1
|
Domantaitė M, Trakinienė G. Influence of the use of remineralizing agents on the tensile bond strength of orthodontic brackets. Sci Rep 2023; 13:507. [PMID: 36627322 PMCID: PMC9832128 DOI: 10.1038/s41598-023-27390-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
This study aimed to evaluate the influence of the use of remineralizing agents on the tensile bond strength. The study sample consisted of 80 recently extracted molars, which were randomly divided into four experimental groups (n = 20): groups FG1 and FG30, in which fluoride varnish was used, and groups RG1 and RG30, in which Recaldent tooth mousse was used. The mesiobuccal surfaces served as experimental, and distobuccal as control (n = 80). Brackets were bonded to both surfaces and were submitted to a tension test at different time intervals (T1 and T30). Tensile bond strength (TBS) and the amount of adhesive remnant (ARI) were assessed. A statistically significantly lower mean of TBS compared to the control group was found only in the FG1 group (p < 0.001), and no significant difference was found between the other groups. The FG1 group showed significantly higher ARI scores (p < 0.001) compared to the control group. No significant difference was found between the other groups. In conclusion, bonding brackets one day after applying fluoride varnish significantly reduced the TBS, but after 30 days it was set back to an optimal value. The use of Recaldent before orthodontic treatment had no adverse effect.
Collapse
Affiliation(s)
- Milda Domantaitė
- Department of Orthodontics, Lithuanian University of Health Sciences, Medical Academy, Lukšos -Daumanto 6, Kaunas, Lithuania
| | - Giedrė Trakinienė
- Department of Orthodontics, Lithuanian University of Health Sciences, Medical Academy, Lukšos -Daumanto 6, Kaunas, Lithuania.
| |
Collapse
|
2
|
Yan J, Yang H, Luo T, Hua F, He H. Application of Amorphous Calcium Phosphate Agents in the Prevention and Treatment of Enamel Demineralization. Front Bioeng Biotechnol 2022; 10:853436. [PMID: 35646855 PMCID: PMC9136455 DOI: 10.3389/fbioe.2022.853436] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Enamel demineralization, as a type of frequently-occurring dental problem that affects both the health and aesthetics of patients, is a concern for both dental professionals and patients. The main chemical composition of the enamel, hydroxyapatite, is easy to be dissolved under acid attack, resulting in the occurrence of enamel demineralization. Among agents for the preventing or treatment of enamel demineralization, amorphous calcium phosphate (ACP) has gradually become a focus of research. Based on the nonclassical crystallization theory, ACP can induce the formation of enamel-like hydroxyapatite and thereby achieve enamel remineralization. However, ACP has poor stability and tends to turn into hydroxyapatite in an aqueous solution resulting in the loss of remineralization ability. Therefore, ACP needs to be stabilized in an amorphous state before application. Herein, ACP stabilizers, including amelogenin and its analogs, casein phosphopeptides, polymers like chitosan derivatives, carboxymethylated PAMAM and polyelectrolytes, together with their mechanisms for stabilizing ACP are briefly reviewed. Scientific evidence supporting the remineralization ability of these ACP agents are introduced. Limitations of existing research and further prospects of ACP agents for clinical translation are also discussed.
Collapse
Affiliation(s)
- Jiarong Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Center for Evidence-Based Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Fang Hua, ; Hong He,
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Fang Hua, ; Hong He,
| |
Collapse
|
3
|
Dorozhkin SV. Synthetic amorphous calcium phosphates (ACPs): preparation, structure, properties, and biomedical applications. Biomater Sci 2021; 9:7748-7798. [PMID: 34755730 DOI: 10.1039/d1bm01239h] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous calcium phosphates (ACPs) represent a metastable amorphous state of other calcium orthophosphates (abbreviated as CaPO4) possessing variable compositional but rather identical glass-like physical properties, in which there are neither translational nor orientational long-range orders of the atomic positions. In nature, ACPs of a biological origin are found in the calcified tissues of mammals, some parts of primitive organisms, as well as in the mammalian milk. Manmade ACPs can be synthesized in a laboratory by various methods including wet-chemical precipitation, in which they are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing dissolved ions of Ca2+ and PO43- in sufficient amounts. Due to the amorphous nature, all types of synthetic ACPs appear to be thermodynamically unstable and, unless stored in dry conditions or doped by stabilizers, they tend to transform spontaneously to crystalline CaPO4, mainly to ones with an apatitic structure. This intrinsic metastability of the ACPs is of a great biological relevance. In particular, the initiating role that metastable ACPs play in matrix vesicle biomineralization raises their importance from a mere laboratory curiosity to that of a reasonable key intermediate in skeletal calcifications. In addition, synthetic ACPs appear to be very promising biomaterials both for manufacturing artificial bone grafts and for dental applications. In this review, the current knowledge on the occurrence, structural design, chemical composition, preparation, properties, and biomedical applications of the synthetic ACPs have been summarized.
