1
|
Bodas C, Felipe I, Chanez B, Lafarga M, Lopez de Maturana E, Martinez de Villarreal J, Del Pozo N, Malumbres M, Vargiu P, Cayuela A, Peset I, Connelly K, Hoskins J, Méndez R, Amundadottir L, Malats N, Ortega S, Real FX. A Common CTRB misfolding variant associated with pancreatic cancer risk causes ER stress and inflammation in mice. Gut 2025:gutjnl-2024-333406. [PMID: 40254337 DOI: 10.1136/gutjnl-2024-333406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Genome-wide association studies have identified an exon 6 CTRB2 deletion variant proposed to increase pancreatic cancer risk. OBJECTIVE To acquire evidence on its causal role, we developed and analysed a new mouse strain carrying an equivalent variant in Ctrb1, the mouse CTRB2 orthologue. DESIGN We used CRISPR/Cas9 to introduce a 707 bp deletion encompassing Ctrb1 exon 6 (Ctrb1Δexon6 ). This mutation closely mimics the human variant. Mice carrying the mutant allele were profiled at 3 months to assess their phenotype. RESULTS Ctrb1Δexon6 mutant mice express a truncated CTRB1 that accumulates in the endoplasmic reticulum (ER). The pancreas of homozygous mutant mice displays reduced chymotrypsin activity, total protein synthesis and amylase secretion. The histological aspect of the pancreas is inconspicuous but ultrastructural analysis shows evidence of dramatic ER stress and cytoplasmic and nuclear inclusions. Transcriptomic studies of the mutant pancreas reveal downregulation of the acinar programme and increased activity of ER stress-related and inflammatory pathways. Agr2 is one of the most upregulated genes in mutant pancreata. Heterozygous mice have an intermediate phenotype. Ctrb1Δexon6 mutant mice exhibit impaired recovery from acute caerulein-induced pancreatitis. Administration of tauroursodeoxycholic acid or sulindac partially alleviates the phenotype. A transcriptomic signature derived from the mutant pancreata is significantly enriched in normal human pancreas of CTRB2 exon 6 deletion variant carriers from the GTEx cohort. CONCLUSIONS This mouse strain provides evidence that the exon 6 deletion causes ER stress and inflammation and is an excellent model to understand its contribution to pancreatic cancer and identify preventive strategies.
Collapse
Affiliation(s)
- Cristina Bodas
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
| | - Brice Chanez
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Medical Oncology Department, Institut Paoli-Calmettes, Marseille, France
| | | | - Evangelina Lopez de Maturana
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Jaime Martinez de Villarreal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Marina Malumbres
- Mechanisms of Disease Group, Institut de Recerca Biomèdica, Barcelona, Spain
| | - Pierfrancesco Vargiu
- Genome Editing Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Ana Cayuela
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | - Isabel Peset
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | - Katelyn Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Jason Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Raúl Méndez
- Mechanisms of Disease Group, Institut de Recerca Biomèdica, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Laufey Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Núria Malats
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Sagrario Ortega
- Genome Editing Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Spanish National Biomedical Research Centre in Cancer, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Tutino M, Yu NYL, Hatzikotoulas K, Park YC, Kreitmaier P, Katsoula G, Berner R, Casteels K, Elding Larsson H, Kordonouri O, Ołtarzewski M, Szypowska A, Ott R, Weiss A, Winkler C, Zapardiel-Gonzalo J, Petrera A, Hauck SM, Bonifacio E, Ziegler AG, Zeggini E. Genetics of circulating proteins in newborn babies at high risk of type 1 diabetes. Nat Commun 2025; 16:3750. [PMID: 40263317 PMCID: PMC12015297 DOI: 10.1038/s41467-025-58972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
Type 1 diabetes is a chronic, autoimmune disease characterized by the destruction of insulin-producing β-cells in the pancreas. Early detection can facilitate timely intervention, potentially delaying or preventing disease onset. Circulating proteins reflect dysregulated biological processes and offer insights into early disease mechanisms. Here, we construct a genome-wide pQTL map of 1985 proteins in 695 newborn babies (median age 2 days) at increased genetic risk of developing Type 1 diabetes. We identify 535 pQTLs (352 cis-pQTLs, 183 trans-pQTLs), 62 of which characteristic of newborns. We show colocalization of pQTLs for CTRB1, APOBR, IL7R, CPA1, and PNLIPRP1 with Type 1 diabetes GWAS signals, and Mendelian randomization causally implicates each of these five proteins in the aetiology of Type 1 diabetes. Our study illustrates the utility of newborn molecular profiles for discovering potential drug targets for childhood diseases of significant concern.
