1
|
Bayona‐Bafaluy P, Sanz‐Pons J, Esteban O, Bueno‐Borghi L, Ruiz‐Pesini E. Risk Factors Associated With Leber Hereditary Optic Neuropathy due to Rare Mutations in Mitochondrial DNA-Encoded Respiratory Complex I Subunits. Clin Genet 2025; 107:505-510. [PMID: 39711423 PMCID: PMC11972999 DOI: 10.1111/cge.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
An in-depth analysis of susceptibility factors modifying the penetrance of rare Leber hereditary optic neuropathy-causing mutations in respiratory complex I genes encoded in mitochondrial deoxyribonucleic acid has not been performed. To bridge this gap, we conducted a review of the literature on rare mutations associated with LHON, selected those with substantial evidence of pathogenicity, and performed an in-depth analysis of the various pedigrees. Examining the influences that modify the penetrance of the classical mutations associated with this disease may offer insights into susceptibility factors in individuals carrying the rare mutations.
Collapse
Affiliation(s)
- Pilar Bayona‐Bafaluy
- Departamento de Bioquímica, Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria (IIS) de AragónZaragozaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - Javier Sanz‐Pons
- Departamento de Bioquímica, Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
| | - Olivia Esteban
- Instituto de Investigación Sanitaria (IIS) de AragónZaragozaSpain
- Servicio de OftalmologíaHospital Clínico Universitario Lozano BlesaZaragozaSpain
| | - Luca Bueno‐Borghi
- Servicio de OftalmologíaHospital Clínico Universitario Lozano BlesaZaragozaSpain
| | - Eduardo Ruiz‐Pesini
- Departamento de Bioquímica, Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria (IIS) de AragónZaragozaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
De Lott LB. Optic Neuropathies. Continuum (Minneap Minn) 2025; 31:381-406. [PMID: 40179401 DOI: 10.1212/con.0000000000001545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
OBJECTIVE This article highlights the clinical features, evaluation, and management of optic neuropathies commonly encountered in clinical practice. LATEST DEVELOPMENTS Optic neuropathies encompass all conditions affecting the optic nerve, including those caused by ischemia, inflammation (including infections and autoimmune causes), elevated intracranial pressure, compression and infiltration, toxins, nutritional deficiencies, and hereditary diseases. Surgical and medical treatments targeting the specific causes of optic neuropathies are rapidly expanding, such as surgical options to address papilledema in patients with elevated intracranial pressure and the development of gene therapies for hereditary optic neuropathies. These advances underscore the importance of swift and accurate assessments to identify the cause of optic nerve dysfunction. The evaluation of the patient with an optic neuropathy begins with a careful history and examination. Signs of optic nerve dysfunction include decreased visual acuity, color vision impairment, a relative afferent pupillary defect in the affected eye, and visual field deficits. Neuroimaging of the orbits is one of the most useful tests in determining the cause of an optic neuropathy. Additional diagnostic testing and the formulation of a treatment plan should be guided by the differential diagnosis. ESSENTIAL POINTS Optic neuropathies are often misdiagnosed because of errors in eliciting or interpreting the history and physical examination. A systematic approach to identifying the clinical manifestations distinctive to specific optic neuropathies is imperative for directing diagnostic assessments, formulating tailored treatment regimens, and identifying broader central nervous system and systemic disorders.
Collapse
|
3
|
Kearns LS, Staffieri SE, Mackey DA. Leber Hereditary Optic Neuropathy: Support, Genetic Prediction and Accurate Genetic Counselling Enhance Family Planning Choices. Clin Exp Ophthalmol 2025; 53:292-301. [PMID: 39895156 PMCID: PMC11962693 DOI: 10.1111/ceo.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025]
Abstract
With the increased availability of genetic testing and the addition of mitochondrial genetic variants on disease panels, accurate genetic counselling for individuals and families affected by, or at risk of, Leber hereditary optic neuropathy (LHON) is becoming increasingly relevant. Challenges in providing genetic counselling for LHON include its mitochondrial inheritance pattern, different haplogroups, incomplete penetrance and that it predominantly affects males. Accurate genetic counselling aims to avoid incorrect disease-risk assessment and delays in either diagnosis or implementation of psychosocial support. Families are also empowered to make autonomous health decisions regarding potential trigger factors for LHON vision loss and informed reproductive choices. Using clinical vignettes, this review demonstrates that an increased awareness of LHON amongst eye care, general and genetic health professionals can address challenges and misconceptions.