Collapse
|
4
|
Dorozhkin SV. Calcium orthophosphates as a dental regenerative material. ADVANCED DENTAL BIOMATERIALS 2019:377-452. [DOI: 10.1016/b978-0-08-102476-8.00016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Abstract
Currently, much has been published related to conventional resin-based composites and adhesives; however, little information is available about bioceramics-based restorative materials. The aim was to structure this topic into its component parts and to highlight the translational research that has been conducted up to the present time. A literature search was done from indexed journals up to September 2017. The main search terms used were based on dental resin-based composites, dental adhesives along with bioactive glass and the calcium phosphate family. The results showed that in 123 articles, amorphous calcium phosphate (39.83%), hydroxyapatite (23.5%), bioactive glass (16.2%), dicalcium phosphate (5.69%), monocalcium phosphate monohydrate (3.25%), and tricalcium phosphate (2.43%) have been used in restorative materials. Moreover, seven studies were found related to a newly developed commercial bioactive composite. The utilization of bioactive materials for tooth restorations can promote remineralization and a durable seal of the tooth-material interface.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University
| | - Mariam Raza Syed
- Department of Dental Materials, University of Health Sciences.,Department of Dental Materials, Lahore Medical and Dental College
| |
Collapse
|
6
|
Wang L, Li C, Weir MD, Zhang K, Zhou Y, Xu HHK, Reynolds MA. Novel multifunctional dental bonding agent for Class-V restorations to inhibit periodontal biofilms. RSC Adv 2017; 7:29004-29014. [PMID: 29910954 PMCID: PMC5998673 DOI: 10.1039/c6ra28711e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We recently developed a dental bonding agent to bond restorations to teeth using nanoparticles of amorphous calcium phosphate (NACP) for remineralization with rechargeable calcium and phosphate ion release. The objectives of this study were to: (1) incorporate an antibacterial monomer dimethylaminohexadecyl methacrylate (DMAHDM) and a protein-repellent agent 2-methacryloyloxyethyl phosphorylcholine (MPC); and (2) investigate protein adsorption and periodontitis-related biofilms for the first time. A primer, used to prime tooth structures for bonding, was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with PMGDM, ethoxylated bisphenol A dimethacrylate and HEMA. NACP, MPC and DMAHDM were incorporated. Streptococcus gordonii, Actinomyces naeslundii, Porphyromonas gingivalis, Fusobacterium nucleatum were cultured to form single and multi-species biofilms. Colony-forming units (CFU), live/dead, metabolic activity, and polysaccharide were measured. Adding DMAHDM, MPC and NACP into the bonding agent did not compromise the dentin bond strength (p > 0.1). Bonding agents with 5% MPC reduced protein adsorption to 1/15 that of the control (p < 0.05). Bonding agents with 5% DMAHDM + 5% MPC had much greater reduction in biofilms than DMAHDM or MPC alone (p < 0.05). Biofilm CFU was reduced by 3 to 4 log via DMAHDM + MPC. Metabolic activities and polysaccharide of biofilms were also substantially reduced (p < 0.05). In conclusion, a novel bonding agent was developed for dental restorations with inhibition of biofilms, reducing CFU by 3 to 4 log. Besides remineralizartion and acid-neutralization via NACP to inhibit caries as shown previously, the multifunctional adhesive is promising for root restorations with subgingival margins to suppress periodontal pathogens and protect the periodontium.
Collapse
Affiliation(s)
- Lin Wang
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Michael D. Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hockin H. K. Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD 21250, USA
| | - Mark A. Reynolds
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E334. [PMID: 28772697 PMCID: PMC5506916 DOI: 10.3390/ma10040334] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Collapse
Affiliation(s)
- Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|
8
|
Shahariyar C. A A, Mahale AD, Kumar K, Rai R. Effect of fluoridated casein phospopeptide-amorphous-calcium phosphate complex, chlorhexidine fluoride mouthwash on shear bond strength of orthodontic brackets: A comparative in vitro study. APOS TRENDS IN ORTHODONTICS 2016. [DOI: 10.4103/2321-1407.173724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective
The aim of the current study was to determine the effects of casein phosphopeptide amorphous calcium-phosphate (CPP-ACP) complex, chlorhexidine fluoride mouthwash on shear bond strengths (SBSs) of orthodontic brackets.
Materials and Methods
About sixty extracted healthy human premolar teeth with intact buccal enamel were divided into two equal groups to which brackets were bonded using self-etching primers (SEPs) and conventional means respectively. These were further equally divided into three subgroups - (1) control (2) CPP-ACP (3) chlorhexidine fluoride mouthwash. The SBSs were then measured using a universal testing machine.
