1
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024; 13:1045. [PMID: 38920674 PMCID: PMC11201612 DOI: 10.3390/cells13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.
Collapse
Affiliation(s)
- Marcel G. Brown
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Davis J. Brady
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M. Healy
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kaitlin A. Henry
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ayobami S. Ogunsola
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
3
|
Liu N, Cheng Y, Wang D, Guan H, Chen D, Zeng J, Lu D, Li Y, Yang Y, Luo Q, Zhu L, Jiang B, Sun X, Song B. Tissue-specific populations from amniotic fluid-derived mesenchymal stem cells manifest variant in vitro and in vivo properties. Hum Cell 2024; 37:408-419. [PMID: 38085460 PMCID: PMC10891244 DOI: 10.1007/s13577-023-01008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/03/2023] [Indexed: 02/24/2024]
Abstract
Amniotic fluid derived mesenchymal stem cells (AFMSCs), shed along the fetal development, exhibit superior multipotency and immunomodulatory properties compared to MSCs derived from other somatic tissues (e.g., bone marrow and fat). However, AFMSCs display heterogeneity due to source ambiguity, making them an underutilized stem cells source for translational clinical trials. Consequently, there is an urgent need to identify a method to purify the AFMSCs for clinical use. We found that the AFMSCs can be categorized into three distinct groups: kidney-specific AFMSCs (AFMSCs-K), lung-specific AFMSCs (AFMSCs-L), and AFMSCs with an undefined tissue source (AFMSCs-X). This classification was based on tissue-specific gene expression pattern of single cell colony. Additionally, we observed that AFMSCs-X, a minority population within the AFMSCs, exhibited the highest multipotency, proliferation, resistance to senescence and immuno-modulation. Our results showed that AFMSCs-X significantly improved survival rates and reduced bacterial colony forming units (CFU) in cecal ligation and puncture (CLP)-induced septic mice. Therefore, our study introduces a novel classification method to enhance the consistency and efficacy of AFMSCs. These subpopulations, originating from different tissue source, may offer a valuable and innovative resource of cells for regenerative medicine purposes.
Collapse
Affiliation(s)
- Nengqing Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yi Cheng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Hongmei Guan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Diyu Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Juan Zeng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Dian Lu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yuanshuai Li
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yinghong Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Qian Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Lifen Zhu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Bin Jiang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| | - Bing Song
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|
4
|
Lale Ataei M, Karimipour M, Shahabi P, Soltani-Zangbar H, Pashaiasl M. Human Mesenchymal Stem Cell Transplantation Improved Functional Outcomes Following Spinal Cord Injury Concomitantly with Neuroblast Regeneration. Adv Pharm Bull 2023; 13:806-816. [PMID: 38022812 PMCID: PMC10676545 DOI: 10.34172/apb.2023.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 12/01/2023] Open
Abstract
Purpose Spinal cord injury (SCI) is damage to the spinal cord that resulted in irreversible neuronal loss, glial scar formation and axonal injury. Herein, we used the human amniotic fluid mesenchymal stem cells (hAF-MSCs) and their conditioned medium (CM), to investigate their ability in neuroblast and astrocyte production as well as functional recovery following SCI. Methods Fifty-four adult rats were randomly divided into nine groups (n=6), included: Control, SCI, (SCI + DMEM), (SCI + CM), (SCI + MSCs), (SCI + Astrocyte), (SCI + Astrocyte + DMEM), (SCI + Astrocyte + CM) and (SCI + Astrocyte + MSCs). Following laminectomy and SCI induction, DMEM, CM, MSCs, and astrocytes were injected. Western blot was performed to explore the levels of the Sox2 protein in the MSCs-CM. The immunofluorescence staining against doublecortin (DCX) and glial fibrillary acidic protein (GFAP) was done. Finally, Basso-Beattie-Brenham (BBB) locomotor test was conducted to assess the neurological outcomes. Results Our results showed that the MSCs increased the number of endogenous DCX-positive cells and decreased the number of GFAP-positive cells by mediating juxtacrine and paracrine mechanisms (P<0.001). Transplanted human astrocytes were converted to neuroblasts rather than astrocytes under influence of MSCs and CM in the SCI. Moreover, functional recovery indexes were promoted in those groups that received MSCs and CM. Conclusion Taken together, our data indicate the MSCs via juxtacrine and paracrine pathways could direct the spinal cord endogenous neural stem cells (NSCs) to the neuroblasts lineage which indicates the capability of the MSCs in the increasing of the number of DCX-positive cells and astrocytes decline.
