1
|
Nakade J, Nakamura Y, Katayama Y, Obata H, Takahashi Y, Zaimoku Y, Fujii Y, Iwata Y. Systematic active environmental surveillance successfully identified and controlled the Legionella contamination in the hospital. J Infect Chemother 2022; 29:43-47. [PMID: 36162645 DOI: 10.1016/j.jiac.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Legionella disease can manifest as severe respiratory tract infection with a high mortality rate and is sometimes associated with a hospital outbreak by a contaminated water supply. A patient with breast cancer admitted about a month before. High fever was observed 18 days after admission and the Legionella antigen test showed the positive result. METHODS Due to the incidence of Legionella infection, we demonstrated the active surveillance of Legionella contamination in the entire hospital. RESULTS Cultures of her environmental samples revealed that hot water in two bathrooms were contaminated with Legionella. In our hospital, the hot water is heated and pumped up on the roof and distributed to each room. The contaminated bathrooms were related to the same plumbing. Therefore, we further collected samples throughout the hot water system. Legionella was not detected in the central part of the system. However, we detected Legionella in the hot water sampled from other five rooms, which were also associated with the same plumbing of the two bathrooms. The temperature and chlorine concentration of the hot water were not high enough to inactivate Legionella at the end of the plumbing. After the adjustment of the water temperature and chlorine concentration, Legionella became undetectable. Our prompt and active surveillance successfully identified the plumbing of the hot water system as the source of Legionella contamination and took precautions against future outbreaks. CONCLUSIONS Monitoring of water temperature and chloride concentration at the end of the hot water circulation is important to prevent nosocomial Legionella disease.
Collapse
Affiliation(s)
- Junya Nakade
- Department of Infection Control and Prevention, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoko Nakamura
- Department of Infection Control and Prevention, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan; Division of Nursing, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yusuke Katayama
- Division of Nursing, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Obata
- Facilities Department, Takara-machi Facility Support Office, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshinori Takahashi
- Department of Infection Control and Prevention, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Rheumatology, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshitaka Zaimoku
- Department of Infection Control and Prevention, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Hematology, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yumi Fujii
- Department of Breast Surgery, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yasunori Iwata
- Department of Infection Control and Prevention, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Nephrology and Laboratory Medicine, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
2
|
Rakić A, Vukić Lušić D, Jurčev Savičević A. Influence of Metal Concentration and Plumbing Materials on Legionella Contamination. Microorganisms 2022; 10:1051. [PMID: 35630493 PMCID: PMC9147233 DOI: 10.3390/microorganisms10051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/07/2022] Open
Abstract
Legionella colonization of water supply pipes is a significant public health problem. The objective of this work was to evaluate Legionella colonization in hotel hot water systems and to investigate the relationship between metal concentrations, piping materials (galvanized iron pipes and plastic pipes), and Legionella proliferation. Concentrations of calcium and magnesium ions and the presence of Legionella pneumophila were determined in a total of 108 water samples from the hot water systems of four hotels in Split-Dalmatia County over a 12-month period, and additional data on piping materials were collected. L. pneumophila was isolated in 23.1% of all samples-in 28.8% (15/52) of water samples from galvanized iron pipes and in 17.8% (10/56) of samples from plastic pipes. L. pneumophila serogroups 2-14 were isolated from all samples. This study found higher prevalence of L. pneumophila at higher concentrations of Ca and Mg ions (except for Mg and plastic pipes). The metal parts of the water supply may be important factors in Legionella contamination due to the possibility of lime scale or roughness of the pipes. Higher Ca and Mg ion concentrations increased the risk of Legionella colonization.
Collapse
Affiliation(s)
- Anita Rakić
- Public Health Institute of Split-Dalmatia County, Vukovarska 46, 21000 Split, Croatia;
| | - Darija Vukić Lušić
- Department of Environmental Health, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
- Center for Advanced Computing and Modeling, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Anamarija Jurčev Savičević
- Public Health Institute of Split-Dalmatia County, Vukovarska 46, 21000 Split, Croatia;
- Department of Health Studies, University of Split, 35 P.P. 464, Ruđera Boškovića Street, 21000 Split, Croatia
| |
Collapse
|
3
|
Doménech-Sánchez A, Laso E, Albertí S. Determination of Legionella spp. prevalence in Spanish hotels in five years. Are tourists really at risk? Travel Med Infect Dis 2022; 46:102269. [DOI: 10.1016/j.tmaid.2022.102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
|
4
|
Molina JJ, Bennassar M, Palacio E, Crespi S. Low Efficacy of Periodical Thermal Shock for Long-Term Control of Legionella spp. in Hot Water System of Hotels. Pathogens 2022; 11:pathogens11020152. [PMID: 35215095 PMCID: PMC8875211 DOI: 10.3390/pathogens11020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Different guidelines and regulations for the prevention of legionellosis in public facilities include the recommendation of a periodical thermal shock in the hot water system. The purpose of this study was to assess the efficacy of periodical thermal shocks along a 1-year period on the presence of Legionella spp. in the domestic hot water system of hotels. The Legionella testing results from the period January–December 2019 coming from a group of 77 hotel facilities in the Balearic Islands (Spain) conducting periodical thermal shocks were analyzed. A second group of 44 hotels operating without periodical thermal shocks was used for a comparative analysis. In the facilities where the periodical thermal shock was performed, 16.0% of the results (429 hot water samples collected) were positive for Legionella spp., compared to 21.1% (298 samples), where periodical thermal shock was not performed. Overall, in the thermal shock group, 32.5% of the sites presented at least 1 positive sample along the period of study versus 45.5% in the control group. None of these differences was statistically significant (p-value > 0.05). These findings suggest that the efficacy of regular thermal shock for long-term control of Legionella spp. in domestic hot water systems of hotels is low.
Collapse
Affiliation(s)
- Jhon J. Molina
- Biolinea Int., 07007 Palma, Spain; (J.J.M.); (M.B.)