Collapse
Affiliation(s)
- Mauro Tutino
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nancy Yiu-Lin Yu
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Young-Chan Park
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich, TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, Germany
- Technical University of Munich and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675, Munich, Germany
| | - Georgia Katsoula
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich, TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, Germany
- Technical University of Munich and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675, Munich, Germany
| | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Helena Elding Larsson
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Paediatrics, Skane University Hospital, Malmö/Lund, Lund, Sweden
| | - Olga Kordonouri
- Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Mariusz Ołtarzewski
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Agnieszka Szypowska
- Department of Paediatric Diabetology and Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Raffael Ott
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Andreas Weiss
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, Munich, Germany
| | - Jose Zapardiel-Gonzalo
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
- Technical University of Munich and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675, Munich, Germany.
| |
Collapse
|
3
|
Elgamal RM, Melton RL, Chiou J, McGrail CW, Gaulton KJ. Circulating pancreatic enzyme levels are a causal biomarker of type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311619. [PMID: 39148858 PMCID: PMC11326359 DOI: 10.1101/2024.08.08.24311619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Novel biomarkers of type 1 diabetes (T1D) are needed for earlier detection of disease and identifying therapeutic targets. We identified biomarkers of T1D by combining plasma cis and trans protein QTLs (pQTLs) for 2,922 proteins in the UK Biobank with a T1D genome-wide association study (GWAS) in 157k samples. T1D risk variants at over 20% of known loci colocalized with cis or trans pQTLs, and distinct sets of T1D loci colocalized with immune, pancreatic secretion, or gut-related proteins. We identified 23 proteins with evidence for a causal role in using pQTLs as genetic instruments in Mendelian Randomization which included multiple sensitivity analyses. Proteins increasing T1D risk were involved in immune processes (e.g. HLA-DRA) and, more surprisingly, T1D protective proteins were enriched in pancreatic secretions (e.g. CPA1), cholesterol metabolism (e.g. APOA1), and gut homeostasis. Genetic variants associated with plasma levels of T1D-protective pancreatic enzymes such as CPA1 were enriched in cis-regulatory elements in pancreatic exocrine and gut enteroendocrine cells, and the protective effects of CPA1 and other enzymes on T1D were consistent when using instruments specific to acinar cells. Finally, pancreatic enzymes had decreased acinar expression in T1D, including CPA1 which was altered prior to onset. Together, these results reveal causal biomarkers and highlight processes in the exocrine pancreas, immune system, and gut that modulate T1D risk.
Collapse
Affiliation(s)
- Ruth M Elgamal
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla CA
- Department of Pediatrics, UC San Diego, La Jolla CA
| | - Rebecca L Melton
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla CA
- Department of Pediatrics, UC San Diego, La Jolla CA
| | - Joshua Chiou
- Pfizer Research and Discovery, Pfizer Inc., Cambridge, MA
| | - Carolyn W McGrail
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla CA
- Department of Pediatrics, UC San Diego, La Jolla CA
| | | |
Collapse
|
4
|
Bodas C, Felipe I, Chanez B, Lafarga M, López de Maturana E, Martínez-de-Villarreal J, Del Pozo N, Malumbres M, Vargiu P, Cayuela A, Peset I, Connelly KE, Hoskins JW, Méndez R, Amundadottir LT, Malats N, Ortega S, Real FX. A common CTRB misfolding variant associated with pancreatic cancer risk causes ER stress and inflammation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604778. [PMID: 39211105 PMCID: PMC11361044 DOI: 10.1101/2024.07.23.604778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Genome wide association studies have identified an exon 6 CTRB2 deletion variant that associates with increased risk of pancreatic cancer. To acquire evidence on its causal role, we developed a new mouse strain