Results
SBS of the conventional group was significantly higher than the self-etching group. The intragroup differences were statistically insignificant.
Conclusion
CPP-ACP, chlorhexidine fluoride mouthwash did not adversely affect SBS of orthodontic brackets irrespective of the method of conditioning. Brackets bonded with conventional technique showed greater bond strengths as compared to those bonded with SEP.
Collapse
|
9
|
Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment. ScientificWorldJournal 2015; 2015:903451. [PMID: 26380371 PMCID: PMC4563098 DOI: 10.1155/2015/903451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/05/2015] [Indexed: 11/17/2022] Open
Abstract
The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance.
Collapse
|
10
|
Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dent Mater 2015; 31:726-33. [PMID: 25892604 DOI: 10.1016/j.dental.2015.03.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 03/30/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. METHODS Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). RESULTS DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. SIGNIFICANCE The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release.
Collapse
|
11
|
Cossellu G, Lanteri V, Butera A, Sarcina M, Farronato G. Effects of six different preventive treatments on the shear bond strength of orthodontic brackets: in vitro study. ACTA BIOMATERIALIA ODONTOLOGICA SCANDINAVICA 2015. [PMID: 28642895 PMCID: PMC5433176 DOI: 10.3109/23337931.2015.1021351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: The aim of this study is to evaluate the effect of six different prophylactic agents on shear bond strength (SBS) of orthodontic brackets. Materials and methods: One hundred twenty-six freshly extracted mandibular bovine incisors were used. Teeth were randomly divided into 7 equal groups (18 per group) as follows: group-1 served as control with no pre-treatment; group-2 enamel treated with fluoride varnish (Fluor Protector, Ivoclar Vivadent); group-3 containing casein-phosphopeptide-amorphous calcium-phosphate (CPP-ACP) paste (GC Tooth Mousse, RECALDENT™); group-4 with ozone (HealOzone, Kavo); group-5 with glycine powder (Perio Flow, EMS); group-6 with hydroxyapatite powder 99.5% (Coswell S.p.A.); group-7 with a toothpaste made of hydroxyapatite nanocrystals (BioRepair® Plus, Coswell S.p.A). Brackets were all bonded using the same technique with transbond XT (3 M Unitek, Monrovia, CA). All the bonded specimens were stored for 24 h in deionized water (37 °C) and subjected to thermal cycling for 1000 cycles. The SBS was measured with an Instron Universal Testing machine and the adhesive remnant was assessed with the adhesive remnant index (ARI) using a stereomicroscope at 10× magnification. Results: Statistical differences (ANOVA) were found among the seven investigated groups (F = 12.226, p < 0.001). SBS of groups 2, 5 and 6 were significantly lower than the control group (p < 0.05). ARI scores (chi-square test) were correlated with the differences of SBS values. Conclusion: CPP-ACP paste, ozone or BioRepair® did not compromise on bracket bond strength. Fluoride, glycine or hydroxyapatite significantly decreased the SBS; only the fluoride group showed significant clinically low (<6 MPa) SBS values.
Collapse
Affiliation(s)
- Gianguido Cossellu
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Department of Biomedical, Surgical and Dental Sciences, Unit of Orthodontics and Pediatric Dentistry, School of Dentistry, University of MilanMilanItaly
| | - Valentina Lanteri
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Department of Biomedical, Surgical and Dental Sciences, Unit of Orthodontics and Pediatric Dentistry, School of Dentistry, University of MilanMilanItaly
| | - Andrea Butera
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of PaviaPaviaItaly
| | - Michele Sarcina
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Department of Biomedical, Surgical and Dental Sciences, Unit of Orthodontics and Pediatric Dentistry, School of Dentistry, University of MilanMilanItaly
| | - Giampietro Farronato
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Department of Biomedical, Surgical and Dental Sciences, Unit of Orthodontics and Pediatric Dentistry, School of Dentistry, University of MilanMilanItaly
| |
Collapse
|
12
|
Nasiri-Tabrizi B, Fahami A. Production of poorly crystalline tricalcium phosphate nanopowders using different mechanochemical reactions. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Al-Kawari HM, Al-Jobair AM. Effect of different preventive agents on bracket shear bond strength: in vitro study. BMC Oral Health 2014; 14:28. [PMID: 24678892 PMCID: PMC3986596 DOI: 10.1186/1472-6831-14-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background The effects of fluoride and CPP-ACP before bracket bonding on the shear bond strength of orthodontic brackets have been reported with contradicting results. The objective of this in vitro study was to evaluate the effect of different preventive agents namely; casein phosphopeptide-amorphous-calcium-phosphate (CPP-ACP), fluoride-containing-CPP-ACP (CPP-ACPF) and 5% sodium fluoride (5% NaF), on the enamel-bracket shear bond strength (SBS) and to compare their effects when applied before or after acid-etching. Methods Human premolar teeth were randomly divided into seven groups (16 teeth per group) as follows: the control group, where no preventive agent was applied on the enamel and 6 experimental groups. Teeth in groups 1a, 2a, and 3a were treated with CPP-ACP paste, CPP-ACPF paste, and 5% NaF, respectively before acid-etching. Teeth in groups 1b, 2b and 3b were treated using the same preventive agents after acid-etching. The brackets were then bonded and the teeth were thermocycled. The brackets' SBS was measured and the adhesive remnant was assessed using adhesive remnant index (ARI). Analysis of variance (ANOVA) and Tukey test were performed to compare the SBS among different groups. Chi-square test was used to evaluate differences in ARI scores between the groups. Results Enamel surface treatment with CPP-ACPF after acid-etching significantly increased SBS compared to the control and to its application before acid-etching (P < 0.05). Higher ARI index was recorded when the preventive agents were applied after acid-etching. Conclusion Brackets' SBS significantly increased when fluoride-containing-CPP-ACP was applied after acid-etching.