- Environmental Analytical Chemistry Group, University of the Balearic Islands, 07122 Palma, Spain;
| | | | - Edwin Palacio
- Environmental Analytical Chemistry Group, University of the Balearic Islands, 07122 Palma, Spain;
| | - Sebastian Crespi
- Biolinea Int., 07007 Palma, Spain; (J.J.M.); (M.B.)
- Correspondence: ; Tel.: +34-971724701
| |
Collapse
|
5
|
Assaidi A, Ellouali M, Latrache H, Zahir H, Mliji EM. Role of biofilms in the survival of Legionella pneumophila to sodium chloride treatment. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:488-494. [PMID: 34557277 PMCID: PMC8421579 DOI: 10.18502/ijm.v13i4.6973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives Legionnaires' disease continues to be a public health concern. Colonized water distribution systems are often implicated in Legionella transmission, despite the use of various disinfection strategies, the bacterium is capable to persist and survive in water systems. The aim of this study was to investigate the persistence of Legionella pneumophila to sodium chloride over time at different temperatures and analysing the role of biofilms in the survival of this bacteria. Materials and Methods L. pneumophila serogroup 1 and L. pneumophila serogroup 2-15 were used to study the effect of sodium chloride on planktonic and sessile cells. The tested concentrations were: 0.5%, 1%, 2%, 3%, 4%, 6% and 8% (W/V) NaCl. Biofilms were grown on 24-well microplates. Results At 20°C, L. pneumophila planktonic cells were able to survive in sodium chloride concentrations up to 2%. However, at 37°C, a sodium chloride concentration over 1.5%, reduced systematically the numbers of bacterial cells. Biofilms were grown for 20 days in the absence and presence of sodium chloride. The results show that bacterial strains were able to survive and regrow after the sodium chloride shock (2-3%). Moreover, it seems that this effect is less expressed with the age of the biofilm; old biofilms were more persistent than the young ones. Conclusion Results from this study demonstrate that the sodium chloride disinfection strategy was effective on Legionella pneumophila planktonic cells but not on biofilms, which demonstrate the role of biofilms in the persistence and recolonization of L. pneumophila in water distribution systems.
Collapse
Affiliation(s)
- Abdelwahid Assaidi
- Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco.,Laboratory of Water Microbiology and Environmental Hygiene, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mostafa Ellouali
- Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hassan Latrache
- Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hafida Zahir
- Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - El Mostafa Mliji
- Laboratory of Water Microbiology and Environmental Hygiene, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
6
|
Papagianeli SD, Aspridou Z, Didos S, Chochlakis D, Psaroulaki A, Koutsoumanis K. Dynamic modelling of Legionella pneumophila thermal inactivation in water. WATER RESEARCH 2021; 190:116743. [PMID: 33352528 DOI: 10.1016/j.watres.2020.116743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
A predictive mathematical model describing the effect of temperature on the inactivation of Legionella pneumophila in water was developed. Thermal inactivation of L. pneumophila was monitored under isothermal conditions (51 - 61°C). A primary log-linear model was fitted to the inactivation data and the estimated D values ranged from 0.23 to 25.31 min for water temperatures from 61 to 51°C, respectively. The effect of temperature on L. pneumophila inactivation was described using a secondary model, and the model parameters z value and Dref (D-value at 55°C) were estimated at 5.54°C and 3.47 min, respectively. The developed model was further validated under dynamic temperature conditions mimicking various conditions of water thermal disinfection in plumbing systems. The results indicated that the model can satisfactorily predict thermal inactivation of the pathogen at dynamic temperature environments and effectively translate water temperature profiles to cell number reduction. The application of the model in combination with effective temperature monitoring could provide the basis of an integrated preventive approach for the effective control of L. pneumophila in plumbing systems.
Collapse
Affiliation(s)
- Styliani Dimitra Papagianeli
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Zafeiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Spyros Didos
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimosthenis Chochlakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, Unit of Water, Food and Environmental Microbiology, School of Medicine, University of Crete, Heraklion, 71110, Greece
| | - Anna Psaroulaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, Unit of Water, Food and Environmental Microbiology, School of Medicine, University of Crete, Heraklion, 71110, Greece
| | - Konstantinos Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
7
|
Rasheduzzaman M, Singh R, Haas CN, Gurian PL. Required water temperature in hotel plumbing to control Legionella growth. WATER RESEARCH 2020; 182:115943. [PMID: 32590203 DOI: 10.1016/j.watres.2020.115943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
Legionella spp. occurring in hotel hot water systems, in particular Legionella pneumophila, are causing serious pneumonic infections, and water temperature is a key factor to control their occurrence in plumbing systems. We performed a systematic review and meta-analyses of the available evidence on the association between water temperature and Legionella colonization to identify the water temperature in hotel hot water systems required for control of Legionella. Qualitative synthesis and quantitative analysis were performed on 13 studies that met our inclusion criteria to identify the effect of temperature. The Receiver Operating Characteristic (ROC) curve identified 55 °C as a cutoff point for hotel hot water temperature with an Area Under the Curve (AUC) value of 0.914. The odds ratios (OR) for detecting Legionella at temperatures >55 °C compared to lower temperatures from a meta-analysis of three studies was 0.17 [95% CI: 0.11, 0.25], which indicates a strong negative association between temperature and Legionella colonization. A logistic regression on results from multiple studies using both molecular and culture methods found a temperature of 59 °C associated with an 8% probability of detectable Legionella. Only two studies reported sufficiently detailed data to allow a model of concentration vs. temperature to be fit, and this model was not statistically significant. Additional research or more detailed reporting of existing datasets is required to assess if Legionella growth can be limited below particular concentration targets at different temperatures.