carrying an equivalent variant in Ctrb1 , the mouse orthologue of CTRB2 . Design We used CRISPR/Cas9 to introduce a 707bp deletion in Ctrb1 encompassing exon 6 ( Ctrb1 Δexon6 ). This mutation closely mimics the human deletion variant. Mice carrying the mutant allele were extensively profiled at 3 months to assess their phenotype. Results Ctrb1 Δexon6 mutant mice express a truncated CTRB1 that accumulates in the ER. The pancreas of homozygous mutant mice displays reduced chymotrypsin activity and total protein synthesis. The histological aspect of the pancreas is inconspicuous but ultrastructural analysis shows evidence of dramatic ER stress and cytoplasmic and nuclear inclusions. Transcriptomic analyses of the pancreas of mutant mice reveals acinar program down-regulation and increased activity of ER stress-related and inflammatory pathways. Heterozygous mice have an intermediate phenotype. Agr2 is one of the most up-regulated genes in mutant pancreata. Ctrb1 Δexon6 mice exhibit impaired recovery from acute caerulein-induced pancreatitis. Administration of TUDCA or sulindac partially alleviates the phenotype. A transcriptomic signature derived from the mutant pancreata is significantly enriched in normal human pancreas of CTRB2 exon 6 deletion variant carriers from the GTEx cohort. Conclusions This mouse strain provides formal evidence that the Ctrb1 Δexon6 variant causes ER stress and inflammation in vivo , providing an excellent model to understand its contribution to pancreatic ductal adenocarcinoma development and to identify preventive strategies. SUMMARY BOX What is already known about this subject?: - CTRB2 is one of the most abundant proteins produced by human pancreatic acinar cells. - A common exon 6 deletion variant in CTRB2 has been associated with an increased risk of pancreatic ductal adenocarcinoma. - Misfolding of digestive enzymes is associated with pancreatic pathology.What are the new findings?: - We developed a novel genetic model that recapitulates the human CTRB2 deletion variant in the mouse orthologue, Ctrb1 . - Truncated CTRB1 misfolds and accumulates in the ER; yet, mutant mice display a histologically normal pancreas at 3 months age.- CTRB1 and associated chaperones colocalize in the ER, the cytoplasm, and the nucleus of acinar cells.- Transcriptomics analysis reveals reduced activity of the acinar program and increased activity of pathways involved in ER stress, unfolded protein response, and inflammation.- Mutant mice are sensitized to pancreatic damage and do not recover properly from a mild caerulein-induced pancreatitis.- TUDCA administration partially relieves the ER stress in mutant mice.How might it impact on clinical practice in the foreseeable future?: - The new mouse model provides a tool to identify the mechanisms leading to increased pancreatic cancer risk in CTRB2 exon 6 carriers. - The findings suggest that drugs that cause ER stress relief and/or reduce inflammation might provide preventive opportunities.
Collapse
|
5
|
Li S, Gai K, Dong K, Zhang Y, Zhang S. High-density generation of spatial transcriptomics with STAGE. Nucleic Acids Res 2024; 52:4843-4856. [PMID: 38647109 PMCID: PMC11109953 DOI: 10.1093/nar/gkae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
Spatial transcriptome technologies have enabled the measurement of gene expression while maintaining spatial location information for deciphering the spatial heterogeneity of biological tissues. However, they were heavily limited by the sparse spatial resolution and low data quality. To this end, we develop a spatial location-supervised auto-encoder generator STAGE for generating high-density spatial transcriptomics (ST). STAGE takes advantage of the customized supervised auto-encoder to learn continuous patterns of gene expression in space and generate high-resolution expressions for given spatial coordinates. STAGE can improve the low quality of spatial transcriptome data and smooth the generated manifold of gene expression through the de-noising function on the latent codes of the auto-encoder. Applications to four ST datasets, STAGE has shown better recovery performance for down-sampled data than existing methods, revealed significant tissue structure specificity, and enabled robust identification of spatially informative genes and patterns. In addition, STAGE can be extended to three-dimensional (3D) stacked ST data for generating gene expression at any position between consecutive sections for shaping high-density 3D ST configuration.