Collapse
Affiliation(s)
- Huda M Al-Kawari
- Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
14
|
Machado SMM, Nascimento DBP, Silva RC, Loretto SC, Normando D. Evaluation of metallic brackets adhesion after the use of bleaching gels with and without amorphous calcium phosphate (ACP): in vitro study. Dental Press J Orthod 2013; 18:101-6. [PMID: 24094018 DOI: 10.1590/s2176-94512013000300016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate in vitro the effects of tooth whitening using gel with Amorphous Calcium Phosphate (ACP) on the bond strength of metal brackets. METHODS Thirty-six bovine incisors were sectioned at the crown-root interface, and the crowns were then placed in PVC cylinders. The specimens were divided into 3 groups (n = 12) according to whitening treatment and type of gel used, as follows: G1 (control) - no whitening; G2 - whitening with gel not containing ACP (Whiteness Perfect - FGM), G3 - whitening with gel containing ACP (Nite White ACP - Discus Dental). Groups G2 and G3 were subjected to 14 cycles of whitening followed by an interval of 15 days before the bonding of metal brackets. Shear bond strength testing was performed on a Kratos universal test machine at a speed of 0.5 mm/min. After the mechanical test, the specimens were assessed to determine the adhesive remnant index (ARI). The results were subjected to ANOVA, Tukey's test and Kruskal-Wallis test (5%). RESULTS Significant differences were noted between the groups. Control group (G1 - 11.10 MPa) showed a statistically higher shear bond strength than the groups that underwent whitening (G2 - 5.40 Mpa, G3 - 3.73 MPa), which did not differ from each other. There were no significant differences between the groups in terms of ARI. CONCLUSIONS Tooth whitening reduces the bond strength of metal brackets, whereas the presence of ACP in the whitening gel has no bearing on the results.
Collapse
|
15
|
Dorozhkin SV. Calcium orthophosphates in dentistry. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1335-1363. [PMID: 23468163 DOI: 10.1007/s10856-013-4898-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Dental caries, also known as tooth decay or a cavity, remains a major public health problem in the most communities even though the prevalence of disease has decreased since the introduction of fluorides for dental care. Therefore, biomaterials to fill dental defects appear to be necessary to fulfill customers' needs regarding the properties and the processing of the products. Bioceramics and glass-ceramics are widely used for these purposes, as dental inlays, onlays, veneers, crowns or bridges. Calcium orthophosphates belong to bioceramics but they have some specific advantages over other types of bioceramics due to a chemical similarity to the inorganic part of both human and mammalian bones and teeth. Therefore, calcium orthophosphates (both alone and as components of various formulations) are used in dentistry as both dental fillers and implantable scaffolds. This review provides brief information on calcium orthophosphates and describes in details current state-of-the-art on their applications in dentistry and dentistry-related fields. Among the recognized dental specialties, calcium orthophosphates are most frequently used in periodontics; however, the majority of the publications on calcium orthophosphates in dentistry are devoted to unspecified "dental" fields.
