodular adrenal hyperplasia, severe early-onset Cushing's syndrome, and distinct acral soft tissue overgrowth due to cutaneous mucinosis. This represents a novel manifestation of PRKACA disruption and broadens the extra-adrenal phenotype of PRKACA-associated Cushing's syndrome. Our data suggest that Cushing's syndrome phenotypes arising from somatic and germline PRKACA abnormalities can exist on a spectrum. We emphasise the value of ascertaining a genetic diagnosis for PRKACA-mediated adrenal and extra-adrenal disease to guide individualised and targeted care.
Collapse
Affiliation(s)
- Sinéad M McGlacken-Byrne
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, UK
| | - Ashraf Abdelmaksoud
- International and Private Patient Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Mohammad Haini
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Liina Palm
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Michael Ashworth
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Wang
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bridget Callaghan
- International and Private Patient Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Veronica A Kinsler
- Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, UK
- Department of Dermatology, Great Ormond Street Hospital for Children, London, UK
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, UK
| | - Francesca Faravelli
- North East Thames Regional Genetic Service, Great Ormond Street Hospital, London, UK
| | - Mehul T Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
21
|
Shi HY, Xie MS, Yang CX, Huang RT, Xue S, Liu XY, Xu YJ, Yang YQ. Identification of SOX18 as a New Gene Predisposing to Congenital Heart Disease. Diagnostics (Basel) 2022; 12:diagnostics12081917. [PMID: 36010266 PMCID: PMC9406965 DOI: 10.3390/diagnostics12081917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease (CHD) is the most frequent kind of birth deformity in human beings and the leading cause of neonatal mortality worldwide. Although genetic etiologies encompassing aneuploidy, copy number variations, and mutations in over 100 genes have been uncovered to be involved in the pathogenesis of CHD, the genetic components predisposing to CHD in most cases remain unclear. We recruited a family with CHD from the Chinese Han population in the present investigation. Through whole-exome sequencing analysis of selected family members, a new SOX18 variation, namely NM_018419.3:c.349A>T; p.(Lys117*), was identified and confirmed to co-segregate with the CHD phenotype in the entire family by Sanger sequencing analysis. The heterozygous variant was absent from the 384 healthy volunteers enlisted as control individuals. Functional exploration via luciferase reporter analysis in cultivated HeLa cells revealed that Lys117*-mutant SOX18 lost transactivation on its target genes NR2F2 and GATA4, two genes responsible for CHD. Moreover, the genetic variation terminated the synergistic activation between SOX18 and NKX2.5, another gene accountable for CHD. The findings strongly indicate SOX18 as a novel gene contributing to CHD, which helps address challenges in the clinical genetic diagnosis and prenatal prophylaxis of CHD.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| |
Collapse
|
22
|
Omar MH, Byrne DP, Jones KN, Lakey TM, Collins KB, Lee KS, Daly LA, Forbush KA, Lau HT, Golkowski M, McKnight GS, Breault DT, Lefrançois-Martinez AM, Martinez A, Eyers CE, Baird GS, Ong SE, Smith FD, Eyers PA, Scott JD. Mislocalization of protein kinase A drives pathology in Cushing's syndrome. Cell Rep 2022; 40:111073. [PMID: 35830806 PMCID: PMC9311266 DOI: 10.1016/j.celrep.2022.111073] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 01/15/2023] Open
Abstract
Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing's mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing's syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing's mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing's variant promotes the transmission of distinct downstream pathogenic signals.
Collapse
Affiliation(s)
- Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | - Dominic P Byrne
- Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Kiana N Jones
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Tyler M Lakey
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Kerrie B Collins
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Leonard A Daly
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Katherine A Forbush
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Martin Golkowski
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anne-Marie Lefrançois-Martinez
- Génétique, Reproduction et Développement (GReD), CNRS, INSERM, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), CNRS, INSERM, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Geoffrey S Baird
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - F Donelson Smith
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Patrick A Eyers
- Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Senatore E, Iannucci R, Chiuso F, Delle Donne R, Rinaldi L, Feliciello A. Pathophysiology of Primary Cilia: Signaling and Proteostasis Regulation. Front Cell Dev Biol 2022; 10:833086. [PMID: 35646931 PMCID: PMC9130585 DOI: 10.3389/fcell.2022.833086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Primary cilia are microtubule-based, non-motile sensory organelles present in most types of growth-arrested eukaryotic cells. They are transduction hubs that receive and transmit external signals to the cells in order to control growth, differentiation and development. Mutations of genes involved in the formation, maintenance or disassembly of ciliary structures cause a wide array of developmental genetic disorders, also known as ciliopathies. The primary cilium is formed during G1 in the cell cycle and disassembles at the G2/M transition. Following the completion of the cell division, the cilium reassembles in G1. This cycle is finely regulated at multiple levels. The ubiquitin-proteasome system (UPS) and the autophagy machinery, two main protein degradative systems in cells, play a fundamental role in cilium dynamics. Evidence indicate that UPS, autophagy and signaling pathways may act in synergy to control the ciliary homeostasis. However, the mechanisms involved and the links between these regulatory systems and cilium biogenesis, dynamics and signaling are not well defined yet. Here, we discuss the reciprocal regulation of signaling pathways and proteolytic machineries in the control of the assembly and disassembly of the primary cilium, and the impact of the derangement of these regulatory networks in human ciliopathies.