Collapse
Affiliation(s)
- Md Rasheduzzaman
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - Rajveer Singh
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Charles N Haas
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Patrick L Gurian
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Water as a Source of Antimicrobial Resistance and Healthcare-Associated Infections. Pathogens 2020; 9:pathogens9080667. [PMID: 32824770 PMCID: PMC7459458 DOI: 10.3390/pathogens9080667] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Healthcare-associated infections (HAIs) are one of the most common patient complications, affecting 7% of patients in developed countries each year. The rise of antimicrobial resistant (AMR) bacteria has been identified as one of the biggest global health challenges, resulting in an estimated 23,000 deaths in the US annually. Environmental reservoirs for AMR bacteria such as bed rails, light switches and doorknobs have been identified in the past and addressed with infection prevention guidelines. However, water and water-related devices are often overlooked as potential sources of HAI outbreaks. This systematic review examines the role of water and water-related devices in the transmission of AMR bacteria responsible for HAIs, discussing common waterborne devices, pathogens, and surveillance strategies. AMR strains of previously described waterborne pathogens including Pseudomonas aeruginosa, Mycobacterium spp., and Legionella spp. were commonly isolated. However, methicillin-resistant Staphylococcus aureus and carbapenem-resistant Enterobacteriaceae that are not typically associated with water were also isolated. Biofilms were identified as a hot spot for the dissemination of genes responsible for survival functions. A limitation identified was a lack of consistency between environmental screening scope, isolation methodology, and antimicrobial resistance characterization. Broad universal environmental surveillance guidelines must be developed and adopted to monitor AMR pathogens, allowing prediction of future threats before waterborne infection outbreaks occur.
Collapse
|
9
|
Lesar A, Mušković M, Begić G, Lončarić M, Tomić Linšak D, Malatesti N, Gobin I. Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella pneumophila. Int J Mol Sci 2020; 21:ijms21155367. [PMID: 32731616 PMCID: PMC7432253 DOI: 10.3390/ijms21155367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/02/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium, an opportunistic premise plumbing pathogen that causes the Legionnaires’ disease. L. pneumophila presents a serious health hazard in building water systems, due to its high resistance to standard water disinfection methods. Our aim was to study the use of photodynamic inactivation (PDI) against Legionella. We investigated and compared the photobactericidal potential of five cationic dyes. We tested toluidine blue (TBO) and methylene blue (MB), and three 3-N-methylpyridylporphyrins, one tetra-cationic and two tri-cationic, one with a short (CH3) and the other with a long (C17H35) alkyl chain, against L. pneumophila in tap water and after irradiation with violet light. All tested dyes demonstrated a certain dark toxicity against L. pneumophila; porphyrins with lower minimal effective concentration (MEC) values than TBO and MB. Nanomolar MEC values, significantly lower than with TBO and MB, were obtained with all three porphyrins in PDI experiments, with amphiphilic porphyrin demonstrating the highest PDI activity. All tested dyes showed increasing PDI with longer irradiation (0–108 J/cm2), especially the two hydrophilic porphyrins. All three porphyrins caused significant changes in cell membrane permeability after irradiation and L. pneumophila, co-cultivated with Acanthamoeba castellanii after treatment with all three porphyrins and irradiation, did not recover in amoeba. We believe our results indicate the considerable potential of cationic porphyrins as effective anti-Legionella agents.
Collapse
Affiliation(s)
- Andrija Lesar
- Bioinstitut d.o.o., R. Steinera 7, 40000 Čakovec, Croatia;
| | - Martina Mušković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Gabrijela Begić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (G.B.); (I.G.)
| | - Martin Lončarić
- Photonics and Quantum Optics Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia;
| | - Dijana Tomić Linšak
- Department for Health Ecology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
- Correspondence: ; Tel.: +385-51-584-585; Fax: +385-51-584-599
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (G.B.); (I.G.)
| |
Collapse
|
10
|
Carlson KM, Boczek LA, Chae S, Ryu H. Legionellosis and Recent Advances in Technologies for Legionella Control in Premise Plumbing Systems: A Review. WATER 2020; 12:1-676. [PMID: 32704396 PMCID: PMC7377215 DOI: 10.3390/w12030676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review discusses Legionella, among the most prolific and publicly well-known waterborne pathogens, and advances in potential treatment technologies. The number of cases associated with Legionella continues to rise, as does its public awareness. Currently, cases associated with premise plumbing account for the largest number of legionellosis cases in the United States. So, while it is important to understand Legionella as such, it is also important to investigate how to treat drinking water in premise plumbing for Legionella and other waterborne pathogens. While there are currently several methods recognized as potential means of inactivating waterborne pathogens, several shortcomings continue to plague its implementation. These methods are generally of two types. Firstly, there are chemical treatments such as chlorine, chlorine dioxide, monochloramine, ozone, and copper-silver ionization. Secondly, there are physical treatments such as thermal inactivation and media filtration. Their shortcomings range from being labor-intensive and costly to having negative health effects if not properly operated. Recently developed technologies including ultraviolet (UV) irradiation using light emitting diodes (LEDs) and innovative carbon nanotube (CNT) filters can better control waterborne pathogens by allowing for the simultaneous use of different treatment measures in plumbing systems.
Collapse
Affiliation(s)
- Kelsie M. Carlson
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45268, USA
| | - Laura A. Boczek
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45268, USA
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
11
|
Cervero-Aragó S, Schrammel B, Dietersdorfer E, Sommer R, Lück C, Walochnik J, Kirschner A. Viability and infectivity of viable but nonculturable Legionella pneumophila strains induced at high temperatures. WATER RESEARCH 2019; 158:268-279. [PMID: 31048196 PMCID: PMC6520252 DOI: 10.1016/j.watres.2019.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Thermal disinfection is commonly used to prevent the proliferation of culturable Legionella in engineered water systems (EWS). In response to such stress, culturable Legionella populations can switch into a viable but nonculturable (VBNC) state. The importance of such VBNC Legionella cells is currently hotly debated. Here, we investigated the stress response patterns and transitions of the bacteria to the VBNC state at 55 °C, 60 °C and 70 °C on two L. pneumophila strains for >80 days using a combination of cell-based viability indicators. Complete loss of culturability at 55 °C, 60 °C and 70 °C occurred after 3-8 h, 60 min and <2 min, respectively. In contrast, L. pneumophila strains required 9 days at 55 °C, 8 h at 60 °C and 20 min at 70 °C to achieve a 2 log reduction in cells with intact membranes and high esterase activity; a 4 log reduction was achieved only after 150, 8-15 and 1-4 days, respectively. In parallel, the presence of diagnostic outer-membrane epitopes (OMEs) and changes in the infectivity patterns of the two strains towards amoebae and THP-1 cells were assessed. OMEs were more persistent than viability indicators, showing their potential as targets for VBNC Legionella detection. L. pneumophila strains infected amoebae and THP-1 cells for at least 85 days at 55 °C and 60 °C and for up to 8 days at 70 °C. However, they did so with reduced efficiency, requiring prolonged co-incubation times with the hosts and higher Legionella cell numbers in comparison to culturable cells. Consequently, infection of amoebae by thermally induced VBNC L. pneumophila with lowered virulence can be expected in EWS. Although the gold standard method cannot detect VBNC Legionella, it provides important information about the most virulent bacterial subpopulations. Our results indicate that a prolonged thermal regime ≥60 °C at the central parts of warm water systems is not only effective against culturable L. pneumophila but in the long run even against VBNC cells.