Collapse
|
16
|
Zhao J, Liu Y, Sun WB, Yang X. First detection, characterization, and application of amorphous calcium phosphate in dentistry. J Dent Sci 2012. [DOI: 10.1016/j.jds.2012.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Ekizer A, Zorba YO, Uysal T, Ayrikcila S. Effects of demineralizaton-inhibition procedures on the bond strength of brackets bonded to demineralized enamel surface. Korean J Orthod 2012; 42:17-22. [PMID: 23112927 PMCID: PMC3481961 DOI: 10.4041/kjod.2012.42.1.17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022] Open
Abstract
Objective To study and compare the effects of different demineralization-inhibition methods on the shear bond strength (SBS) and fracture mode of an adhesive used to bond orthodontic brackets to demineralized enamel surfaces. Methods Eighty freshly extracted, human maxillary premolars were divided into 4 equal groups and demineralized over the course of 21 days. Brackets were bonded to the demineralized enamel of teeth in Group 1. In Group 2, bonding was performed following resin infiltration (ICON®, DMG, Hamburg, Germany). Before bonding, pre-treatment with acidulated phosphate fluoride (APF) or solutions containing casein phosphopeptide-amorphous calcium phosphate with 2% neutral sodium fluoride (CPP-ACP/wF) was performed in Groups 3 and 4, respectively. The SBS values of the brackets were measured and recorded following mechanical shearing of the bracket from the tooth surface. The adhesive remnant index (ARI) scores were determined after the brackets failed. Statistical comparisons were performed using one-way ANOVA, Tukey's post-tests, and G-tests. Results Significant differences were found in some of the intergroup comparisons of the SBS values (F = 39.287, p < 0.001). No significant differences were found between the values for the APF-gel and control groups, whereas significantly higher SBS values were recorded for the resin-infiltrated and CPP-ACP/wF-treated groups. The ARI scores were also significantly different among the 4 groups (p < 0.001). Conclusions Tooth surfaces exposed to resin infiltration and CPP-ACP/wF application showed higher debonding forces than the untreated, demineralized surfaces.
Collapse
Affiliation(s)
- Abdullah Ekizer
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | | | | | | |
Collapse
|
18
|
In vitro properties of orthodontic adhesives with fluoride or amorphous calcium phosphate. Int J Dent 2011; 2011:583521. [PMID: 21912546 PMCID: PMC3168275 DOI: 10.1155/2011/583521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/26/2011] [Accepted: 06/05/2011] [Indexed: 12/03/2022] Open
Abstract
This in vitro study evaluated the efficacy of orthodontic adhesives with fluoride or amorphous calcium phosphate (ACP) in reducing bacterial adhesion and enamel demineralization. Forty human premolars each sectioned buccolingually into three parts were bracketed with control resin (Transbond XT) or adhesives containing ACP (Aegis Ortho) or fluoride (QuickCure). Artificial lesions induced by pH cycling were examined by X-ray photoelectron spectrophotometry (XPS) and polarized light microscopy (PLM). After 28 days, Aegis Ortho demonstrated the lowest calcium and phosphorous content by XPS analysis. After 42 days, reductions in lesion depth areas were 23.6% for Quick Cure and 20.3% for Aegis Ortho (P < 0.05). In the presence of 1% sucrose, adhesion of Streptococcus mutans to Aegis Ortho and Quick Cure was reduced by 41.8% and 37.7% (P < 0.05) as compared to Transbond XT. Composites containing ACP or fluoride reduced bacterial adherence and lesion formation as compared to a composite without ACP or fluoride.
Collapse
|
19
|
Zhao J, Liu Y, Sun WB, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Cent J 2011; 5:40. [PMID: 21740535 PMCID: PMC3143077 DOI: 10.1186/1752-153x-5-40] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/08/2011] [Indexed: 11/10/2022] Open
Abstract
Amorphous Calcium Phosphate (ACP) is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry.
Collapse
Affiliation(s)
- Jie Zhao
- Stomatological Hospital, Nanjing University Medical School, 30 Zhongyang Road, Nanjing 210008, China.
| | | | | | | |
Collapse
|
20
|
Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater 2010; 6:4457-4475. [PMID: 20609395 DOI: 10.1016/j.actbio.2010.06.031] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/15/2022]
Abstract
Amorphous calcium phosphates (ACPs) represent a unique class of biomedically relevant calcium orthophosphate salts, having variable chemical but essentially identical glass-like physical properties, in which there is neither translational nor orientational long-range ordering of the atomic positions. Normally, ACPs are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing ions of Ca(2+) and PO₄³⁻; however, other production techniques are known. Interestingly, ACPs prepared by wet-chemical techniques were found to have a relatively constant chemical composition over a relatively wide range of preparation conditions, which suggests the presence of a well-defined local structural unit, presumably with the structure of Ca₉(PO₄)₆ - so-called Posner cluster. However, the presence of similar clusters in ACPs produced by other techniques remains uncertain. All ACPs are thermodynamically unstable compounds and, unless stored in dry conditions or doped by stabilizers, spontaneously tend to transform to crystalline calcium orthophosphates, mainly to calcium apatites. This solution instability of ACPs and their easy transformation to crystalline phases are of a great biological relevance. Specifically, the initiating role ACPs play in matrix vesicle biomineralization raises the importance of ACPs from a mere laboratory curiosity to that of a key intermediate in skeletal calcification. In addition, due to significant chemical and structural similarities with calcified mammalian tissues, as well as excellent biocompatibility and bioresorbability, all types of ACPs are very promising candidates for the manufacture of artificial bone grafts. This review summarizes the current knowledge on the occurrence, preparation, composition, structure, major properties and biomedical applications of ACPs. To assist readers in looking for the specific details on ACPs, a great number of references have been collected and systematized.