Collapse
|
24
|
Yamada M, Suzuki H, Futagawa H, Takenouchi T, Miya F, Yoshihashi H, Kosaki K. Phenotypic overlap between cardioacrofacial dysplasia-2 and oral-facial-digital syndrome. Eur J Med Genet 2022; 65:104512. [PMID: 35439611 DOI: 10.1016/j.ejmg.2022.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Oral-facial digital (OFD) syndrome is characterized by abnormalities of the face (hypertelorism and low set-ears), oral cavity (multiple frenula, lingual hamartoma, or lobulated tongue) and extremities (postaxial polydactyly). At least 19 genes have been implicated in the development of OFD syndrome. Herein, we report the case a 13-year-old patient with atrioventricular septal defect, moderate intellectual disability, epilepsy, and features of OFD, including multiple oral frenula, and postaxial polydactyly of the hands and feet. The patient had a de novo heterozygous variant in PRKACB: chr1(GRCh37):g.84700915T > C, c.1124T > C (NM_182948.4), p.(Phe375Ser). To date, four patients with pathogenic monoallelic variants in PRKACB have been reported, and the condition associated with these variants is referred to as Cardioacrofacial dysplasia-2 (CAFD2, MIM619143). Previously reported features of this condition include congenital heart disease (e.g., atrioventricular septal defect) and postaxial polydactyly, and two of the patients had multiple oral frenula. We suggest that a significant phenotypic overlap exists between CAFD2 and OFD syndrome, in that these patients especially share the features of postaxial polydactyly and multiple oral frenula. The phenotypic similarity between patients with CAFD2 and classic OFD syndrome with an OFD1 variant might be explained by the recent in vitro experimental finding that a protein kinase A subunit encoded by PRKACB directly phosphorylates the OFD1 protein. From the standpoint of genetic counseling, OFD syndrome type1, the prototypic form of OFD, exhibits an X-linked dominant inheritance pattern, whereas other forms of OFD syndrome exhibit an autosomal recessive inheritance pattern. Recognition of CAFD2 as a differential diagnosis or forme fruste of OFD syndrome suggests that an autosomal dominant pattern of inheritance should also be considered during genetic counseling.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Futagawa
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
25
|
Taylor SS, Søberg K, Kobori E, Wu J, Pautz S, Herberg FW, Skålhegg BS. The Tails of Protein Kinase A. Mol Pharmacol 2022; 101:219-225. [PMID: 34330820 PMCID: PMC9092481 DOI: 10.1124/molpharm.121.000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Protein kinase A (PKA) is a holoenzyme consisting of a regulatory (R)-subunit dimer and two catalytic (C)-subunits. There are two major families of C-subunits, Cα and Cβ, and four functionally nonredundant R-subunits (RIα, RIβ, RIIα, RIIβ). In addition to binding to and being regulated by the R-subunits, the C-subunits are regulated by two tail regions that each wrap around the N- and C-lobes of the kinase core. Although the C-terminal (Ct-) tail is classified as an intrinsically disordered region (IDR), the N-terminal (Nt-) tail is dominated by a strong helix that is flanked by short IDRs. In contrast to the Ct-tail, which is a conserved and highly regulated feature of all PKA, PKG, and protein kinase C protein kinase group (AGC) kinases, the Nt-tail has evolved more recently and is highly variable in vertebrates. Surprisingly and in contrast to the kinase core and the Ct-tail, the entire Nt-tail is not conserved in nonmammalian PKAs. In particular, in humans, Cβ actually represents a large family of C-subunits that are highly variable in their Nt-tail and also expressed in a highly tissue-specific manner. Although we know so much about the Cα1-subunit, we know almost nothing about these Cβ isoforms wherein Cβ2 is highly expressed in lymphocytes, and Cβ3 and Cβ4 isoforms account for ∼50% of PKA signaling in brain. Based on recent disease mutations, the Cβ proteins appear to be functionally important and nonredundant with the Cα isoforms. Imaging in retina also supports nonredundant roles for Cβ as well as isoform-specific localization to mitochondria. This represents a new frontier in PKA signaling. SIGNIFICANCE STATEMENT: How tails and adjacent domains regulate each protein kinase is a fundamental challenge for the biological community. Here we highlight how the N- and C-terminal tails of PKA (Nt-tails/Ct-tails) affect the structure and regulate the function of the kinase core and show the combinatorial variations that are introduced into the Nt-tail of the Cα- and Cβ-subunits in contrast to the Ct-tail, which is conserved across the entire AGC subfamily of protein kinases.
