1
|
Zaniker EJ, Babayev E, Duncan FE. Common mechanisms of physiological and pathological rupture events in biology: novel insights into mammalian ovulation and beyond. Biol Rev Camb Philos Soc 2023; 98:1648-1667. [PMID: 37157877 PMCID: PMC10524764 DOI: 10.1111/brv.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Ovulation is a cyclical biological rupture event fundamental to fertilisation and endocrine function. During this process, the somatic support cells that surround the germ cell undergo a remodelling process that culminates in breakdown of the follicle wall and release of a mature egg. Ovulation is driven by known proteolytic and inflammatory pathways as well as structural alterations to the follicle vasculature and the fluid-filled antral cavity. Ovulation is one of several types of systematic remodelling that occur in the human body that can be described as rupture. Although ovulation is a physiological form of rupture, other types of rupture occur in the human body which can be pathological, physiological, or both. In this review, we use intracranial aneurysms and chorioamniotic membrane rupture as examples of rupture events that are pathological or both pathological and physiological, respectively, and compare these to the rupture process central to ovulation. Specifically, we compared existing transcriptomic profiles, immune cell functions, vascular modifications, and biomechanical forces to identify common processes that are conserved between rupture events. In our transcriptomic analysis, we found 12 differentially expressed genes in common among two different ovulation data sets and one intracranial aneurysm data set. We also found three genes that were differentially expressed in common for both ovulation data sets and one chorioamniotic membrane rupture data set. Combining analysis of all three data sets identified two genes (Angptl4 and Pfkfb4) that were upregulated across rupture systems. Some of the identified genes, such as Rgs2, Adam8, and Lox, have been characterised in multiple rupture contexts, including ovulation. Others, such as Glul, Baz1a, and Ddx3x, have not yet been characterised in the context of ovulation and warrant further investigation as potential novel regulators. We also identified overlapping functions of mast cells, macrophages, and T cells in the process of rupture. Each of these rupture systems share local vasoconstriction around the rupture site, smooth muscle contractions away from the site of rupture, and fluid shear forces that initially increase and then decrease to predispose one specific region to rupture. Experimental techniques developed to study these structural and biomechanical changes that underlie rupture, such as patient-derived microfluidic models and spatiotemporal transcriptomic analyses, have not yet been comprehensively translated to the study of ovulation. Review of the existing knowledge, transcriptomic data, and experimental techniques from studies of rupture in other biological systems yields a better understanding of the physiology of ovulation and identifies avenues for novel studies of ovulation with techniques and targets from the study of vascular biology and parturition.
Collapse
Affiliation(s)
- Emily J. Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Dadkhah A, Hashemi A. Does preconditioning lower the rupture resistance of chorioamniotic membrane? ACTA ACUST UNITED AC 2021; 65:643-652. [PMID: 32432560 DOI: 10.1515/bmt-2019-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/04/2020] [Indexed: 11/15/2022]
Abstract
Premature rupture of fetal membrane occurs in about 3% of all pregnancies. The physical integrity of chorioamnion (CA) membrane should be retained until delivery for a healthy pregnancy. To explore the effect of pre-conditioning and probe size on the mechanical properties of human chorioamniotic sac, the mechanical properties of 17 human chorioamniotic membranes, collected from cesarean delivery, were examined using biaxial puncture tests with and without preconditioning by different probe sizes. For preconditioned samples, the mean ± std. of ultimate rupture stress was calculated to be 1.73 ± 0.13, 1.61 ± 0.29 and 1.78 ± 0.26 MPa for the probe sizes of 3, 5 and 7 mm, respectively. For samples with no preconditioning, these values were calculated to be 2.38 ± 0.29, 2.36 ± 0.37, and 2.59 ± 0.43 MPa for the above-mentioned probe sizes. The force to probe diameter for samples with no preconditioning was in the range of 1087-1301 N/m for the three probe diameters, well in the range of 850-1580 N/m reported by previous studies. Our results show that the preconditioned samples had significantly lower ultimate puncture force and ultimate stress compared to non-preconditioned samples. In addition, a correlation between the probe size and the magnitude of puncture force was observed, while the stress values were not significantly affected by changing probe size.
