1
|
Tirumala HP, Zoghbi HY. Recent advances in RNA-based therapeutics for neurodevelopmental disorders. Curr Opin Genet Dev 2025; 92:102339. [PMID: 40120222 DOI: 10.1016/j.gde.2025.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025]
Abstract
A significant proportion of neurodevelopmental disorders (NDDs) are caused by gain-of-function (GOF) or loss-of-function (LOF) of specific genes. Strategies to normalize disease gene expression offer therapeutic potential for these disorders. The success and approval of RNA-based therapeutics for various disorders have led to a surge in RNA-based therapeutic research for NDDs with antisense oligonucleotides leading the field. This review discusses recent advances in therapeutic strategies that target pre-mRNA or mRNA for GOF and LOF NDDs that have promising preclinical evidence. These developments highlight important considerations and exciting future avenues for the development of therapies for NDDs.
Collapse
Affiliation(s)
- Harini P Tirumala
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Huda Y Zoghbi
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Sahajpal NS, Dean J, Hilton B, Fee T, Skinner C, Hastie A, DuPont BR, Chaubey A, Friez MJ, Stevenson RE. Optical genome mapping identifies rare structural variants in neural tube defects. Genome Res 2025; 35:798-809. [PMID: 40107724 PMCID: PMC12047250 DOI: 10.1101/gr.279318.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
Neural tube defects (NTDs) are the most common birth defects of the central nervous system and occur as either isolated malformations or accompanied by anomalies of other systems. The genetic basis of NTDs remains poorly understood using karyotyping, chromosomal microarray, and short-read sequencing, with only a limited number of pathogenic variants identified. Collectively, these technologies may fail to detect rare structural variants (SVs) in the genome, which may cause these birth defects. Therefore, optical genome mapping (OGM) was applied to investigate 104 NTD cases, of which 74 were isolated NTDs and 30 were NTDs with other malformations. A stepwise approach was undertaken to ascertain candidate variants using population and internal databases and performing parental studies when possible. This analysis identifies diagnostic findings in 8% of cases (8/104) and candidate findings in an additional 22% of cases (23/104). Of the candidate findings, 9% of cases (9/104) have SVs impacting genes associated with NTDs in mouse, and 13% of cases (14/104) have SVs impacting genes implicated in the neural tube development pathways. This study identifies RMND5A, HNRNPC, FOXD4, and RBBP4 as strong candidate genes associated with NTDs, and expands the phenotypic spectrum of AMER1 and TGIF1 to include NTDs. This study constitutes the first systematic investigation of SVs using OGM to elucidate the genetic determinants of NTDs. The data provide key insights into the pathogenesis of NTDs and demonstrate the contribution of SVs in the genome to these birth defects.
Collapse
Affiliation(s)
| | - Jane Dean
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Benjamin Hilton
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Timothy Fee
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Alex Hastie
- Bionano Genomics, San Diego, California 92121, USA
| | | | - Alka Chaubey
- Bionano Genomics, San Diego, California 92121, USA
| | - Michael J Friez
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Roger E Stevenson
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA;
- Equanimitas, Greenwood, South Carolina 29646, USA
| |
Collapse
|
3
|
Caputo A, Schaffer AE. Exploring the connection between RNA splicing and intellectual disability. Curr Opin Genet Dev 2025; 91:102322. [PMID: 39923316 DOI: 10.1016/j.gde.2025.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Abstract
Intellectual disability (ID) is a broad diagnostic category that encompasses individuals with impaired cognitive ability. While these disorders have heterogeneous causes, recent developments in next-generation sequencing (NGS) are revealing the prevalence of genetic etiologies. In particular, germline mutations in genes that affect RNA splicing are increasingly common causes of ID disorders. Research to elucidate the functional relationship between splicing and neurodevelopment is critical since molecular therapeutics require a nuanced understanding of the pathological mechanism. In this review, we first summarize the trends that have led to the discovery of the RNA splicing-ID relationship, then discuss recent progress and future directions for research surrounding RNA splicing in neurodevelopment. Finally, we speak on how these results may serve as the foundation for burgeoning therapies.
Collapse
Affiliation(s)
- Anthony Caputo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.