Collapse
Affiliation(s)
- Susan S Taylor
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Kristoffer Søberg
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Evan Kobori
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Jian Wu
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Sabine Pautz
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Friedrich W Herberg
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Bjørn Steen Skålhegg
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| |
Collapse
|
26
|
Huang RT, Guo YH, Yang CX, Gu JN, Qiu XB, Shi HY, Xu YJ, Xue S, Yang YQ. SOX7 loss-of-function variation as a cause of familial congenital heart disease. Am J Transl Res 2022; 14:1672-1684. [PMID: 35422912 PMCID: PMC8991148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION As the most frequent type of birth defect in humans, congenital heart disease (CHD) leads to a large amount of morbidity and mortality as well as a tremendous socioeconomic burden. Accumulating studies have convincingly substantiated the pivotal roles of genetic defects in the occurrence of familial CHD, and deleterious variations in a great number of genes have been reported to cause various types of CHD. However, owing to pronounced genetic heterogeneity, the hereditary components underpinning CHD remain obscure in most cases. This investigation aimed to identify novel genetic determinants underlying CHD. METHODS AND RESULTS A four-generation pedigree with high incidence of autosomal-dominant CHD was enrolled from the Chinese Han race population. Using whole-exome sequencing and Sanger sequencing assays of the family members available, a novel SOX7 variation in heterozygous status, NM_031439.4: c.310C>T; p.(Gln104*), was discovered to be in co-segregation with the CHD phenotype in the whole family. The truncating variant was absent in 500 unrelated healthy subjects utilized as control individuals. Functional measurements by dual-luciferase reporter analysis revealed that Gln104*-mutant SOX7 failed to transactivate its two important target genes, GATA4 and BMP2, which are both responsible for CHD. In addition, the nonsense variation invalidated the cooperative transactivation between SOX7 and NKX2.5, which is another recognized CHD-causative gene. CONCLUSION The present study demonstrates for the first time that genetically defective SOX7 predisposes to CHD, which sheds light on the novel molecular mechanism underpinning CHD, and implies significance for precise prevention and personalized treatment in a subset of CHD patients.
Collapse
Affiliation(s)
- Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai 200030, China
| | - Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan UniversityShanghai 200940, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| |
Collapse
|
27
|
Developing Biliary Atresia-like Model by Treating Human Liver Organoids with Polyinosinic:Polycytidylic Acid (Poly (I:C)). Curr Issues Mol Biol 2022; 44:644-653. [PMID: 35723330 PMCID: PMC8928947 DOI: 10.3390/cimb44020045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: We explored the feasibility of creating BA-like organoids by treating human liver organoids with Polyinosinic:Polycytidylic acid (Poly I:C). Methods: Organoids were developed from the liver parenchyma collected during Kasai portoenterostomy (BA) and surgery for other liver disorders (non-BA). The non-BA organoids were co-cultured with poly I:C (40 µg/mL). The organoid morphology from both samples was compared on day 17. RNA-sequencing was performed to examine the transcriptomic differences. Results: Non-BA liver organoids developed into well-expanded spherical organoids with a single-cell layer of epithelial cells and a single vacuole inside. After poly I:C treatment, the majority of these organoids developed into an aberrant morphology with a high index of similarity to BA organoids which are multi-vacuoled and/or unexpanded. RNA-sequencing analysis revealed that 19 inflammatory genes were commonly expressed in both groups. Conditional cluster analysis revealed several genes (SOCS6, SOCS6.1, ARAF, CAMK2G, GNA1C, ITGA2, PRKACA, PTEN) that are involved in immune-mediated signaling pathway had a distinct pattern of expression in the poly I:C treated organoids. This resembled the expression pattern in BA organoids (p < 0.05). Conclusions: Poly I:C treated human liver organoids exhibit morphology and genetic signature highly compatible to organoids developed from BA liver samples. They are potential research materials to study immune-mediated inflammation in BA.