Collapse
Affiliation(s)
- Arash Dadkhah
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Ata Hashemi
- Biomechanics Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Kumar D, Moore RM, Mercer BM, Mansour JM, Moore JJ. Mechanism of Human Fetal Membrane Biomechanical Weakening, Rupture and Potential Targets for Therapeutic Intervention. Obstet Gynecol Clin North Am 2021; 47:523-544. [PMID: 33121643 DOI: 10.1016/j.ogc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Using a novel in vitro model system combining biochemical/histologic with bioengineering approaches has provided significant insights into the physiology of fetal membrane weakening and rupture along with potential mechanistic reasons for lack of efficacy of currently clinically used agents to prevent preterm premature rupture of the membranes (pPROM) and preterm births. Likewise, the model has also facilitated screening of agents with potential for preventing pPROM and preterm birth.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| | - Robert M Moore
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Brian M Mercer
- Department of Reproductive Biology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Joseph M Mansour
- Mechanical and Aerospace Engineering, Case Western Reserve University, Glennan 617, Cleveland, OH 44106, USA
| | - John J Moore
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Reproductive Biology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
4
|
Zhang T, Zhang Y, Yang J, Wen P, Li H, Wei N, Gao Y, Li B, Huo Y. Dynamic measurement of amnion thickness during loading by speckle pattern interferometry. Placenta 2021; 104:284-294. [PMID: 33486132 DOI: 10.1016/j.placenta.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION In previous studies on the mechanical parameters of amnions (AM), there is a limitation due to the lack of an accurate thickness measurement, which is an important parameter for determining AM-specific mechanical properties. As a bottleneck, the characterization of the basic mechanical properties of AM are greatly restricted, even with the proposal of fracture criteria. METHOD First, the initial thickness of the AM is estimated by the interpolated-volume-area method. Second, through combinations of our self-developed mini-biaxial tensile device with speckle pattern interferometry, this is the first time that researchers can accurately obtain the AM thickness at each transient moment in the process of loading. RESULTS Based on the experimental results, an accurate stress-strain curve could be obtained. Two important mechanical parameters-the fracture energy density and amnion rupture modulus-could be extracted as 0.184±0.036MPa and 108.57±17.32MPa, respectively. The fracture energy density and amnion rupture modulus provide objective criteria and a scientific basis for the evaluation of AM rupture. DISCUSSION The tensile stress-strain curve of a normal human amnion shows a distinct J-shape. This proves that the experimental results are basically reliable. Both important parameters --the fracture energy density and amnion rupture modulus, can be calculated from the stress-strain curve. Extracting these two parameters is critical for the evaluation and prediction of ROM, PROM and PPROM.
Collapse
Affiliation(s)
- Tong Zhang
- Institute of Solid Mechanics, School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100083, China.
| | - Yan Zhang
- Obstetrics and Gynecology Department, Peking University Third Hospital, Beijing, 100191, China.
| | - Jianhong Yang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China.
| | - Pinjing Wen
- Institute of Semiconductor Manufacturing Research, Shenzhen University, Shenzhen, 518060, Guangdong, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| | - Han Li
- Institute of Solid Mechanics, School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100083, China
| | - Ning Wei
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yufei Gao
- Obstetrics and Gynecology Department, Peking University Third Hospital, Beijing, 100191, China
| | - Boqian Li
- Institute of Solid Mechanics, School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100083, China
| | - Yucheng Huo
- Institute of Solid Mechanics, School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
5
|
Koh CT, Tonsomboon K, Oyen ML. Fracture toughness of human amniotic membranes. Interface Focus 2019; 9:20190012. [PMID: 31485308 DOI: 10.1098/rsfs.2019.0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/23/2023] Open
Abstract
Amnion is a membrane that surrounds and structurally protects the developing fetus during pregnancy. The rupture of amniotic membranes prior to both normal and preterm deliveries involves stretch forces acting on a biochemically triggered weak zone of the membranes. Fracture toughness is an important mechanical property describing how the membranes containing a defect resist fracture, but this property has never been investigated in amniotic membranes. In this work, the fracture toughness of many samples cut from four pieces of amniotic membrane from different mothers was examined by uniaxial and pure shear (mode I) fracture tests. The measurement was checked for dependence on the sample geometry and notch length. Results from the uniaxial tensile test show J-shaped stress-strain curves and confirm that the amniotic membrane is a nonlinear material. The measured fracture toughness of four amniotic membranes ranged from 0.96 ± 0.11 to 1.83 ± 0.18 kJ m-2. Despite considering the effect of the presence of the defect on mechanical property measurement, similar fracture behaviour was observed for pre-notched and unnotched specimens, indicating that the membranes were extremely tolerant to defects. This defect-tolerant characteristic provides insight into the understanding of fetal membrane rupture.