Collapse
|
21
|
Scougall-Vilchis RJ, Saku S, Kotake H, Yamamoto K. Influence of different self-etching primers on the bond strength of orthodontic lingual buttons. Eur J Orthod 2010; 32:561-566. [DOI: 10.1093/ejo/cjp154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
22
|
Uysal T, Amasyali M, Ozcan S, Koyuturk AE, Akyol M, Sagdic D. In vivo effects of amorphous calcium phosphate-containing orthodontic composite on enamel demineralization around orthodontic brackets. Aust Dent J 2010; 55:285-91. [DOI: 10.1111/j.1834-7819.2010.01236.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Uysal T, Amasyali M, Koyuturk AE, Ozcan S. Effects of different topical agents on enamel demineralization around orthodontic brackets: an in vivo and in vitro study. Aust Dent J 2010; 55:268-74. [DOI: 10.1111/j.1834-7819.2010.01233.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Tabrizi A, Cakirer B. A comparative evaluation of casein phosphopeptide-amorphous calcium phosphate and fluoride on the shear bond strength of orthodontic brackets. Eur J Orthod 2010; 33:282-7. [PMID: 20651043 DOI: 10.1093/ejo/cjq062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The purpose of the study was to evaluate and compare the effects of topical application of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and fluoride on the shear bond strength (SBS) of orthodontic brackets bonded to human premolar teeth. Eighty extracted human premolar teeth were cleansed of soft tissue, then polished with non-fluoridated pumice, and immersed in water for 1-3 months until testing. The teeth were randomly divided into four groups: group 1, control, without pre-treatment of the enamel; group 2, the enamel was treated with 5 per cent sodium fluoride varnish for 4 minutes; group 3, the enamel was treated with CPP-ACP for 3 minutes; and group 4, the enamel was treated with 5 per cent sodium fluoride and CPP-ACP. All bonded specimens were immersed in distilled water at room temperature for 24 hours and subsequently tested for SBS in a universal testing machine. After debonding, the bracket bases and the enamel surfaces were examined by eye to assess any adhesive remaining, in accordance with the Adhesive Remnant Index (ARI). Descriptive statistics were calculated for each group. Analysis of variance and Tukey honestly significant difference (HSD) test were performed to compare the SBS of the groups. The chi-square test was used to evaluate differences in ARI scores between the groups. The SBS in group 2 was significantly lower than groups 1, 3, and 4 (P < 0.001). ARI scores were not significantly different between the four groups (P > 0.05). CPP-ACP, either alone or combined with fluoride, may safely be used as a prophylactic agent before bracket bonding.
Collapse
Affiliation(s)
- Anis Tabrizi
- Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
25
|
|
26
|
Uysal T, Ustdal A, Nur M, Catalbas B. Bond strength of ceramic brackets bonded to enamel with amorphous calcium phosphate-containing orthodontic composite. Eur J Orthod 2010; 32:281-4. [DOI: 10.1093/ejo/cjp115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
27
|
Xiaojun D, Jing L, Xuehua G, Hong R, Youcheng Y, Zhangyu G, Sun J. Effects of CPP-ACP paste on the shear bond strength of orthodontic brackets. Angle Orthod 2009; 79:945-50. [PMID: 19705946 DOI: 10.2319/101108-573.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 12/01/2008] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste on shear bond strength and debonding failure modes of orthodontic brackets. MATERIALS AND METHODS Freshly extracted premolars were randomly divided into four groups (n =18) as follows: in groups 1 and 3, the enamel was treated with a solution of CPP-ACP dissolved in artificial saliva; groups 2 and 4 served as controls, and the enamel was treated with artificial saliva. After conventional acid etching, in groups 1 and 2, brackets were bonded using a light-cured bonding system (Blugloo); while in groups 3 and 4, brackets were bonded using a conventional bonding system (Unite Bonding Adhesive). Bonded specimens were subjected to thermal cycling for 1000 cycles before debonding procedures. After debonding, teeth and brackets were examined under a stereomicroscope at 10x magnification to determine whether any adhesive remained, in accordance with the adhesive remnant index. The acid-etched enamel surfaces were also observed using scanning electron microscopy after treatment with and without CPP-ACP paste. RESULTS The shear bond strengths of group 1 were significantly higher than those seen in group 2 (P < .01). There was no significant difference in the shear bond strengths of groups 3 and 4 (P > .05). Scanning electron microscopic observation showed that the pretreated enamel surface was rougher than that of the control surface after acid etching. CONCLUSION The use of CPP-ACP can be considered as an alternative prophylactic application in orthodontic practice since it did not compromise bracket bond strength.