Collapse
|
28
|
Bolger GB. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front Endocrinol (Lausanne) 2022; 13:1024423. [PMID: 36313756 PMCID: PMC9612118 DOI: 10.3389/fendo.2022.1024423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The cAMP-signaling cancers, which are defined by functionally-significant somatic mutations in one or more elements of the cAMP signaling pathway, have an unexpectedly wide range of cell origins, clinical manifestations, and potential therapeutic options. Mutations in at least 9 cAMP signaling pathway genes (TSHR, GPR101, GNAS, PDE8B, PDE11A, PRKARA1, PRKACA, PRKACB, and CREB) have been identified as driver mutations in human cancer. Although all cAMP-signaling pathway cancers are driven by mutation(s) that impinge on a single signaling pathway, the ultimate tumor phenotype reflects interactions between five critical variables: (1) the precise gene(s) that undergo mutation in each specific tumor type; (2) the effects of specific allele(s) in any given gene; (3) mutations in modifier genes (mutational "context"); (4) the tissue-specific expression of various cAMP signaling pathway elements in the tumor stem cell; and (5) and the precise biochemical regulation of the pathway components in tumor cells. These varying oncogenic mechanisms reveal novel and important targets for drug discovery. There is considerable diversity in the "druggability" of cAMP-signaling components, with some elements (GPCRs, cAMP-specific phosphodiesterases and kinases) appearing to be prime drug candidates, while other elements (transcription factors, protein-protein interactions) are currently refractory to robust drug-development efforts. Further refinement of the precise driver mutations in individual tumors will be essential for directing priorities in drug discovery efforts that target these mutations.
Collapse
|
29
|
Roa JN, Ma Y, Mikulski Z, Xu Q, Ilouz R, Taylor SS, Skowronska-Krawczyk D. Protein Kinase A in Human Retina: Differential Localization of Cβ, Cα, RIIα, and RIIβ in Photoreceptors Highlights Non-redundancy of Protein Kinase A Subunits. Front Mol Neurosci 2021; 14:782041. [PMID: 34867193 PMCID: PMC8636463 DOI: 10.3389/fnmol.2021.782041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Protein kinase A (PKA) signaling is essential for numerous processes but the subcellular localization of specific PKA regulatory (R) and catalytic (C) subunits has yet to be explored comprehensively. Additionally, the localization of the Cβ subunit has never been spatially mapped in any tissue even though ∼50% of PKA signaling in neuronal tissues is thought to be mediated by Cβ. Here we used human retina with its highly specialized neurons as a window into PKA signaling in the brain and characterized localization of PKA Cα, Cβ, RIIα, and RIIβ subunits. We found that each subunit presented a distinct localization pattern. Cα and Cβ were localized in all cell layers (photoreceptors, interneurons, retinal ganglion cells), while RIIα and RIIβ were selectively enriched in photoreceptor cells where both showed distinct patterns of co-localization with Cα but not Cβ. Only Cα was observed in photoreceptor outer segments and at the base of the connecting cilium. Cβ in turn, was highly enriched in mitochondria and was especially prominent in the ellipsoid of cone cells. Further investigation of Cβ using RNA BaseScope technology showed that two Cβ splice variants (Cβ4 and Cβ4ab) likely code for the mitochondrial Cβ proteins. Overall, our data indicates that PKA Cα, Cβ, RIIα, and RIIβ subunits are differentially localized and are likely functionally non-redundant in the human retina. Furthermore, Cβ is potentially important for mitochondrial-associated neurodegenerative diseases previously linked to PKA dysfunction.
Collapse
Affiliation(s)
- Jinae N Roa
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Yuliang Ma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Qianlan Xu
- Department of Physiology and Biophysics and Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics and Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
30
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
31
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
32
|
Silveira KC, Kanazawa TY, Silveira C, Lacarrubba-Flores MDJ, Carvalho BS, Cavalcanti DP. Molecular diagnosis in a cohort of 114 patients with rare skeletal dysplasias. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2021; 187:396-408. [PMID: 34529350 DOI: 10.1002/ajmg.c.31937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Molecular diagnosis is important to provide accurate genetic counseling of skeletal dysplasias (SD). Although next-generation sequencing (NGS) techniques are currently the preferred methods for analyzing these conditions, some of the published results have not shown a detection rate as high as it would be expected. The present study aimed to assess the diagnostic yield of targeted NGS combined with Sanger sequencing (SS) for low-coverage exons of genes of interest and exome sequencing (ES) in a series of patients with rare SD and use two patients as an example of our strategy. This study used two different in-house panels. Of 93 variants found in 88/114 (77%) patients, 57 are novel. The pathogenic variants found in the following genes: B3GALT6, PCYT1A, INPPL1, LIFR, of four patients were only detected by SS. In conclusion, the high diagnostic yield reached in the present study can be attributed to both a good selection of patients and the utilization of the SS for the insufficiently covered regions. Additionally, the two case reports-a patient with acrodysostosis related to PRKAR1A and another with ciliopathy associated with KIAA0753, add new and relevant clinical information to the current knowledge.