Collapse
Affiliation(s)
- Lisa S. Kearns
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Sandra E. Staffieri
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
- Ophthalmology, Department of SurgeryUniversity of MelbourneParkvilleVictoriaAustralia
| | - David A. Mackey
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
- Ophthalmology, Department of SurgeryUniversity of MelbourneParkvilleVictoriaAustralia
- Centre for Ophthalmology and Visual Science, Lions Eye InstituteUniversity of Western AustraliaNedlandsWestern AustraliaAustralia
- School of Medicine, Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
4
|
Mackey DA, Staffieri SE, Lopez Sanchez MIG, Kearns LS. Family and genetic counseling in Leber hereditary optic neuropathy. Ophthalmic Genet 2025; 46:101-109. [PMID: 39833125 DOI: 10.1080/13816810.2025.2451175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/25/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
AIM Leber hereditary optic neuropathy (LHON) predominantly manifests during adolescence or young adulthood, resulting in sudden and profound vision loss in individuals who previously had normal vision. This abrupt change significantly impacts daily life, necessitating emotional support, counseling and low-vision rehabilitative services to help affected individuals cope with the shock and adapt to their residual vision. The psychosocial burden of dealing with vision loss extends beyond the individuals directly affected by LHON, affecting matrilineal relatives who face the dual challenges of grieving for their loved one's vision loss and managing their own uncertainty about potential vision loss and its familial implications. METHOD We reviewed key information that needs to be obtained prior to genetic counseling for LHON. We reviewed key counseling issues within LHON-affected families and the issues pending several subgroups of family members with distinct and varying genetic counseling needs. RESULTS Family subgroups requiring specific counseling issues include the individuals affected by LHON, their mother, siblings, father, partner, and children. Genetic counseling plays an integral part of clinical care in families affected by LHON, providing tailored support and information to each subgroup. CONCLUSION To provide accurate information to families and guide them toward potential supports, treatments and preventive measures, health professionals need to be aware of the factors influencing visual recovery and individual risk of vision loss.
Collapse
Affiliation(s)
- David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Parkville, Victoria, Australia
| | - M Isabel G Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| |
Collapse
|
5
|
La Morgia C, Cascavilla ML, De Negri AM, Romano M, Canalini F, Rossi S, Centonze D, Filippi M. Recognizing Leber's Hereditary Optic Neuropathy to avoid delayed diagnosis and misdiagnosis. Front Neurol 2024; 15:1466275. [PMID: 39364415 PMCID: PMC11448350 DOI: 10.3389/fneur.2024.1466275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is a maternally inherited optic nerve disease primarily caused by mutations in mitochondrial DNA (mtDNA). The peak of onset is typically between 15 and 30 years, but variability exists. Misdiagnosis, often as inflammatory optic neuritis, delays treatment, compounded by challenges in timely genetic diagnosis. Given the availability of a specific treatment for LHON, its early diagnosis is imperative to ensure therapeutic appropriateness. This work gives an updated guidance about LHON differential diagnosis to clinicians dealing also with multiple sclerosi and neuromyelitis optica spectrtum disorders-related optic neuritis. LHON diagnosis relies on clinical signs and paraclinical evaluations. Differential diagnosis in the acute phase primarily involves distinguishing inflammatory optic neuropathies, considering clinical clues such as ocular pain, fundus appearance and visual recovery. Imaging analysis obtained with Optical Coherence Tomography (OCT) assists clinicians in early recognition of LHON and help avoiding misdiagnosis. Genetic testing for the three most common LHON mutations is recommended initially, followed by comprehensive mtDNA sequencing if suspicion persists despite negative results. We present and discuss crucial strategies for accurate diagnosis and management of LHON cases.