Collapse
Affiliation(s)
- Ching Theng Koh
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.,Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 81310 Parit Raja, Johor, Malaysia
| | - Khaow Tonsomboon
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Michelle L Oyen
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| |
Collapse
|
6
|
Barrett DW, John RK, Thrasivoulou C, Mata A, Deprest JA, Becker DL, David AL, Chowdhury TT. Targeting mechanotransduction mechanisms and tissue weakening signals in the human amniotic membrane. Sci Rep 2019; 9:6718. [PMID: 31040291 PMCID: PMC6491562 DOI: 10.1038/s41598-019-42379-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Mechanical and inflammatory signals in the fetal membrane play an important role in extracellular matrix (ECM) remodelling in order to dictate the timing of birth. We developed a mechanical model that mimics repetitive stretching of the amniotic membrane (AM) isolated from regions over the placenta (PAM) or cervix (CAM) and examined the effect of cyclic tensile strain (CTS) on mediators involved in mechanotransduction (Cx43, AKT), tissue remodelling (GAGs, elastin, collagen) and inflammation (PGE2, MMPs). In CAM and PAM specimens, the application of CTS increased GAG synthesis, PGE2 release and MMP activity, with concomitant reduction in collagen and elastin content. Co-stimulation with CTS and pharmacological agents that inhibit either Cx43 or AKT, differentially influenced collagen, GAG and elastin in a tissue-dependent manner. SHG confocal imaging of collagen fibres revealed a reduction in SHG intensity after CTS, with regions of disorganisation dependent on tissue location. CTS increased Cx43 and AKT protein and gene expression and the response could be reversed with either CTS, the Cx43 antisense or AKT inhibitor. We demonstrate that targeting Cx43 and AKT prevents strain-induced ECM damage and promotes tissue remodelling mechanisms in the AM. We speculate that a combination of inflammatory and mechanical factors could perturb typical mechanotransduction processes mediated by Cx43 signalling. Cx43 could therefore be a potential therapeutic target to prevent inflammation and preterm premature rupture of the fetal membranes.
Collapse
Affiliation(s)
- David W Barrett
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Rebecca K John
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christopher Thrasivoulou
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alvaro Mata
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jan A Deprest
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Anna L David
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Tina T Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
7
|
Velarde MC, Menon R. Positive and negative effects of cellular senescence during female reproductive aging and pregnancy. J Endocrinol 2016; 230:R59-76. [PMID: 27325241 DOI: 10.1530/joe-16-0018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a phenomenon occurring when cells are no longer able to divide even after treatment with growth stimuli. Because senescent cells are typically associated with aging and age-related diseases, cellular senescence is hypothesized to contribute to the age-related decline in reproductive function. However, some data suggest that senescent cells may also be important for normal physiological functions during pregnancy. Herein, we review the positive and negative effects of cellular senescence on female reproductive aging and pregnancy. We discuss how senescent cells accelerate female reproductive aging by promoting the decline in the number of ovarian follicles and increasing complications during pregnancy. We also describe how cellular senescence plays an important role in placental and fetal development as a beneficial process, ensuring proper homeostasis during pregnancy.