Collapse
Affiliation(s)
- Ding Xiaojun
- Department of Stomatology, Zhongshan Hospital, Shanghai Medical School, Fudan University, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Uysal T, Ulker M, Baysal A, Usumez S. Microleakage between composite-wire and composite-enamel interfaces of flexible spiral wire retainers. Part 2: comparison of amorphous calcium phosphate-containing adhesive with conventional lingual retainer composite. Eur J Orthod 2009; 31:652-7. [DOI: 10.1093/ejo/cjp039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Scougall Vilchis RJ, Yamamoto S, Kitai N, Yamamoto K. Shear bond strength of orthodontic brackets bonded with different self-etching adhesives. Am J Orthod Dentofacial Orthop 2009; 136:425-30. [PMID: 19732677 DOI: 10.1016/j.ajodo.2007.08.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The purpose of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded with 4 self-etching adhesives. METHODS A total of 175 extracted premolars were randomly divided into 5 groups (n = 35). Group I was the control, in which the enamel was etched with 37% phosphoric acid, and stainless steel brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif). In the remaining 4 groups, the enamel was conditioned with the following self-etching primers and adhesives: group II, Transbond Plus and Transbond XT (3M Unitek); group III, Clearfil Mega Bond FA and Kurasper F (Kuraray Medical, Tokyo, Japan); group IV, Primers A and B, and BeautyOrtho Bond (Shofu, Kyoto, Japan); and group V, AdheSE and Heliosit Orthodontic (Ivoclar Vivadent AG, Liechtenstein). The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The adhesive remnant index (ARI) including enamel fracture score was also evaluated. Additionally, the conditioned enamel surfaces were observed under a scanning electron microscope. RESULTS The SBS values of groups I (19.0 +/- 6.7 MPa) and II (16.6 +/- 7.3 MPa) were significantly higher than those of groups III (11.0 +/- 3.9 MPa), IV (10.1 +/- 3.7 MPa), and V (11.8 +/- 3.5 MPa). Fluoride-releasing adhesives (Kurasper F and BeautyOrtho Bond) showed clinically acceptable SBS values. Significant differences were found in the ARI and enamel fracture scores between groups I and II. CONCLUSIONS The 4 self-etching adhesives yielded SBS values higher than the bond strength (5.9 to 7.8 MPa) suggested for routine clinical treatment, indicating that orthodontic brackets can be successfully bonded with any of these self-etching adhesives.
Collapse
Affiliation(s)
- Rogelio José Scougall Vilchis
- Professor, Department of Orthodontics, School of Dentistry, Dental Research Center (CIEAO), Autonomous University of the State of Mexico (UAEM), Toluca, Mexico.
| | | | | | | |
Collapse
|
30
|
Uysal T, Ulker M, Akdogan G, Ramoglu SI, Yilmaz E. Bond Strength of Amorphous Calcium Phosphate–Containing Orthodontic Composite Used as a Lingual Retainer Adhesive. Angle Orthod 2009; 79:117-21. [DOI: 10.2319/112807-560.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/01/2008] [Indexed: 11/23/2022] Open
Abstract
Abstract
Objective: To evaluate the shear bond strength and fracture mode difference between amorphous calcium phosphate (ACP)–containing adhesive and conventional resin-based composite material used as an orthodontic lingual retainer adhesive.
Materials and Methods: Forty crowns of extracted lower human incisors were mounted in acrylic resin, leaving the buccal surface of the crowns parallel to the base of the molds. The teeth were randomly divided into two groups: experimental and control, containing 20 teeth each. Conventional lingual retainer composite (Transbond-LR, 3M-Unitek) and ACP-containing orthodontic adhesive (Aegis-Ortho) were applied to the teeth surface by packing the material into the cylindrical plastic matrices with a 2.34-mm internal diameter and a 3-mm height (Ultradent) to simulate the lingual retainer bonding. For shear bond testing, the specimens were mounted in a universal testing machine, and an apparatus (Ultradent) attached to a compression load cell was applied to each specimen until failure occurred. The shear bond data were analyzed using Student's t-test. Fracture modes were analyzed by χ2 test.