Collapse
Affiliation(s)
- Shang Li
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuo Gai
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangning Dong
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyang Zhang
- School of Software, Yunnan University, Kunming 650091, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Smith-Byrne K, Hedman Å, Dimitriou M, Desai T, Sokolov AV, Schioth HB, Koprulu M, Pietzner M, Langenberg C, Atkins J, Penha RC, McKay J, Brennan P, Zhou S, Richards BJ, Yarmolinsky J, Martin RM, Borlido J, Mu XJ, Butterworth A, Shen X, Wilson J, Assimes TL, Hung RJ, Amos C, Purdue M, Rothman N, Chanock S, Travis RC, Johansson M, Mälarstig A. Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers. Nat Commun 2024; 15:3621. [PMID: 38684708 PMCID: PMC11059161 DOI: 10.1038/s41467-024-46834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.
Collapse
Affiliation(s)
- Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK.
| | - Åsa Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Trishna Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Alexandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schioth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Joshua Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Ricardo Cortez Penha
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Brent J Richards
- Departments of Medicine (Endocrinology), Human Genetics, Epidemiology and Biostatistics, McGill University, Montréal, QC, Canada
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Joana Borlido
- Cancer Immunology Discovery, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Xinmeng J Mu
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xia Shen
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jim Wilson
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine and the Cardiovascular Institute, School of Medicine, Stanford University, Stanford, USA
| | - Rayjean J Hung
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Christopher Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, USA
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Hujoel MLA, Handsaker RE, Sherman MA, Kamitaki N, Barton AR, Mukamel RE, Terao C, McCarroll SA, Loh PR. Protein-altering variants at copy number-variable regions influence diverse human phenotypes. Nat Genet 2024; 56:569-578. [PMID: 38548989 PMCID: PMC11018521 DOI: 10.1038/s41588-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/08/2024] [Indexed: 04/09/2024]
Abstract
Copy number variants (CNVs) are among the largest genetic variants, yet CNVs have not been effectively ascertained in most genetic association studies. Here we ascertained protein-altering CNVs from UK Biobank whole-exome sequencing data (n = 468,570) using haplotype-informed methods capable of detecting subexonic CNVs and variation within segmental duplications. Incorporating CNVs into analyses of rare variants predicted to cause gene loss of function (LOF) identified 100 associations of predicted LOF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 conferred one of the strongest protective effects of gene LOF on hypertension risk (odds ratio = 0.86 (0.82-0.90)). Protein-coding variation in rapidly evolving gene families within segmental duplications-previously invisible to most analysis methods-generated some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.
Collapse
Affiliation(s)
- Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Serinus Biosciences Inc., New York, NY, USA
| | - Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Lee KY, Beatson EL, Steinberg SM, Chau CH, Price DK, Figg WD. Bridging Health Disparities: a Genomics and Transcriptomics Analysis by Race in Prostate Cancer. J Racial Ethn Health Disparities 2024; 11:492-504. [PMID: 36810713 PMCID: PMC10686215 DOI: 10.1007/s40615-023-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
As the era of cancer genomics expands, disproportionate rates of prostate cancer incidence and mortality by race have demonstrated increasing relevance in clinical settings. While Black men are most particularly affected, as data has historically shown, the opposite is observed for Asian men, thus creating a basis for exploring genomic pathways potentially involved in mediating these opposing trends. Studies on racial differences are limited by sample size, but recent expanding collaborations between research institutions may improve these imbalances to enhance investigations on health disparities from the genomics front. In this study, we performed a race genomics analysis using GENIE v11, released in January 2022, to investigate mutation and copy number frequencies of select genes in both primary and metastatic patient tumor samples. Further, we investigate the TCGA race cohort to conduct an ancestry analysis and to identify differentially expressed genes highly upregulated in one race and subsequently downregulated in another. Our findings highlight pathway-oriented genetic mutation frequencies characterized by race, and further, we identify candidate gene transcripts that have differential expression between Black and Asian men.