Collapse
Affiliation(s)
- Sílvia Cervero-Aragó
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.
| | - Barbara Schrammel
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Elisabeth Dietersdorfer
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Regina Sommer
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - Christian Lück
- Technical University Dresden, Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Helmholtzstr. 10, D 01069, Dresden, Germany
| | - Julia Walochnik
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria; Karl Landsteiner University of Health Sciences, Division Water Quality and Health, Dr. Karl Dorrekstraße 30, A-3400, Krems, Austria
| |
Collapse
|
12
|
Beauté J, Sandin S, de Jong B, Hallström LP, Robesyn E, Giesecke J, Sparén P. Factors associated with Legionnaires' disease recurrence in hotel and holiday rental accommodation sites. Euro Surveill 2019; 24:1800295. [PMID: 31115313 PMCID: PMC6530253 DOI: 10.2807/1560-7917.es.2019.24.20.1800295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/16/2019] [Indexed: 11/20/2022] Open
Abstract
BackgroundThe detection of a cluster of travel-associated Legionnaires' disease (TALD) cases in any European Union/European Economic Area (EU/EEA) country prompts action at the accommodation, follow-up by health authorities and reporting of measures taken. Some accommodations incur further cases despite presumed implementation of adequate control measures.AimTo identify factors associated with the occurrence of a further TALD case after the implementation of control measures.MethodsWe conducted a retrospective cohort study of hotel and holiday rental accommodations in the EU/EEA associated with two or more TALD cases with onset dates less than 2 years apart (a 'cluster') and notification between 1 June 2011-31 December 2016. We fitted Cox regression models to estimate the association between accommodation characteristics and the occurrence of a further case, defined as any case with onset date after the report on measures taken.ResultsOf the 357 accommodations in the analysis, 90 (25%) were associated with at least one further case after the report on measures taken (12.4/100 accommodation-years). Accommodations associated with two or more cases before the cluster notification were more likely to be associated with a further case, compared with those not previously associated with any case (adjusted hazard ratio 1.85; 95% confidence interval: 1.14-3.02). Neither the detection of Legionella in the water system nor the type of disinfection were found to be associated with the risk of a further case.ConclusionAccommodation size and previous TALD cases were predictive of further Legionnaires' disease cases after implementation of control measures.
Collapse
Affiliation(s)
- Julien Beauté
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Birgitta de Jong
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Emmanuel Robesyn
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- Department of Public Health Sciences, Karolinska Institutet, Sweden
| | - Johan Giesecke
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Pär Sparén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Kyritsi MA, Mouchtouri VA, Katsiafliaka A, Kolokythopoulou F, Plakokefalos E, Nakoulas V, Rachiotis G, Hadjichristodoulou C. Clusters of Healthcare-Associated Legionnaires' Disease in Two Hospitals of Central Greece. Case Rep Infect Dis 2018; 2018:2570758. [PMID: 30186646 PMCID: PMC6114232 DOI: 10.1155/2018/2570758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/06/2018] [Accepted: 07/29/2018] [Indexed: 11/30/2022] Open
Abstract
Healthcare-associated Legionnaires' disease often leads to fatal respiratory tract infection among hospitalized patients. In this report, three cases of Legionnaires' disease among patients in two different hospitals (Hospital A and Hospital B) were investigated. After conducting an epidemiologic and environmental investigation, the water distribution systems (WDSs) were identified as the possible source of infection, as Legionella pneumophila serogroup 1 (Lp1) was isolated from both clinical and environmental samples. Patients received aerosol therapy with nebulizers during their hospitalization. Based on the results of the investigation, the hospitals' infection control committees reviewed their policies for Legionnaires' disease prevention and implemented control measures focusing on using sterile fluids for aerosol treatments.
Collapse
Affiliation(s)
- Maria A. Kyritsi
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
- Peripheral Public Health Laboratory of Thessaly, Larissa, Greece
| | - Varvara A. Mouchtouri
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
- Peripheral Public Health Laboratory of Thessaly, Larissa, Greece
| | - Anna Katsiafliaka
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
- Peripheral Public Health Laboratory of Thessaly, Larissa, Greece
| | | | - Elias Plakokefalos
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vasileios Nakoulas
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - George Rachiotis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
- Peripheral Public Health Laboratory of Thessaly, Larissa, Greece
| |
Collapse
|
14
|
Whiley H, Bentham R, Brown MH. Legionella Persistence in Manufactured Water Systems: Pasteurization Potentially Selecting for Thermal Tolerance. Front Microbiol 2017; 8:1330. [PMID: 28769899 PMCID: PMC5515819 DOI: 10.3389/fmicb.2017.01330] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/30/2017] [Indexed: 01/13/2023] Open
Abstract
Legionella is an opportunistic waterborne pathogen of increasing public health significance. Pasteurization, otherwise known as super-heat and flush (increasing water temperature to above 70°C and flushing all outlets), has been identified as an important mechanism for the disinfection of Legionella in manufactured water systems. However, several studies have reported that this procedure was ineffective at remediating water distribution systems as Legionella was able to maintain long term persistent contamination. Up to 25% of L. pneumophila cells survived heat treatment of 70°C, but all of these were in a viable but non-culturable state. This demonstrates the limitations of the culture method of Legionella detection currently used to evaluate disinfection protocols. In addition, it has been demonstrated that pasteurization and nutrient starvation can select for thermal tolerant strains, where L. pneumophila was consistently identified as having greater thermal tolerance compared to other Legionella species. This review demonstrates that further research is needed to investigate the effectiveness of pasteurization as a disinfection method. In particular, it focuses on the potential for pasteurization to select for thermal tolerant L. pneumophila strains which, as the primary causative agent of Legionnaires disease, have greater public health significance compared to other Legionella species.