Collapse
Affiliation(s)
- Michael C Velarde
- Institute of BiologyUniversity of the Philippines Diliman, Quezon City, Philippines Buck Institute for Research on AgingNovato, California, USA
| | - Ramkumar Menon
- Department of Obstetrics and GynecologyUniversity of Texas Medical Branch at Galveston, Galveston, Texas, USA Department of Clinical Medicine and Obstetrics and GynecologyAarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited. Placenta 2016; 42:59-73. [PMID: 27238715 DOI: 10.1016/j.placenta.2016.03.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/05/2016] [Accepted: 03/31/2016] [Indexed: 01/14/2023]
Abstract
Rupture of the fetal membranes (FM) is precipitated by stretch forces acting upon biochemically mediated, pre-weakened tissue. Term FM develop a para-cervical weak zone, characterized by collagen remodeling and apoptosis, within which FM rupture is thought to initiate. Preterm FM also have a weak region but are stronger overall than term FM. Inflammation/infection and decidual bleeding/abruption are strongly associated with preterm premature FM rupture (pPROM), but the specific mechanisms causing FM weakening-rupture in pPROM are unknown. There are no animal models for study of FM weakening and rupture. Over a decade ago we developed equipment and methodology to test human FM strength and incorporated it into a FM explant system to create an in-vitro human FM weakening model system. Within this model TNF (modeling inflammation) and Thrombin (modeling bleeding) both weaken human FM with concomitant up regulation of MMP9 and cellular apoptosis, mimicking the characteristics of the spontaneous FM rupture site. The model has been enhanced so that test agents can be applied directionally to the choriodecidual side of the FM explant consistent with the in-vivo situation. With this enhanced system we have demonstrated that the pathways involving inflammation/TNF and bleeding/Thrombin induced FM weakening overlap. Furthermore GM-CSF production was demonstrated to be a critical common intermediate step in both the TNF and the Thrombin induced FM weakening pathways. This model system has also been used to test potential inhibitors of FM weakening and therefore pPROM. The dietary supplement α-lipoic acid and progestogens (P4, MPA and 17α-hydroxyprogesterone) have been shown to inhibit both TNF and Thrombin induced FM weakening. The progestogens act at multiple points by inhibiting both GM-CSF production and GM-CSF action. The use of a combined biomechanical/biochemical in-vitro human FM weakening model system has allowed the pathways of fetal membrane weakening to be delineated, and agents that may be of clinical use in inhibiting these pathways to be tested.
Collapse
|
9
|
Perrini M, Mauri A, Ehret AE, Ochsenbein-Kölble N, Zimmermann R, Ehrbar M, Mazza E. Mechanical and microstructural investigation of the cyclic behavior of human amnion. J Biomech Eng 2015; 137:061010. [PMID: 25780908 DOI: 10.1115/1.4030054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 11/08/2022]
Abstract
The structural and mechanical integrity of amnion is essential to prevent preterm premature rupture (PPROM) of the fetal membrane. In this study, the mechanical response of human amnion to repeated loading and the microstructural mechanisms determining its behavior were investigated. Inflation and uniaxial cyclic tests were combined with corresponding in situ experiments in a multiphoton microscope (MPM). Fresh unfixed amnion was imaged during loading and changes in thickness and collagen orientation were quantified. Mechanical and in situ experiments revealed differences between the investigated configurations in the deformation and microstructural mechanisms. Repeated inflation induces a significant but reversible volume change and is characterized by high energy dissipation. Under uniaxial tension, volume reduction is associated with low energy, unrecoverable in-plane fiber reorientation.
Collapse
|
10
|
Bürzle W, Mazza E, Moore JJ. About Puncture Testing Applied for Mechanical Characterization of Fetal Membranes. J Biomech Eng 2014; 136:1901692. [DOI: 10.1115/1.4028446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/29/2014] [Indexed: 11/08/2022]
Abstract
Puncture testing has been applied in several studies for the mechanical characterization of human fetal membrane (FM) tissue, and significant knowledge has been gained from these investigations. When comparing results of mechanical testing (puncture, inflation, and uniaxial tension), we have observed discrepancies in the rupture sequence of FM tissue and significant differences in the deformation behavior. This study was undertaken to clarify these discrepancies. Puncture experiments on FM samples were performed to reproduce previous findings, and numerical simulations were carried out to rationalize particular aspects of membrane failure. The results demonstrate that both rupture sequence and resistance to deformation depend on the samples' fixation. Soft fixation leads to slippage in the clamping, which reduces mechanical loading of the amnion layer and results in chorion rupturing first. Conversely, the stiffer, stronger, and less extensible amnion layer fails first if tight fixation is used. The results provide a novel insight into the interpretation of ex vivo testing as well as in vivo membrane rupture.