Collapse
Affiliation(s)
- Kristi Y Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erica L Beatson
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Németh BZ, Nagy ZA, Kiss B, Gellén G, Schlosser G, Demcsák A, Geisz A, Hegyi E, Sahin-Tóth M, Pál G. Substrate specificity of human chymotrypsin-like protease (CTRL) characterized by phage display-selected small-protein inhibitors. Pancreatology 2023; 23:742-749. [PMID: 37604733 PMCID: PMC10528761 DOI: 10.1016/j.pan.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Chymotrypsin-like protease (CTRL) is one of the four chymotrypsin isoforms expressed in the human exocrine pancreas. Human genetic and experimental evidence indicate that chymotrypsins B1, B2, and C (CTRB1, CTRB2 and CTRC) are important not only for protein digestion but also for protecting the pancreas against pancreatitis by degrading potentially harmful trypsinogen. CTRL has not been reported to play a similar role, possibly due to its low abundance and/or different substrate specificity. To address this problem, we investigated the specificity of the substrate-binding groove of CTRL by evolving the substrate-like canonical loop of the Schistocerca gregaria proteinase inhibitor 2 (SGPI-2), a small-protein reversible chymotrypsin inhibitor to bind CTRL. We found that phage-associated SGPI-2 variants with strong affinity to CTRL were similar to those evolved previously against CTRB1, CTRB2 or bovine chymotrypsin A (bCTRA), indicating comparable substrate specificity. When tested as recombinant proteins, SGPI-2 variants inhibited CTRL with similar or slightly weaker affinity than bCTRA, confirming that CTRL is a typical chymotrypsin. Interestingly, an SGPI-2 variant selected with a Thr29His mutation in its reactive loop was found to inhibit CTRL strongly, but it was digested rapidly by bCTRA. Finally, CTRL was shown to degrade human anionic trypsinogen, however, at a much slower rate than CTRB2, suggesting that CTRL may not have a significant role in the pancreatic defense mechanisms against inappropriate trypsinogen activation and pancreatitis.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Zoltán Attila Nagy
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Gabriella Gellén
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, Budapest, Hungary
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrea Geisz
- Department of Surgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, H-7624, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|
10
|
Hujoel ML, Handsaker RE, Sherman MA, Kamitaki N, Barton AR, Mukamel RE, Terao C, McCarroll SA, Loh PR. Hidden protein-altering variants influence diverse human phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544066. [PMID: 37333244 PMCID: PMC10274781 DOI: 10.1101/2023.06.07.544066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Structural variants (SVs) comprise the largest genetic variants, altering from 50 base pairs to megabases of DNA. However, SVs have not been effectively ascertained in most genetic association studies, leaving a key gap in our understanding of human complex trait genetics. We ascertained protein-altering SVs from UK Biobank whole-exome sequencing data (n=468,570) using haplotype-informed methods capable of detecting sub-exonic SVs and variation within segmental duplications. Incorporating SVs into analyses of rare variants predicted to cause gene loss-of-function (pLoF) identified 100 associations of pLoF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 appeared to confer one of the strongest protective effects of gene LoF on hypertension risk (OR = 0.86 [0.82-0.90]). Protein-coding variation in rapidly-evolving gene families within segmental duplications-previously invisible to most analysis methods-appeared to generate some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype, and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.
Collapse
Affiliation(s)
- Margaux L.A. Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert E. Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A. Sherman
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison R. Barton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ronen E. Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Steven A. McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Stoffel EM, Brand RE, Goggins M. Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention. Gastroenterology 2023; 164:752-765. [PMID: 36804602 DOI: 10.1053/j.gastro.2023.02.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Pancreatic cancer usually results in poor survival with limited options for treatment, as most affected individuals present with advanced disease. Early detection of preinvasive pancreatic neoplasia and identifying molecular therapeutic targets provide opportunities for extending survival. Although screening for pancreatic cancer is currently not recommended for the general population, emerging evidence indicates that pancreatic surveillance can improve outcomes for individuals in certain high-risk groups. Changes in the epidemiology of pancreatic cancer, experience from pancreatic surveillance, and discovery of novel biomarkers provide a roadmap for new strategies for pancreatic cancer risk assessment, early detection, and prevention.