Collapse
Affiliation(s)
- Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| | - Richard Bentham
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| |
Collapse
|
15
|
Epidemiological Investigation of Legionella pneumophila Serogroup 2 to 14 Isolates from Water Samples by Amplified Fragment Length Polymorphism and Sequence-Based Typing and Detection of Virulence Traits. Appl Environ Microbiol 2016; 82:6102-6108. [PMID: 27496776 DOI: 10.1128/aem.01672-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of this study is to explore the dispersion, clonality, and virulence of Legionella pneumophila serogroups 2 to 14 in the Greek environment. Eighty L. pneumophila serogroup 2 to 14 strains isolated from water distribution systems of hotels, hospitals, athletic venues, and ferries in Greece were tested by monoclonal antibodies (MAbs) for serogroup discrimination and molecularly by amplified fragment length polymorphism (AFLP) for genetic diversity. Fifty-six of 80 strains were also typed by the sequence-based typing (SBT) method. Αll strains were further analyzed for detection of two pathogenicity loci: Legionella vir homologue (lvh) and repeats in structural toxin (rtxA). Thirty-seven strains (46.2%) belonged to serogroup 6, 26 strains (32.5%) to serogroup 3, and 7 (8.8%) to other serogroups (4, 5, 8, and 10). Ten strains (12.5%) were nontypeable (NT) into the known serogroups. Thirty-nine different AFLP types were found among the 80 L. pneumophila serogroup 2 to 14 strains, and 24 different SBT types were found among the 56 strains tested. Among the 80 strains, the lvh locus was present in 75 (93.8%), the rtxA locus was found in 76 (95%), and both loci were found in 73 (91.3%) strains. This study showed that there is genetic variability of L. pneumophila serogroups 2 to 14 in the Greek environment as well as a high percentage of the pathogenicity loci. Ιntroducing an effective diagnostic test for L. pneumophila serogroups 2 to 14 in urine and promoting the examination of respiratory specimens from patients hospitalized for pneumonia in Greek hospitals are essential. IMPORTANCE In this study, the dispersion, clonality, and virulence of environmental isolates of Legionella pneumophila serogroups 2 to 14 (Lp2-14) in Greece were investigated. Genetic variability of Lp2-14 in the Greek environment was identified together with the presence of the pathogenicity loci in a high percentage of the isolates. Despite the high prevalence of Lp2-14 in the Greek environment, no clinical cases were reported, which may be due to underdiagnosis of the disease. Almost all the legionellosis cases are diagnosed in Greece by using the urine antigen test, which is specific for Lp1. There is an urgent need to improve the clinical diagnosis of legionellosis by introducing an effective diagnostic test for Lp2-14 in urine and by promoting the PCR examination of respiratory specimens from patients with compatible clinical symptoms.
Collapse
|
16
|
Kaatz Wahlen L, Parker A, Walker D, Pasmore M, Sturman P. Predictive modeling for hot water inactivation of planktonic and biofilm-associated Sphingomonas parapaucimobilis to support hot water sanitization programs. BIOFOULING 2016; 32:751-761. [PMID: 27319816 DOI: 10.1080/08927014.2016.1192155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Hot water sanitization is a common means to maintain microbial control in process equipment for industries where microorganisms can degrade product or cause safety issues. This study compared the hot water inactivation kinetics of planktonic and biofilm-associated Sphingomonas parapaucimobilis at temperatures relevant to sanitization processes used in the pharmaceutical industry, viz. 65, 70, 75, and 80°C. Biofilms exhibited greater resistance to hot water than the planktonic cells. Both linear and nonlinear statistical models were developed to predict the log reduction as a function of temperature and time. Nonlinear Michaelis-Menten modeling provided the best fit for the inactivation data. Using the model, predictions were calculated to determine the times at which specific log reductions are achieved. While ≥80°C is the most commonly cited temperature for hot water sanitization, the predictive modeling suggests that temperatures ≥75°C are also effective at inactivating planktonic and biofilm bacteria in timeframes appropriate for the pharmaceutical industry.
Collapse
Affiliation(s)
- Laura Kaatz Wahlen
- a Sterility Assurance , Baxter Healthcare Corporation , Round Lake , IL , USA
| | - Al Parker
- b Center for Biofilm Engineering , Montana State University , Bozeman , MT , USA
- c Department of Mathematical Sciences , Montana State University , Bozeman , MT , USA
| | - Diane Walker
- b Center for Biofilm Engineering , Montana State University , Bozeman , MT , USA
| | - Mark Pasmore
- a Sterility Assurance , Baxter Healthcare Corporation , Round Lake , IL , USA
| | - Paul Sturman
- b Center for Biofilm Engineering , Montana State University , Bozeman , MT , USA
| |
Collapse
|
17
|
Kirschner AK. Determination of viable legionellae in engineered water systems: Do we find what we are looking for? WATER RESEARCH 2016; 93:276-288. [PMID: 26928563 PMCID: PMC4913838 DOI: 10.1016/j.watres.2016.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health.