Collapse
Affiliation(s)
- Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Marcello Romano
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | | | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Rigobello L, Lugli F, Caporali L, Bartocci A, Fadanni J, Zerbetto F, Iommarini L, Carelli V, Ghelli AM, Musiani F. A computational study to assess the pathogenicity of single or combinations of missense variants on respiratory complex I. Int J Biol Macromol 2024; 273:133086. [PMID: 38871105 DOI: 10.1016/j.ijbiomac.2024.133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Variants found in the respiratory complex I (CI) subunit genes encoded by mitochondrial DNA can cause severe genetic diseases. However, it is difficult to establish a priori whether a single or a combination of CI variants may impact oxidative phosphorylation. Here we propose a computational approach based on coarse-grained molecular dynamics simulations aimed at investigating new CI variants. One of the primary CI variants associated with the Leber hereditary optic neuropathy (m.14484T>C/MT-ND6) was used as a test case and was investigated alone or in combination with two additional rare CI variants whose role remains uncertain. We found that the primary variant positioned in the E-channel region, which is fundamental for CI function, stiffens the enzyme dynamics. Moreover, a new mechanism for the transition between π- and α-conformation in the helix carrying the primary variant is proposed. This may have implications for the E-channel opening/closing mechanism. Finally, our findings show that one of the rare variants, located next to the primary one, further worsens the stiffening, while the other rare variant does not affect CI function. This approach may be extended to other variants candidate to exert a pathogenic impact on CI dynamics, or to investigate the interaction of multiple variants.
Collapse
Affiliation(s)
- Laura Rigobello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy
| | - Francesca Lugli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy.
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy
| | - Alessio Bartocci
- Department of Physics, University of Trento, Trento I-38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento I-38123, Italy
| | - Jacopo Fadanni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Francesco Zerbetto
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna I-40123, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy.
| |
Collapse
|
7
|
Pasqualotto BA, Tegeman C, Frame AK, McPhedrain R, Halangoda K, Sheldon CA, Rintoul GL. Galactose-replacement unmasks the biochemical consequences of the G11778A mitochondrial DNA mutation of LHON in patient-derived fibroblasts. Exp Cell Res 2024; 439:114075. [PMID: 38710404 DOI: 10.1016/j.yexcr.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Carina Tegeman
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ariel K Frame
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan McPhedrain
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kolitha Halangoda
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Claire A Sheldon
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gordon L Rintoul
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
8
|
Esteban-Vasallo MD, Domínguez-Berjón MF, Chalco-Orrego JP, González Martín-Moro J. Prevalence of Leber hereditary optic neuropathy in the Community of Madrid (Spain), estimation with a capture-recapture method. Orphanet J Rare Dis 2024; 19:220. [PMID: 38811977 PMCID: PMC11137926 DOI: 10.1186/s13023-024-03225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/19/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Leber hereditary optic neuropathy (LHON) typically presents in young adults as bilateral painless subacute visual loss. Prevalence data are scarce. The aim of this study was to examine the validity of different ascertainment sources used in population-based rare diseases registries to detect cases, and to explore the impact of a capture-recapture method in the estimation of the prevalence of LHON in the Autonomous Community of Madrid (ACM) in 2022. METHODS Descriptive cross-sectional population-based study. Potential LHON cases were detected by automatic capture from the healthcare information sources usually explored for the Regional Registry for Rare Diseases (SIERMA). Ophthalmologists provided data from their clinical registry. Positive predictive values (PPV) and sensitivity with 95% confidence intervals (CI) were estimated. Global and by sex prevalences were calculated with confimed cases and with those estimated by the capture-recapture method. RESULTS A total of 102 potential LHON cases were captured from healthcare information sources, 25 of them (24.5%) finally were confirmed after revision, with an overall PPV of 24.5% (95%CI 17.2-33.7). By source, the electronic clinical records of primary care had the highest PPV (51.2, 95%CI 36.7-65.4). The ophthalmologists clinical registry provided 22 cases, 12 of them not detected in the automatic capture sources. The clinical registry reached a sensitivity of 59.5% (95%CI 43.5-73.6) and the combination of automatic capture sources reached a 67.6% (95%CI: 51.5-80.4). The total confirmed cases were 37, with a mean age of 48.9 years, and a men: women ratio of 2.4:1. Genetic information was recovered in 27 cases, with the m.3460 mutation being the most frequent (12 cases). The global prevalence was 0.55 cases/100,000 inhabitants (95%CI 0.40-0.75), and with the capture-recapture method reached 0.79 cases/100,000 (95%CI 0.60-1.03), a 43.6% higher, 1.15 cases/100,000 (95%CI 0.83-1.58) in men and 0.43 cases/100,000 (95%CI 0.26-0.70) in women. CONCLUSIONS The prevalence of LHON estimated in the ACM was lower than in other European countries. Population-based registries of rare diseases require the incorporation of confirmed cases provided by clinicians to asure the best completeness of data. The use of more specific coding for rare diseases in healthcare information systems would facilitate the detection of cases. Further epidemiologic studies are needed to assess potential factors that may influence the penetrance of LHON.