| |
Collapse
|
4
|
Chiriatti L, Priolo M, Onesimo R, Carvetta M, Leoni C, Bruselles A, Radio FC, Cappelletti C, Ferilli M, Ricci D, Niceta M, Cordeddu V, Ciolfi A, Mancini C, Zampino G, Tartaglia M. The Arg99Gln Substitution in HNRNPC Is Associated with a Distinctive Clinical Phenotype Characterized by Facial Dysmorphism and Ocular and Cochlear Anomalies. Genes (Basel) 2025; 16:176. [PMID: 40004505 PMCID: PMC11854916 DOI: 10.3390/genes16020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Heterozygous variants in the heterogeneous nuclear ribonucleoprotein C gene (HNRNPC) have recently been reported to cause intellectual developmental disorder-74 (MRD74), a neurodevelopmental disorder with no recurrent diagnostic handles. Affected individuals show variable, non-specific, and subtle dysmorphic features. The degree of developmental delay (DD)/intellectual disability (ID) is also wide, ranging from mild to severe. The mutational spectrum is relatively broad with exon deletions and splice site and frameshift variants distributed along the entire length of the gene leading to HNRNPC loss of function. Only two missense changes located within the RNA-binding motif (RBM) and adjacent linker region of the more abundant isoform (Arg64Trp and Arg99Gln) have been described. Notably, the Arg99Gln amino acid substitution was reported in a subject presenting with a more complex and unique clinical phenotype characterized by distinctive facial features, DD/ID, cochlear aplasia, and bilateral colobomatous microphthalmia, suggesting the possible occurrence of phenotypic heterogeneity. Results: Here, we report the second individual carrying the Arg99Gln change in HNRNPC and having clinical features with a significant overlap with the peculiar phenotype of the previously described subject, supporting the occurrence of a genotype-phenotype correlation. Conclusions: Due to the concomitant occurrence of ocular and cochlear involvement as recognizable diagnostic handles, we propose that the HNRNPCArg99Gln-related phenotype should be considered as a potential differential diagnosis in subjects with ID and major signs of CHARGE syndrome not fulfilling the minimum criteria for a clinical diagnosis.
Collapse
Affiliation(s)
- Luigi Chiriatti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
| | - Manuela Priolo
- Medical and Molecular Genetics, AORN A. Cardarelli, 80131 Naples, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (R.O.); (C.L.)
| | - Mattia Carvetta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University, 00185 Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (R.O.); (C.L.)
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (V.C.)
| | - Francesca Clementina Radio
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
- Department of Biomedicine and Prevention, University “Tor Vergata”, 00173 Rome, Italy
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
- Department of Computer, Control and Management Engineering, Sapienza University, 00185 Rome, Italy
| | - Daniela Ricci
- National Centre of Services and Research for Prevention of Blindness and Rehabilitation of Low Vision Patients, IAPB Italia Onlus, 00185 Rome, Italy;
- Pediatric Neuropsychiatric Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (V.C.)
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (R.O.); (C.L.)
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00143 Rome, Italy; (L.C.); (M.C.); (F.C.R.); (C.C.); (M.F.); (M.N.); (A.C.); (C.M.); (M.T.)
| |
Collapse
|
5
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Ulicevic J, Shao Z, Jasnovidova O, Bressin A, Gajos M, Ng AH, Annaldasula S, Meierhofer D, Church GM, Busskamp V, Mayer A. Uncovering the dynamics and consequences of RNA isoform changes during neuronal differentiation. Mol Syst Biol 2024; 20:767-798. [PMID: 38755290 PMCID: PMC11219738 DOI: 10.1038/s44320-024-00039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Static gene expression programs have been extensively characterized in stem cells and mature human cells. However, the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation, the determinants and functional consequences have largely remained unclear. Here, we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally, our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis.
Collapse
Affiliation(s)
- Jelena Ulicevic
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Zhihao Shao
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Olga Jasnovidova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annkatrin Bressin
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martyna Gajos
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Alex Hm Ng
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, USA
| | - Siddharth Annaldasula
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, USA
| | - Volker Busskamp
- Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
8
|
Gillentine MA. Comment on Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions. Eur J Hum Genet 2024; 32:253-256. [PMID: 38017187 PMCID: PMC10923807 DOI: 10.1038/s41431-023-01498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
|
9
|
Basson MA. Neurodevelopmental functions of CHD8: new insights and questions. Biochem Soc Trans 2024; 52:15-27. [PMID: 38288845 PMCID: PMC10903457 DOI: 10.1042/bst20220926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Heterozygous, de novo, loss-of-function variants of the CHD8 gene are associated with a high penetrance of autism and other neurodevelopmental phenotypes. Identifying the neurodevelopmental functions of high-confidence autism risk genes like CHD8 may improve our understanding of the neurodevelopmental mechanisms that underlie autism spectrum disorders. Over the last decade, a complex picture of pleiotropic CHD8 functions and mechanisms of action has emerged. Multiple brain and non-brain cell types and progenitors appear to be affected by CHD8 haploinsufficiency. Behavioural, cellular and synaptic phenotypes are dependent on the nature of the gene mutation and are modified by sex and genetic background. Here, I review some of the CHD8-interacting proteins and molecular mechanisms identified to date, as well as the impacts of CHD8 deficiency on cellular processes relevant to neurodevelopment. I endeavour to highlight some of the critical questions that still require careful and concerted attention over the next decade to bring us closer to the goal of understanding the salient mechanisms whereby CHD8 deficiency causes neurodevelopmental disorders.
Collapse
Affiliation(s)
- M. Albert Basson
- Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, U.K
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 9RT, U.K
| |
Collapse
|