Collapse
Affiliation(s)
- Alexander K.T. Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water & Health, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene Kinderspitalgasse 16, A-1090 Vienna, Austria . URL: http://www.waterandhealth.at
| |
Collapse
|
18
|
Rhoads WJ, Pruden A, Edwards MA. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing. Pathogens 2016; 5:E29. [PMID: 26985908 PMCID: PMC4810150 DOI: 10.3390/pathogens5010029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23-24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular.
Collapse
Affiliation(s)
- William J Rhoads
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
19
|
Rakić A, Štambuk-Giljanović N. Physical and chemical parameter correlations with technical and technological characteristics of heating systems and the presence of Legionella spp. in the hot water supply. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:73. [PMID: 26733467 DOI: 10.1007/s10661-015-5047-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to evaluate the prevalence of Legionella spp. and compare the quality of hot water between four facilities for accommodation located in Southern Croatia (the Split-Dalmatian County). The research included data collection on the technical and technological characteristics in the period from 2009 to 2012. The survey included a type of construction material for the distribution and internal networks, heating system water heater type, and water consumption. Changes in water quality were monitored by determination of the physical and chemical parameters (temperature, pH, free chlorine residual concentrations, iron, zinc, copper and manganese) in the samples, as well as the presence and concentration of bacteria Legionella spp. The temperature is an important factor for the development of biofilms, and it is in negative correlation with the appearance of Legionella spp. Positive correlations between the Fe and Zn concentrations and Legionella spp. were established, while the inhibitory effect of a higher Cu concentration on the Legionella spp. concentration was proven. Legionella spp. were identified in 38/126 (30.2%) of the water samples from the heating system with zinc-coated pipes, as well as in 78/299 (26.1%) of the samples from systems with plastic pipes. A similar number of Legionella spp. positive samples were established regardless of the type of the water heating system (central or independent). The study confirms the necessity of regular microbial contamination monitoring of the drinking water distribution systems (DWDSs).
Collapse
Affiliation(s)
- Anita Rakić
- Public Health Institute of Split-Dalmatian County, Vukovarska 46, 21000, Split, Croatia.
| | | |
Collapse
|
20
|
Cervero-Aragó S, Rodríguez-Martínez S, Puertas-Bennasar A, Araujo RM. Effect of Common Drinking Water Disinfectants, Chlorine and Heat, on Free Legionella and Amoebae-Associated Legionella. PLoS One 2015; 10:e0134726. [PMID: 26241039 PMCID: PMC4524690 DOI: 10.1371/journal.pone.0134726] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022] Open
Abstract
Chlorine and thermal treatments are the most commonly used procedures to control and prevent Legionella proliferation in drinking water systems of large buildings. However, cases of legionellosis still occur in facilities with treated water. The purpose of this work was to model the effect of temperature and free chlorine applied in similar exposure conditions as in drinking water systems on five Legionella spp. strains and two amoebal strains of the genera Acanthamoeba. Inactivation models obtained were used to determine the effectiveness of the treatments applied which resulted more effective against Legionella than Acanthamoeba, especially those in cystic stages. Furthermore, to determine the influence of the relationship between L. pneumophila and Acanthamoeba spp. on the treatment effectiveness, inactivation models of the bacteria-associated amoeba were also constructed and compared to the models obtained for the free living bacteria state. The Legionella-amoeba association did not change the inactivation models, but it reduced the effectiveness of the treatments applied. Remarkably, at the lowest free chlorine concentration, 0.5 mg L-1, as well as at the lowest temperatures, 50°C and 55°C, the influence of the Legionella-amoeba associate state was the strongest in reducing the effectiveness of the treatments compared to the free Legionella state. Therefore, the association established between L. pneumophila and amoebae in the water systems indicate an increased health risk in proximal areas of the system (close to the tap) where lower free chlorine concentrations and lower temperatures are commonly observed.
Collapse
Affiliation(s)
- Sílvia Cervero-Aragó
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Water Hygiene, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Sarah Rodríguez-Martínez
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, 36006, Tivon, Israel
| | - Antoni Puertas-Bennasar
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Rosa M. Araujo
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- * E-mail:
| |
Collapse
|
21
|
Necessity and effect of combating Legionella pneumophila in municipal shower systems. PLoS One 2014; 9:e114331. [PMID: 25490721 PMCID: PMC4260836 DOI: 10.1371/journal.pone.0114331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
The objective was to obtain research-based, holistic knowledge about necessity and effect of practiced measures against L. pneumophila in municipal shower systems in Stavanger, Norway. The effects of hot water treatment and membrane-filtering were investigated and compared to no intervention at all. The studies were done under real-world conditions. Additionally, a surveillance pilot study of municipal showers in Stavanger was performed. The validity of high total plate count (TPC) as an indication of L. pneumophila was evaluated. A simplified method, named "dripping method", for detection and quantification of L. pneumophila was developed. The sensitivity of the dripping method is 5 colony-forming units of L. pneumophila/ml. The transference of L. pneumophila from shower water to aerosols was studied. Interviews and observational studies among the stakeholders were done in order to identify patterns of communication and behavior in a Legionella risk perspective. No substantial effects of the measures against L. pneumophila were demonstrated, except for a distally placed membrane filter. No significant positive correlation between TPC and L. pneumophila concentrations were found. L. pneumophila serogroup 2-14 was demonstrated in 21% of the 29 buildings tested in the surveillance pilot. Relatively few cells of L. pneumophila were transferred from shower water to aerosols. Anxiety appeared as the major driving force in the risk governance of Legionella. In conclusion, the risk of acquiring Legionnaires' disease from municipal shower systems is evaluated as low and uncertain. By eliminating ineffective approaches, targeted Legionella risk governance can be practiced. Risk management by surveillance is evaluated as appropriate.