Collapse
Affiliation(s)
| | | | | | - Julio González Martín-Moro
- Department of Ophthalmology, University Hospital of Henares. Coslada, Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
9
|
Neuhofer CM, Prokisch H. Digenic Inheritance in Rare Disorders and Mitochondrial Disease-Crossing the Frontier to a More Comprehensive Understanding of Etiology. Int J Mol Sci 2024; 25:4602. [PMID: 38731822 PMCID: PMC11083678 DOI: 10.3390/ijms25094602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.
Collapse
Affiliation(s)
- Christiane M. Neuhofer
- Institute of Human Genetics, University Medical Center, Technical University of Munich, Trogerstr. 32, 81675 Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre Munich Neuherberg, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
- Institute of Human Genetics, Salzburger Landeskliniken, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, University Medical Center, Technical University of Munich, Trogerstr. 32, 81675 Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre Munich Neuherberg, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
10
|
Emperador S, Habbane M, López-Gallardo E, Del Rio A, Llobet L, Mateo J, Sanz-López AM, Fernández-García MJ, Sánchez-Tocino H, Benbunan-Ferreiro S, Calabuig-Goena M, Narvaez-Palazón C, Fernández-Vega B, González-Iglesias H, Urreizti R, Artuch R, Pacheu-Grau D, Bayona-Bafaluy P, Montoya J, Ruiz-Pesini E. Identification and characterization of a new pathologic mutation in a large Leber hereditary optic neuropathy pedigree. Orphanet J Rare Dis 2024; 19:148. [PMID: 38582886 PMCID: PMC10999093 DOI: 10.1186/s13023-024-03165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.
Collapse
Affiliation(s)
- Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mouna Habbane
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Laboratoire Biologie Et Santé, Faculté Des Sciences Ben M'Sick, Hassan II University of Casablanca, 20670, Casablanca, Morocco
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alejandro Del Rio
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Certest Biotec, 50840-San Mateo de Gállego, Zaragoza, Spain
| | - Javier Mateo
- Servicio de Oftalmología, Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Ana María Sanz-López
- Servicio de Oftalmología, Hospital Universitario de Toledo, 45004, Toledo, Spain
| | | | | | - Sol Benbunan-Ferreiro
- Servicio de Oftalmología. Hospital Universitario Río Hortega, 47012, Valladolid, Spain
| | - María Calabuig-Goena
- Servicio de Oftalmología. Hospital Universitario Río Hortega, 47012, Valladolid, Spain
| | | | | | - Hector González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300-Villaviciosa, Asturias, Spain
| | - Roser Urreizti
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departament de Bioquímica Clínica, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departament de Bioquímica Clínica, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - David Pacheu-Grau
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain.
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain.
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
11
|
Cannon SJ, Hall T, Hawkes G, Colclough K, Boggan RM, Wright CF, Pickett SJ, Hattersley AT, Weedon MN, Patel KA. Penetrance and expressivity of mitochondrial variants in a large clinically unselected population. Hum Mol Genet 2024; 33:465-474. [PMID: 37988592 PMCID: PMC10877468 DOI: 10.1093/hmg/ddad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Whole genome sequencing (WGS) from large clinically unselected cohorts provides a unique opportunity to assess the penetrance and expressivity of rare and/or known pathogenic mitochondrial variants in population. Using WGS from 179 862 clinically unselected individuals from the UK Biobank, we performed extensive single and rare variant aggregation association analyses of 15 881 mtDNA variants and 73 known pathogenic variants with 15 mitochondrial disease-relevant phenotypes. We identified 12 homoplasmic and one heteroplasmic variant (m.3243A>G) with genome-wide significant associations in our clinically unselected cohort. Heteroplasmic m.3243A>G (MAF = 0.0002, a known pathogenic variant) was associated with diabetes, deafness and heart failure and 12 homoplasmic variants increased aspartate aminotransferase levels including three low-frequency variants (MAF ~0.002 and beta~0.3 SD). Most pathogenic mitochondrial disease variants (n = 66/74) were rare in the population (<1:9000). Aggregated or single variant analysis of pathogenic variants showed low penetrance in unselected settings for the relevant phenotypes, except m.3243A>G. Multi-system disease risk and penetrance of diabetes, deafness and heart failure greatly increased with m.3243A>G level ≥ 10%. The odds ratio of these traits increased from 5.61, 12.3 and 10.1 to 25.1, 55.0 and 39.5, respectively. Diabetes risk with m.3243A>G was further influenced by type 2 diabetes genetic risk. Our study of mitochondrial variation in a large-unselected population identified novel associations and demonstrated that pathogenic mitochondrial variants have lower penetrance in clinically unselected settings. m.3243A>G was an exception at higher heteroplasmy showing a significant impact on health making it a good candidate for incidental reporting.