Collapse
Affiliation(s)
- Karina C Silveira
- Skeletal Dysplasias Group, Department of Translational Medicine, Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Thatiane Y Kanazawa
- Skeletal Dysplasias Group, Department of Translational Medicine, Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Cynthia Silveira
- Skeletal Dysplasias Group, Department of Translational Medicine, Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria D J Lacarrubba-Flores
- Skeletal Dysplasias Group, Department of Translational Medicine, Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Benilton S Carvalho
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, University of Campinas (UNICAMP), Campinas, Brazil
| | - Denise P Cavalcanti
- Skeletal Dysplasias Group, Department of Translational Medicine, Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
33
|
PKA Cβ: a forgotten catalytic subunit of cAMP-dependent protein kinase opens new windows for PKA signaling and disease pathologies. Biochem J 2021; 478:2101-2119. [PMID: 34115095 DOI: 10.1042/bcj20200867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits are encoded by the two major genes PRKACA and PRKACB, respectively. The PRKACA gene encodes two known splice variants, the ubiquitously expressed Cα1 and the sperm-specifically expressed Cα2. In contrast, the PRKACB gene encodes several splice variants expressed in a highly cell and tissue-specific manner. The Cβ proteins are called Cβ1, Cβ2, Cβ3, Cβ4 and so-called abc variants of Cβ3 and Cβ4. Whereas Cβ1 is ubiquitously expressed, Cβ2 is enriched in immune cells and the Cβ3, Cβ4 and their abc variants are solely expressed in neuronal cells. All Cα and Cβ splice variants share a kinase-conserved catalytic core and a C-terminal tail encoded by exons 2 through 10 in the PRKACA and PRKACB genes, respectively. All Cα and Cβ splice variants with the exception of Cα1 and Cβ1 are hyper-variable at the N-terminus. Here, we will discuss how the PRKACA and PRKACB genes have developed as paralogs that encode distinct and functionally non-redundant proteins. The fact that Cα and Cβ splice variant mutations are associated with numerous diseases further opens new windows for PKA-induced disease pathologies.
Collapse
|
34
|
Hammarsjö A, Pettersson M, Chitayat D, Handa A, Anderlid BM, Bartocci M, Basel D, Batkovskyte D, Beleza-Meireles A, Conner P, Eisfeldt J, Girisha KM, Chung BHY, Horemuzova E, Hyodo H, Korņejeva L, Lagerstedt-Robinson K, Lin AE, Magnusson M, Moosa S, Nayak SS, Nilsson D, Ohashi H, Ohashi-Fukuda N, Stranneheim H, Taylan F, Traberg R, Voss U, Wirta V, Nordgren A, Nishimura G, Lindstrand A, Grigelioniene G. High diagnostic yield in skeletal ciliopathies using massively parallel genome sequencing, structural variant screening and RNA analyses. J Hum Genet 2021; 66:995-1008. [PMID: 33875766 PMCID: PMC8472897 DOI: 10.1038/s10038-021-00925-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.
Collapse
Affiliation(s)
- Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, and Mt. Sinai Hospital, Toronto, ON, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Atsuhiko Handa
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Bartocci
- Department of Women's and Children's Health, Neonatology, Karolinska Institutet, Stockholm, Sweden
| | - Donald Basel
- Division of Medical Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Beleza-Meireles
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Peter Conner
- Department of Women's and Children's Health, Karolinska Institutet and Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Brian Hon-Yin Chung
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong and Shenzhen Hospital, Futian District, Shenzhen, China.,Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Eva Horemuzova
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet and Paediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Hironobu Hyodo
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Kotobashi, Sumida-ku, Tokyo, Japan
| | - Liene Korņejeva
- Department of Prenatal Diagnostics, Riga Maternity Hospital, Riga, Latvia
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Angela E Lin
- Medical Genetics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Måns Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Centre for Inherited Metabolic Diseases, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Shahida Moosa
- Medical Genetics, Tygerberg Hospital and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Daniel Nilsson
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Naoko Ohashi-Fukuda
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Kotobashi, Sumida-ku, Tokyo, Japan
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Centre for Inherited Metabolic Diseases, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Rasa Traberg
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ulrika Voss
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Gen Nishimura
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|