Collapse
Affiliation(s)
- Elena M Stoffel
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael Goggins
- Departments of Medicine and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Bourgault J, Abner E, Manikpurage HD, Pujol-Gualdo N, Laisk T, Gobeil É, Gagnon E, Girard A, Mitchell PL, Thériault S, Esko T, Mathieu P, Arsenault BJ. Proteome-Wide Mendelian Randomization Identifies Causal Links Between Blood Proteins and Acute Pancreatitis. Gastroenterology 2023; 164:953-965.e3. [PMID: 36736436 DOI: 10.1053/j.gastro.2023.01.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) is a complex disease and the leading cause of gastrointestinal disease-related hospital admissions. Few therapeutic options exist for AP prevention. Blood proteins with causal evidence may represent promising drug targets, but few have been causally linked with AP. Our objective was to identify blood proteins linked with AP by combining genome-wide association meta-analysis and proteome-wide Mendelian randomization (MR) studies. METHODS We performed a genome-wide association meta-analysis totalling 10,630 patients with AP and 844,679 controls and a series of inverse-variance weighted MR analyses using cis-acting variants on 4719 blood proteins from the deCODE study (n = 35,559) and 4979 blood proteins from the Fenland study (n = 10,708). RESULTS The meta-analysis identified genome-wide significant variants (P <5 × 10-8) at 5 loci (ABCG5/8, TWIST2, SPINK1, PRSS2 and MORC4). The proteome-wide MR analyses identified 68 unique blood proteins that may causally be associated with AP, including 29 proteins validated in both data sets. Functional annotation of these proteins confirmed expression of many proteins in metabolic tissues responsible for digestion and energy metabolism, such as the esophagus, adipose tissue, and liver as well as acinar cells of the pancreas. Genetic colocalization and investigations into the druggable genome also identified potential drug targets for AP. CONCLUSIONS This large genome-wide association study meta-analysis for AP identified new variants linked with AP as well as several blood proteins that may be causally associated with AP. This study provides new information on the genetic architecture of this disease and identified pathways related to AP, which may be further explored as possible therapeutic targets for AP.
Collapse
Affiliation(s)
- Jérôme Bourgault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hasanga D Manikpurage
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Natàlia Pujol-Gualdo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Émilie Gobeil
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Arnaud Girard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Patricia L Mitchell
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Sébastien Thériault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
13
|
Kawamoto M, Yoshida T, Tamura K, Dbouk M, Canto MI, Burkhart R, He J, Roberts NJ, Klein AP, Goggins M. Endoplasmic stress-inducing variants in carboxyl ester lipase and pancreatic cancer risk. Pancreatology 2022; 22:959-964. [PMID: 35995657 PMCID: PMC9669157 DOI: 10.1016/j.pan.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress-inducing variants in several pancreatic secretory enzymes have been associated with pancreatic disease. Multiple variants in CEL, encoding carboxyl ester lipase, are known to cause maturity-onset diabetes of the young (MODY8) but have not been implicated in pancreatic cancer risk. METHODS The prevalence of ER stress-inducing variants in the CEL gene was compared among pancreatic cancer cases vs. controls. Variants were identified by next-generation sequencing and confirmed by Sanger sequencing. Variants of uncertain significance (VUS) were assessed for their effect on the secretion of CEL protein and variants with reduced protein secretion were evaluated to determine if they induced endoplasmic reticulum stress. RESULTS ER stress-inducing CEL variants were found in 34 of 986 cases with sporadic pancreatic ductal adenocarcinoma, and 21 of 1045 controls (P = 0.055). Most of the variants were either the CEL-HYB1 variant, the I488T variant, or the combined CEL-HYB1/I488T variant; one case had a MODY8 variant. CONCLUSION This case/control analysis finds ER stress-inducing CEL variants are not associated with an increased likelihood of having pancreatic cancer.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Takeichi Yoshida
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Koji Tamura
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mohamad Dbouk
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Marcia Irene Canto
- Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Jin He
- Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; The Sol Goldman Pancreatic Cancer Research Center, And the Bloomberg School of Public Health, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
14
|
Atla G, Bonàs-Guarch S, Cuenca-Ardura M, Beucher A, Crouch DJM, Garcia-Hurtado J, Moran I, Irimia M, Prasad RB, Gloyn AL, Marselli L, Suleiman M, Berney T, de Koning EJP, Kerr-Conte J, Pattou F, Todd JA, Piemonti L, Ferrer J. Genetic regulation of RNA splicing in human pancreatic islets. Genome Biol 2022; 23:196. [PMID: 36109769 PMCID: PMC9479353 DOI: 10.1186/s13059-022-02757-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. RESULTS We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. CONCLUSIONS These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.