Collapse
Affiliation(s)
- Wilfried Bürzle
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
- Institute for Mechanical Systems, Tannenstrasse 3, CLA H 23.2, Zurich 8092, Switzerland e-mail:
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
- Institute for Mechanical Systems, Leonhardstrasse 21, LEE N 210, Zurich 8092, Switzerland e-mail:
| | - John J. Moore
- Division of Neonatology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109 e-mail:
| |
Collapse
|
11
|
Perrini M, Bürzle W, Haller C, Ochsenbein-Kölble N, Deprest J, Zimmermann R, Mazza E, Ehrbar M. Contractions, a risk for premature rupture of fetal membranes: A new protocol with cyclic biaxial tension. Med Eng Phys 2013; 35:846-51. [DOI: 10.1016/j.medengphy.2012.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/04/2012] [Accepted: 08/21/2012] [Indexed: 01/30/2023]
|
12
|
Abstract
The extracellular matrix (ECM) plays an important role in determining cell and organ function: (1) it is an organizing substrate that provides tissue tensile strength; (2) it anchors cells and influences cell morphology and function via interaction with cell surface receptors; and (3) it is a reservoir for growth factors. Alterations in the content and the composition of the ECM determine its physical and biological properties, including strength and susceptibility to degradation. The ECM components themselves also harbor cryptic matrikines, which when exposed by conformational change or proteolysis have potent effects on cell function, including stimulating the production of cytokines and matrix metalloproteinases (MMPs). Collectively, these properties of the ECM reflect a dynamic tissue component that influences both tissue form and function. This review illustrates how defects in ECM synthesis and metabolism and the physiological process of ECM turnover contribute to changes in the fetal membranes that precede normal parturition and contribute to the pathological events leading to preterm premature rupture of membranes (PPROM).
Collapse
Affiliation(s)
- Jerome F Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
13
|
Strohl A, Kumar D, Novince R, Shaniuk P, Smith J, Bryant K, Moore RM, Novak J, Stetzer B, Mercer BM, Mansour JM, Moore JJ. Decreased adherence and spontaneous separation of fetal membrane layers--amnion and choriodecidua--a possible part of the normal weakening process. Placenta 2009; 31:18-24. [PMID: 19922998 DOI: 10.1016/j.placenta.2009.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The fetal membrane (FM) layers, amnion and choriodecidua, are frequently noted to have varying degrees of separation following delivery. FM layers normally separate prior to rupture during in vitro biomechanical testing. We hypothesized that the adherence between amnion and choriodecidua decreases prior to delivery resulting in separation of the FM layers and facilitating FM rupture. METHODS FM from 232 consecutively delivered patients were examined to determine the extent of spontaneous separation of the FM layers at delivery. Percent separation was determined by the weight of separated FM tissue divided by the total FM weight. Separately, the adherence between intact FM layers was determined. FM adherence was tested following term vaginal delivery (13), term unlabored cesarean section (10), and preterm delivery (6). RESULTS Subjects enrolled in the two studies had similar demographic and clinical characteristics. FM separation was present in 92.1% of membranes. Only 4.3% of FM delivered following spontaneous rupture of the fetal membranes (SROM) had no detectable separation. 64.7% of FM had greater than 10% separation. FM from term vaginal deliveries had significantly more separation and were less adherent than FM of term unlabored, elective cesarean section (39.0+/-34.4% vs 22.5+/-30.9%, p=.046 and 0.041+/-0.018N/cm vs 0.048+/-0.019N/cm, p<.005). Preterm FM had less separation and were more adherent than term FM (9.95+/-17.7% vs 37.5+/-34.4% and 0.070+/-0.040N/cm vs 0.044+/-0.020N/cm; both p<.001). CONCLUSIONS Separation of the amnion from choriodecidua at delivery is almost universal. Increased separation is associated with decreased adherence as measured in vitro. Increased separation and decreased adherence are seen both with increasing gestation and with labor suggesting both biochemical and mechanical etiologies. The data are consistent with the hypothesis that FM layer separation is part of the FM weakening process during normal parturition.