Collapse
|
22
|
|
23
|
Coulon C, Dechamps N, Meylheuc T, Collignon A, McDonnell G, Thomas V. The effect of in vitro growth conditions on the resistance of Acanthamoeba cysts. J Eukaryot Microbiol 2012; 59:198-205. [PMID: 22353167 DOI: 10.1111/j.1550-7408.2012.00612.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 12/19/2011] [Indexed: 11/29/2022]
Abstract
Despite increasing concerns of direct pathogenicity and/or their role as hosts for other microorganisms there are currently no standard methods for the inactivation of amoebae that belong to the genus Acanthamoeba. Methods used to grow amoebae and produce cysts for these tests may be important as they can dramatically modify cyst susceptibility. We compared resistance of cysts produced from trophozoites grown in peptone-yeast extract-glucose broth or by feeding on HEp-2 cells and then encysted in Neff's medium. We observed that trophozoites grown using HEp-2 cells as a nutrient source produce cysts that are significantly more resistant to SDS and to most biocides tested, including heat. Increased resistance is likely due to a higher proportion of mature cysts presenting thicker cell walls as demonstrated using transmission electron microscopy. This was confirmed by calcofluor white staining demonstrating higher cellulose content in cysts produced from trophozoites grown using HEp-2 cells as a feeding source. These results demonstrate that not only methods used to produce cysts from trophozoites are critical, but that methods used to grow trophozoites before encystment should also be chosen carefully. This should be taken into account for the development of protocols to evaluate biocides and antimicrobials against amoebal cysts.
Collapse
|
24
|
Coulon C, Eterpi M, Greub G, Collignon A, McDonnell G, Thomas V. Amoebal host range, host-free survival and disinfection susceptibility of environmental Chlamydiae as compared to Chlamydia trachomatis. ACTA ACUST UNITED AC 2012; 64:364-73. [PMID: 22141597 DOI: 10.1111/j.1574-695x.2011.00919.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 11/28/2022]
Abstract
The term 'Chlamydia-like organisms' encompasses obligate intracellular bacterial species phylogenetically close to Chlamydiaceae. Most are associated with free-living amoebae, and several could be responsible for respiratory tract infections and abortion in human and animals. Despite increasing concern about their pathogenic role, the prevalence, biodiversity and ecology of Chlamydia-related bacteria still remain largely unknown. In this study, six members of the Chlamydiales were tested, including Parachlamydia acanthamoebae (two different strains), Protochlamydia naegleriophila, Waddlia chondrophila, Criblamydia sequanensis and Chlamydia trachomatis as a reference. Intracellular growth was tested in 11 different Acanthamoeba strains, demonstrating significant differences in host susceptibilities to infection depending on strains investigated. Survival of host-free bacteria in suspension or dried onto surfaces was also explored, demonstrating that Chlamydia-like organisms present better survival capacity than C. trachomatis. Longer survival times were observed for bacteria suspended in rich culture medium, with survivors being detected after 10 weeks incubation. We also tested susceptibility of host-free Chlamydia-like organisms to several disinfection treatments. Each chemical biocide tested reduced viability of host-free Chlamydia by more than 4 logs. Conversely, all Chlamydia-like organisms tested resisted exposure at 55 °C for 10 min, while C. trachomatis was completely inactivated.
Collapse
|
25
|
Velonakis E, Karanika M, Mouchtouri V, Thanasias E, Katsiaflaka A, Vatopoulos A, Hadjichristodoulou C. Decreasing trend of Legionella isolation in a long-term microbial monitoring program in Greek hospitals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2011; 22:197-209. [PMID: 22017573 DOI: 10.1080/09603123.2011.628644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Legionnaires' disease is a known cause of severe pneumonia in a nosocomial setting. This study examined Legionella isolation in Greek hospitals. Water samples and swabs of showerheads from 41 hospitals were collected over a four-year period (2004-2007) from hot and cold water systems and cooling towers in Greece. In total, 1058 samples were examined for the presence of Legionella. From the hot water samples examined, 166 out of 607 (27.3%) were positive for Legionella, including 111 (18.3%) positive for Legionella pneumophila sg1 samples. The temperature of hot water samples less than 55°C was statistically significant, associated with Legionella spp. isolation (RR 4.01, 95%CI 2.33-6.92). Ten out of 17 (58.8%) hospital cooling towers required remedial actions due to Legionella colonization. Reemergence of Legionella spp. colonization was evident in more than half of the hospitals where frequent monitoring and appropriate risk assessment plans were absent or lacking. Hospitals that were monitored continuously over the study period presented a decreasing trend of Legionella colonization. Environmental risk assessment together with Legionella isolation should be enforced systematically in hospitals.
Collapse
Affiliation(s)
- Emanouil Velonakis
- Department of Microbiology, National School of Public Health, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
26
|
Marchesi I, Marchegiano P, Bargellini A, Cencetti S, Frezza G, Miselli M, Borella P. Effectiveness of different methods to control legionella in the water supply: ten-year experience in an Italian university hospital. J Hosp Infect 2011; 77:47-51. [DOI: 10.1016/j.jhin.2010.09.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
|
27
|
Insertion sequences as highly resolutive genomic markers for sequence type 1 Legionella pneumophila Paris. J Clin Microbiol 2010; 49:315-24. [PMID: 20980561 DOI: 10.1128/jcm.01261-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The causative agent of legionellosis, Legionella pneumophila, colonizes all natural and human-made water networks, thus constituting the source of contaminated aerosols responsible for airborne human infections. Efficient control of infections, especially during epidemics, necessitates the fastest and most resolutive identification possible of the bacterial source for subsequent disinfection of reservoirs. We thus compared recognized typing approaches for Legionella with a method based on characterization of insertion sequence (IS) content. A total of 86 clinical or environmental isolates of L. pneumophila, including 84 Paris isolates, sampled from 25 clinical investigations in France between 2001 and 2007, were obtained from the Legionella National Reference Center. All strains were typed by monoclonal antibody subgrouping, sequence-based typing, pulsed-field gel electrophoresis, and restriction fragment length polymorphism based on the presence or absence of IS elements. We identified six different types of IS elements in L. pneumophila Paris and used them as genomic markers in hybridization experiments. One IS type, ISLpn11, revealed a high discriminatory power. Simpson's index of discrimination, calculated from the distribution of IS elements, was higher than that obtained with the other typing methods used for L. pneumophila Paris. Moreover, specific ISLpn11 copies were found only in strains isolated from particular cities. In more than half of the cases, each clinical isolate had an ISLpn11 profile that was recovered in at least one environmental isolate from the same geographical location, suggesting that our method could identify the infection source. Phylogenetic analysis suggests a clonal expansion for the L. pneumophila Paris strain.