Results: The statistical test showed that the bond strengths of group 1 (control Transbond-LR, mean: 24.77 ± 9.25 MPa) and group 2 (ACP-containing adhesive, mean: 8.49 ± 2.53 MPa) were significantly different from each other. In general, a greater percentage of the fractures were adhesive at the tooth-composite interface (60% in group 1 and 55% in group 2), and no statistically significant difference was found between groups.
Conclusion: The ACP-containing Aegis-Ortho adhesive resulted in a significant decrease in bond strength to the etched enamel surface.
Collapse
Affiliation(s)
- Tancan Uysal
- a Associate Professor and Department Chair, Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Mustafa Ulker
- b Assistant Professor, Department of Conservative Dentistry, Faculty of Dentistry, Erciyes University Kayseri, Turkey
| | - Gulsen Akdogan
- c Instructor, Department of Mechanics, Erciyes University, Kayseri Vocational College, Kayseri, Turkey
| | - Sabri Ilhan Ramoglu
- d Assistant Professor, Department of Orthodontics, Faculty of Dentistry, Erciyes University Kayseri, Turkey
| | - Esra Yilmaz
- e Research Assistant, Department of Orthodontics, Erciyes University Kayseri, Turkey
| |
Collapse
|
31
|
Vilchis RJS, Hotta Y, Yamamoto K. Examination of six orthodontic adhesives with electron microscopy, hardness tester and energy dispersive X-ray microanalyzer. Angle Orthod 2008; 78:655-61. [PMID: 18302464 DOI: 10.2319/0003-3219(2008)078[0655:eosoaw]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 09/01/2007] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To examine the ultrastructure of six light-cure orthodontic adhesives with scanning electron microscope (SEM) and transmission electron microscope (TEM), microhardness tester, and energy dispersive X-ray microanalyzer (EDX). MATERIALS AND METHODS The orthodontic adhesives evaluated were Transbond XT, Light Bond, BeautyOrtho Bond, Kurasper F, Heliosit Orthodontic, and Salivatect. Specimens of each adhesive were carefully prepared for observation under SEM and TEM. Furthermore, the Vickers hardness was tested, and the adhesives were evaluated with EDX. RESULTS SEM and TEM images illustrated great diversity of the adhesives ultrastructure. The Vickers hardness test showed significant differences among all the adhesives (except Transbond XT and Salivatect). Although some similar elements were detected with EDX, the concentration was different in each adhesive. CONCLUSION Orthodontic brackets can be bonded to the enamel surface with the adhesives available on the market. However, orthodontists might achieve better results identifying their properties and compositions.
Collapse
|
32
|
Foster JA, Berzins DW, Bradley TG. Bond Strength of an Amorphous Calcium Phosphate–Containing Orthodontic Adhesive. Angle Orthod 2008; 78:339-44. [DOI: 10.2319/020807-60] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/01/2007] [Indexed: 11/23/2022] Open
Abstract
Abstract
Objective: To determine whether an amorphous calcium phosphate (ACP)-containing adhesive has an acceptable level of shear bond strength to be used as an orthodontic adhesive.
Materials and Methods: Sixty extracted premolars were randomly divided into three groups for orthodontic bonding. Group 1 used a composite resin adhesive (Transbond XT), group 2 was bonded with an ACP-containing adhesive (Aegis Ortho), and group 3 used a resin-modified glass ionomer (Fuji Ortho LC). All bonded teeth were stored in distilled water at 37°C for 40 ± 2 hours prior to debonding. Shear bond strength and adhesive remnant index (ARI) were recorded for each specimen.
Results: The mean shear bond strengths for the three test groups were: group 1 (15.2 ± 3.6 MPa), group 2 (6.6 ± 1.5 MPa), and group 3 (8.3 ± 2.8 MPa). A one-way analysis of variance showed a significant difference in bond strengths between the groups. A post hoc Tukey test showed group 1 to be significantly (P < .001) greater than groups 2 and 3. A Kruskal-Wallis test and a Mann-Whitney U-test showed groups 1 and 3 exhibited lower ARI scores than group 2, but a majority of specimens in each group had greater than 50% of the cement removed along with the bracket during debonding.
Conclusions: The ACP-containing adhesive demonstrated a low, but satisfactory bond strength needed to function as an orthodontic adhesive.
Collapse
Affiliation(s)
- Jeff A. Foster
- a Graduate MS student, Department of Orthodontics, School of Dentistry, Marquette University, Milwaukee, Wis
| | - David W. Berzins
- b Assistant Professor, Department of Dental Biomaterials, School of Dentistry, Marquette University, Milwaukee, Wis
| | - Thomas G. Bradley
- c Associate Professor and Department Chair, Department of Developmental Sciences, School of Dentistry, Marquette University, Milwaukee, Wis
| |
Collapse
|