Collapse
Affiliation(s)
- Goutham Atla
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Silvia Bonàs-Guarch
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Mirabai Cuenca-Ardura
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
| | - Anthony Beucher
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Daniel J M Crouch
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Javier Garcia-Hurtado
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
| | - Ignasi Moran
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Present Address: Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Clinical Research Center, Malmö, Sweden
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Hubrecht Institute/KNAW, Utrecht, the Netherlands
| | - Julie Kerr-Conte
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000, Lille, France
| | - Francois Pattou
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000, Lille, France
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Jorge Ferrer
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
15
|
Abstract
Individuals at increased risk of developing pancreatic cancer, including those with a significant family history of the disease and those with pancreatic cancer susceptibility gene variants, can benefit from pancreas surveillance. Most pancreatic cancers diagnosed during surveillance are early-stage and such patients can achieve long-term survival. Determining who should undergo pancreas surveillance is still a work-in-progress, but the main tools clinicians use to estimate an individual's risk of pancreatic cancer are patient's age, the extent of their family history of pancreatic cancer, and whether or not they have a pancreatic cancer susceptibility gene mutation.
Collapse
Affiliation(s)
- Helena Saba
- Departments of Pathology, Johns Hopkins Medical Institutions, CRB2 351, 1550 Orleans Street, Baltimore, MD 21231, USA
| | - Michael Goggins
- Departments of Pathology, Johns Hopkins Medical Institutions, CRB2 351, 1550 Orleans Street, Baltimore, MD 21231, USA; Departments of Medicine, Johns Hopkins Medical Institutions, CRB2 351, 1550 Orleans Street, Baltimore, MD 21231, USA; Departments of Oncology, Johns Hopkins Medical Institutions, CRB2 351, 1550 Orleans Street, Baltimore, MD 21231, USA; Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, CRB2 351, 1550 Orleans Street, Baltimore, MD 21231, USA.
| |
Collapse
|
16
|
Németh BZ, Demcsák A, Micsonai A, Kiss B, Schlosser G, Geisz A, Hegyi E, Sahin-Tóth M, Pál G. Arg236 in human chymotrypsin B2 (CTRB2) is a key determinant of high enzyme activity, trypsinogen degradation capacity, and protection against pancreatitis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140831. [PMID: 35934298 PMCID: PMC9426946 DOI: 10.1016/j.bbapap.2022.140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Pancreatic chymotrypsins (CTRs) are digestive proteases that in humans include CTRB1, CTRB2, CTRC, and CTRL. The highly similar CTRB1 and CTRB2 are the products of gene duplication. A common inversion at the CTRB1-CTRB2 locus reverses the expression ratio of these isoforms in favor of CTRB2. Carriers of the inversion allele are protected against the inflammatory disorder pancreatitis presumably via their increased capacity for CTRB2-mediated degradation of harmful trypsinogen. To reveal the protective molecular determinants of CTRB2, we compared enzymatic properties of CTRB1, CTRB2, and bovine CTRA (bCTRA). By evolving substrate-like Schistocerca gregaria proteinase inhibitor 2 (SGPI-2) inhibitory loop variants against the chymotrypsins, we found that the substrate binding groove of the three enzymes had overlapping specificities. Based on the selected sequences, we produced eight SGPI-2 variants. Remarkably, CTRB2 and bCTRA bound these inhibitors with significantly higher affinity than CTRB1. Moreover, digestion of peptide substrates, beta casein, and human anionic trypsinogen unequivocally confirmed that CTRB2 is a generally better enzyme than CTRB1 while the potency of bCTRA lies between those of the human isoforms. Unexpectedly, mutation D236R alone converted CTRB1 to a CTRB2-like high activity protease. Modeling indicated that in CTRB1 Met210 partially obstructed the substrate binding groove, which was relieved by the D236R mutation. Taken together, we identify CTRB2 Arg236 as a key positive determinant, while CTRB1 Asp236 as a negative determinant for chymotrypsin activity. These findings strongly support the concept that in carriers of the CTRB1-CTRB2 inversion allele, the superior trypsinogen degradation capacity of CTRB2 protects against pancreatitis.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California 90095, USA