Collapse
Affiliation(s)
- A Strohl
- Departments of Pediatrics, Case Western Reserve University (CWRU), MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chua WK, Oyen ML. Do we know the strength of the chorioamnion? Eur J Obstet Gynecol Reprod Biol 2009; 144 Suppl 1:S128-33. [DOI: 10.1016/j.ejogrb.2009.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Carnaghan HK, Harrison MR. Presealing of the chorioamniotic membranes prior to fetoscopic surgery: preliminary study with unfertilized chicken egg models. Eur J Obstet Gynecol Reprod Biol 2009; 144 Suppl 1:S142-5. [PMID: 19304365 DOI: 10.1016/j.ejogrb.2009.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fetoscopic surgical techniques continue to develop. However, progress has been hindered by premature rupture of membranes (PROM), which complicates 5-30% of fetoscopic procedures. Several membrane closure techniques have been devised but none proven reliable. OBJECTIVE We propose a new approach that of presealing the chorioamniotic membrane prior to membrane disruption-a so called Amnioseal. A set of pilot experiments were designed using unfertilized chicken egg models to test our proposal. STUDY DESIGN Two novel unfertilized chicken egg models were developed. Model 1 simulated the chorioamniotic membrane and amniotic cavity. Model 2 simulated the uterine muscle/chorioamniotic membrane interface and amniotic cavity. Four sealants (100% petroleum jelly, FloSeal Hemostatic Matrix, CoSeal Hemostatic Matrix and BioGlue Surgical Adhesive) were tested against untreated controls. The sealants were applied directly to the egg membranes followed by biopsy needle puncture and needle membrane manipulation. RESULTS BioGlue adhered strongly to the membrane correlating with the smallest defect size, greatest resistance to rupture, lowest degree of leakage and formed a water tight seal around the needle during membrane manipulation. In comparison, the weak adherence of FloSeal correlated with a larger defect size and higher degree of leakage. 100% petroleum jelly was non-adhesive, provided no membrane support and resulted in membrane rupture. CONCLUSION Adhesive sealants confer mechanical support to the membrane and form a water tight seal. Experiments show that Sealant properties greatly affect outcomes. As such the Amnioseal's success will be determined by the properties of the sealant used. Specifically designed sealants are being developed along side a delivery device and will be tested using an in vitro human chorioamniotic membrane model.
Collapse
Affiliation(s)
- Helen K Carnaghan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom.
| | | |
Collapse
|
16
|
Moore RM, Novak JB, Kumar D, Mansour JM, Mercer BM, Moore JJ. Alpha-lipoic acid inhibits tumor necrosis factor-induced remodeling and weakening of human fetal membranes. Biol Reprod 2008; 80:781-7. [PMID: 19109223 DOI: 10.1095/biolreprod.108.073205] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Untimely rupture of the fetal membranes (FMs) is a major precipitant of preterm birth. Although the mechanism of FM weakening leading to rupture is not completely understood, proinflammatory cytokines, including tumor necrosis factor (TNF) and interleukin 1 beta (IL1B), have been shown to weaken FMs concomitant with the induction of reactive oxygen species, collagen remodeling, and prostaglandin release. We hypothesized that alpha-lipoic acid, a dietary antioxidant, may block the effect of inflammatory mediators and thereby inhibit FM weakening. Full-thickness FM fragments were incubated with control media or TNF, with or without alpha-lipoic acid pretreatment. Fetal membrane rupture strength and the release of matrix metalloproteinase 9 (MMP9) and prostaglandin E(2) (PGE(2)) from the full-thickness FM fragments were determined. The two constituent cell populations in amnion, the mechanically strongest FM component, were similarly examined. Amnion epithelial and mesenchymal cells were treated with TNF or IL1B, with or without alpha-lipoic acid pretreatment. MMP9 and PGE(2) were analyzed by ELISA, Western blot, and zymography. TNF decreased FM rupture strength 50% while increasing MMP9 and PGE(2) release. Lipoic acid inhibited these TNF-induced effects. Lipoic acid pretreatment also inhibited TNF- and IL1B-induced increases in MMP9 protein activity and release in amnion epithelial cells, as well as PGE(2) increases in both amnion epithelial and mesenchymal cells. In summary, lipoic acid pretreatment inhibited TNF-induced weakening of FM and cytokine-induced MMP9 and PGE(2) in both intact FM and amnion cells. We speculate that dietary supplementation with alpha-lipoic acid might prove clinically useful in prevention of preterm premature rupture of fetal membranes.
Collapse
Affiliation(s)
- Robert M Moore
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44109, USA
| | | | | | | | | | | |
Collapse
|