Collapse
Affiliation(s)
- Stuart J Cannon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Timothy Hall
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kevin Colclough
- Exeter Genomics Laboratory, RILD Building, Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Roisin M Boggan
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| |
Collapse
|
12
|
Vacchiano V, Palombo F, Ormanbekova D, Fiorini C, Fiorentino A, Caporali L, Mastrangelo A, Valentino ML, Capellari S, Liguori R, Carelli V. The genetic puzzle of a SOD1-patient with ocular ptosis and a motor neuron disease: a case report. Front Genet 2023; 14:1322067. [PMID: 38152653 PMCID: PMC10751346 DOI: 10.3389/fgene.2023.1322067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a complex genetic architecture, showing monogenic, oligogenic, and polygenic inheritance. In this study, we describe the case of a 71 years-old man diagnosed with ALS with atypical clinical features consisting in progressive ocular ptosis and sensorineural deafness. Genetic analyses revealed two heterozygous variants, in the SOD1 (OMIM*147450) and the TBK1 (OMIM*604834) genes respectively, and furthermore mitochondrial DNA (mtDNA) sequencing identified the homoplasmic m.14484T>C variant usually associated with Leber's Hereditary Optic Neuropathy (LHON). We discuss how all these variants may synergically impinge on mitochondrial function, possibly contributing to the pathogenic mechanisms which might ultimately lead to the neurodegenerative process, shaping the clinical ALS phenotype enriched by adjunctive clinical features.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Alessia Fiorentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
13
|
González-Martín-Moro J, Reche Sainz JA, Gracia T, Maroto Rodríguez B, Cabrejas Martínez L, Gutiérrez Ortiz C, Rojas P, Fraile Maya J, Blanco Calvo N, Muñoz Negrete F. Approaches to the epidemiology of NOHL in the region of Madrid: Survey of neuro-ophthalmologists. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2023; 98:673-679. [PMID: 37866435 DOI: 10.1016/j.oftale.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE To estimate the epidemiology of Leber's optic neuropathy (NOHL) in the Region of Madrid. MATERIAL AND METHODS The neuro-ophthalmologists who work at public hospitals of the CAM were interviewed by telephone. They were asked about the number of patients with NOHL that they had diagnosed during the time that they had been responsible for the neuro-ophthalmology department of that public hospital. The time worked and the population attended by the hospital were used to calculate the number of inhabitant-years in follow-up by each center during the corresponding period. The basic information of each case (date of birth, mutation, date of visual loss) was registered to avoid duplications. RESULTS Our work estimates a global incidence of 2.34 cases for 10,000,000 inhabitants-year and a prevalence estimated from incidence of one case for each 106.682 inhabitants. This prevalence was very similar in all the studied areas and considerably lower than that reported by other studies. CONCLUSION This work constitutes the first approach to the epidemiology of this disease in Spain. The prevalence of LHON in the region of Madrid, is probably lower than that reported in the literature in other regions. The prevalence and the incidence were homogeneously low in the 26 studied areas.
Collapse
Affiliation(s)
- J González-Martín-Moro
- Servicio de Oftalmología, Hospital Universitario del Henares, Coslada, Madrid, Spain; Fundación para la Investigación Biomédica del Hospital Infanta Sofía y del Hospital Universitario del Henares, San Sebastián de los Reyes, Madrid, Spain; Departamento de Ciencias de la Salud, Universidad Francisco de Vitoria, Madrid, Spain.
| | - J A Reche Sainz
- Servicio de Oftalmología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - T Gracia
- Servicio de Oftalmología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - B Maroto Rodríguez
- Servicio de Oftalmología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - L Cabrejas Martínez
- Servicio de Oftalmología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - C Gutiérrez Ortiz
- Servicio de Oftalmología, Hospital Universitario Príncipe de Asturias, Madrid, Spain
| | - P Rojas
- Servicio de Oftalmología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - J Fraile Maya
- Servicio de Oftalmología, Hospital Universitario La Paz, Madrid, Spain
| | - N Blanco Calvo
- Servicio de Oftalmología, Hospital Niño Jesús, Madrid, Spain
| | - F Muñoz Negrete
- Servicio de Oftalmología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
14
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|