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Andrea Geisz
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
17
|
Colocalization analysis of pancreas eQTLs with risk loci from alcoholic and novel non-alcoholic chronic pancreatitis GWAS suggests potential disease causing mechanisms. Pancreatology 2022; 22:449-456. [PMID: 35331647 DOI: 10.1016/j.pan.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) identified genome-wide significant risk loci in chronic pancreatitis and investigated underlying disease causing mechanisms by simple overlaps with expression quantitative trait loci (eQTLs), a procedure which may often result in false positive conclusions. METHODS We conducted a GWAS in 584 non-alcoholic chronic pancreatitis (NACP) patients and 6040 healthy controls. Next, we applied Bayesian colocalization analysis of identified genome-wide significant risk loci from both, our recently published alcoholic chronic pancreatitis (ACP) and the novel NACP dataset, with pancreas eQTLs from the GTEx V8 European cohort to prioritize candidate causal genes and extracted credible sets of shared causal variants. RESULTS Variants at the CTRC (p = 1.22 × 10-21) and SPINK1 (p = 6.59 × 10-47) risk loci reached genome-wide significance in NACP. CTRC risk variants colocalized with CTRC eQTLs in ACP (PP4 = 0.99, PP4/PP3 = 95.51) and NACP (PP4 = 0.99, PP4/PP3 = 95.46). For both diseases, the 95% credible set of shared causal variants consisted of rs497078 and rs545634. CLDN2-MORC4 risk variants colocalized with CLDN2 eQTLs in ACP (PP4 = 0.98, PP4/PP3 = 42.20) and NACP (PP4 = 0.67, PP4/PP3 = 7.18), probably driven by the shared causal variant rs12688220. CONCLUSIONS A shared causal CTRC risk variant might unfold its pathogenic effect in ACP and NACP by reducing CTRC expression, while the CLDN2-MORC4 shared causal variant rs12688220 may modify ACP and NACP risk by increasing CLDN2 expression.
Collapse
|
18
|
Kawamoto M, Kohi S, Abe T, Dbouk M, Macgregor-Das A, Koi C, Song KB, Borges M, Sugimine R, Laheru D, Hruban RH, Roberts N, Klein AP, Goggins M. Endoplasmic stress-inducing variants in CPB1 and CPA1 and risk of pancreatic cancer: A case-control study and meta-analysis. Int J Cancer 2021; 150:1123-1133. [PMID: 34817877 DOI: 10.1002/ijc.33883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
Gene variants that encode pancreatic enzymes with impaired secretion can induce pancreatic acinar endoplasmic reticulum (ER) stress, cellular injury and pancreatitis. The role of such variants in pancreatic cancer risk has received little attention. We compared the prevalence of ER stress-inducing variants in CPA1 and CPB1 in patients with pancreatic ductal adenocarcinoma (PDAC cases), enrolled in the National Familial Pancreas Tumor Registry, to their prevalence in noncancer controls in the Genome Aggregation Database (gnomAD). Variants of unknown significance were expressed and variants with reduced secretion assessed for ER stress induction. In vitro assessments were compared with software predictions of variant function. Protein variant software was used to assess variants found in only one gnomAD control ("n-of-one" variants). A meta-analysis of prior PDAC case/control studies was also performed. Of the 1385 patients with PDAC, 0.65% were found to harbor an ER stress-inducing variant in CPA1 or CPB1, compared to 0.17% of the 64 026 controls (odds ratio [OR]: 3.80 [1.92-7.51], P = .0001). ER stress-inducing variants in the CPA1 gene were identified in 4 of 1385 PDAC cases vs 77 of 64 026 gnomAD controls (OR: 2.4 [0.88-6.58], P = .087), and variants in CPB1 were detected in 5 of 1385 cases vs 33 of 64 026 controls (OR: 7.02 [2.74-18.01], P = .0001). Meta-analysis demonstrated strong associations for pancreatic cancer and ER-stress inducing variants for both CPA1 (OR: 3.65 [1.58-8.39], P < .023) and CPB1 (OR: 9.51 [3.46-26.15], P < .001). Rare variants in CPB1 and CPA1 that induce ER stress are associated with increased odds of developing pancreatic cancer.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shiro Kohi
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Toshiya Abe
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mohamad Dbouk
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Chiho Koi
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ki-Byung Song
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Borges
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ryo Sugimine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Nicholas Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|