Collapse
|
28
|
Chen N, Chang C. Rapid quantification of viable legionellae in water and biofilm using ethidium monoazide coupled with real‐time quantitative PCR. J Appl Microbiol 2010; 109:623-634. [DOI: 10.1111/j.1365-2672.2010.04678.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N.‐T. Chen
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - C.‐W. Chang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Center for Research on Environmental and Occupational Health, National Taiwan University, Taipei, Taiwan
- Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Farhat M, Trouilhé MC, Briand E, Moletta-Denat M, Robine E, Frère J. Development of a pilot-scale 1 for Legionella elimination in biofilm in hot water network: heat shock treatment evaluation. J Appl Microbiol 2009; 108:1073-1082. [PMID: 19796094 DOI: 10.1111/j.1365-2672.2009.04541.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS (i) To develop an analytical tool in order to evaluate the effectiveness of anti-Legionella treatment in biofilm and (ii) study the fate of Legionella populations in water and biofilm after applying a heat shock treatment. METHODS AND RESULTS A pilot-scale unit simulating a hot water system was built and designed by the Scientific and Technical Building Centre (CSTB, France). At the end of the contamination period, a stable cultivable Legionella spp. concentration of 5x10(5) CFU l(-1) was obtained. Two heat shock treatments (70 degrees C for 30 min) were applied. The results showed that the first treatment had a transitional effect on the abatement of Legionella concentrations, while the second treatment had no detectable effect on Legionella populations in water and biofilm. The DAPI (4',6'-diamidino-2-phenylindole), Legionella PCR and GVPC (glycocolle vancomycin pyrophosphate cycloheximide) counts measured in the dead leg water of the Test Loop were 1, 2 and 2 log units higher than results found in the Test Loop water. Moreover, Legionella spp. count in tap water was about 10(4) GU l(-1). These analyses revealed that they are responsible for the rapid recolonization as well as the uncomplete destroyed biofilm. In addition, a resistance test was conducted and showed that Legionella in the second heat shock treatment was not thermo-resistant but thermo-acclimated. CONCLUSION Thermal disinfection does not seem to be efficient enough to eliminate Legionella when it is used as a curative treatment. SIGNIFICANCE AND IMPACT OF THE STUDY This work could help water managers for a better management of water network and for a better control of Legionella.
Collapse
Affiliation(s)
- M Farhat
- Centre Scientifique et Technique du Bâtiment, Marne-la-Vallée cedex 02, France., Laboratoire de Chimie et de Microbiologie de l'Eau, Université de Poitiers, Poitiers, France
| | - M-C Trouilhé
- Centre Scientifique et Technique du Bâtiment, Marne-la-Vallée cedex 02, France
| | - E Briand
- Direction Générale de la santé, Bureau EA2 - Environnements intérieurs, milieux de travail et accidents de la vie courante, Paris, France
| | - M Moletta-Denat
- Centre Scientifique et Technique du Bâtiment, Marne-la-Vallée cedex 02, France
| | - E Robine
- Centre Scientifique et Technique du Bâtiment, Marne-la-Vallée cedex 02, France
| | - J Frère
- Laboratoire de Chimie et de Microbiologie de l'Eau, Université de Poitiers, Poitiers, France
| |
Collapse
|
30
|
Goutziana G, Mouchtouri VA, Karanika M, Kavagias A, Stathakis NE, Gourgoulianis K, Kremastinou J, Hadjichristodoulou C. Legionella species colonization of water distribution systems, pools and air conditioning systems in cruise ships and ferries. BMC Public Health 2008; 8:390. [PMID: 19025638 PMCID: PMC2605755 DOI: 10.1186/1471-2458-8-390] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 11/24/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Legionnaires' disease continues to be a public health concern in passenger ships. This study was scheduled in order to investigate Legionella spp. colonization of water distribution systems (WDS), recreational pools, and air-conditioning systems on board ferries and cruise ships in an attempt to identify risk factors for Legionella spp. colonization associated with ship water systems and water characteristics. METHODS Water systems of 21 ferries and 10 cruise ships including WDS, air conditioning systems and pools were investigated for the presence of Legionella spp. RESULTS The 133 samples collected from the 10 cruise ships WDS, air conditioning systems and pools were negative for Legionella spp. Of the 21 ferries WDS examined, 14 (66.7%) were legionellae-positive. A total of 276 samples were collected from WDS and air conditioning systems. Legionella spp. was isolated from 37.8% of the hot water samples and 17.5% of the cold water samples. Of the total 96 positive isolates, 87 (90.6%) were L. pneumophila. Legionella spp. colonization was positively associated with ship age. The temperature of the hot water samples was negatively associated with colonization of L. pneumophila serogroup (sg) 1 and that of L. pneumophila sg 2 to 14. Increases in pH >/=7.8 and total plate count > or =400 CFU/L, correlated positively with the counts of L. pneumophila sg 2 to 14 and Legionella spp. respectively. Free chlorine of > or =0.2 mg/L inhibited colonization of Legionella spp. CONCLUSION WDS of ferries can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease for passengers and crew members. Guidelines and advising of Legionnaires' disease prevention regarding ferries are needed, in particular for operators and crew members.
Collapse
Affiliation(s)
- Georgia Goutziana
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Varvara A Mouchtouri
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
- National School of Public Health, Department of Public and Administrative Health, Athens, Greece
| | - Maria Karanika
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Nikolaos E Stathakis
- Department of Internal Medicine, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Kostantinos Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Jenny Kremastinou
- National School of Public Health, Department of Public and Administrative Health, Athens, Greece
| | | |
Collapse
|
31
|
|