Collapse
Affiliation(s)
- Maryam Lale Ataei
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani-Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Huang F, He Y, Zhang M, Luo K, Li J, Li J, Zhang X, Dong X, Tang J. Progress in Research on Stem Cells in Neonatal Refractory Diseases. J Pers Med 2023; 13:1281. [PMID: 37623531 PMCID: PMC10455340 DOI: 10.3390/jpm13081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
With the development and progress of medical technology, the survival rate of premature and low-birth-weight infants has increased, as has the incidence of a variety of neonatal diseases, such as hypoxic-ischemic encephalopathy, intraventricular hemorrhage, bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity. These diseases cause severe health conditions with poor prognoses, and existing control methods are ineffective for such diseases. Stem cells are a special type of cells with self-renewal and differentiation potential, and their mechanisms mainly include anti-inflammatory and anti-apoptotic properties, reducing oxidative stress, and boosting regeneration. Their paracrine effects can affect the microenvironment in which they survive, thereby affecting the biological characteristics of other cells. Due to their unique abilities, stem cells have been used in treating various diseases. Therefore, stem cell therapy may open up the possibility of treating such neonatal diseases. This review summarizes the research progress on stem cells and exosomes derived from stem cells in neonatal refractory diseases to provide new insights for most researchers and clinicians regarding future treatments. In addition, the current challenges and perspectives in stem cell therapy are discussed.
Collapse
Affiliation(s)
- Fangjun Huang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yang He
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Meng Zhang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Keren Luo
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jiawen Li
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jiali Li
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xinyu Zhang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xiaoyan Dong
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jun Tang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
6
|
Cakiroglu Y, Tiras B, Franasiak J, Seli E. Treatment options for endometrial hypoproliferation. Curr Opin Obstet Gynecol 2023; 35:254-262. [PMID: 36912320 DOI: 10.1097/gco.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Endometrial hypoproliferation refers to the failure of the endometrium to reach optimal thickness during fresh or frozen embryo transfer cycles in women undergoing infertility treatment with in-vitro fertilization (IVF). This review discusses the treatment options for endometrial hypoproliferation. RECENT FINDINGS Apart from factors related to the embryo quality, ultrasonographic findings associated with the endometrium, such as endometrial thickness, endometrial pattern and subendometrial blood flow, are considered key factors associated with the outcome of assisted reproductive treatment. To date, a consensus has not been reached regarding the definition of thin endometrium, while thresholds of 6, 7 or 8 mm have been used in the literature. Strategies to increase endometrial thickness can be reviewed in three groups: endocrine approaches, vitamins & supplements, and new experimental therapeutic interventions. Some of the recently introduced experimental therapeutic interventions such as platelet-rich plasma injection, stem cell treatment and tissue bioengineering are exciting potential therapies that need to be further studied. SUMMARY Despite a large number of publications on the topic, diagnosing and treating endometrial hypoproliferation remains a challenge. Well designed studies are needed to establish a widely accepted endometrial thickness cut-off value below which endometrial hypoproliferation is diagnosed and to generate meaningful data that would allow an evidence-based discussion of available therapeutic options with patients.
Collapse
Affiliation(s)
- Yigit Cakiroglu
- Acibadem Mehmet Ali Aydinlar University
- Acibadem Maslak Hospital Assisted Reproductive Techniques Unit, Istanbul, Turkey
| | - Bulent Tiras
- Acibadem Mehmet Ali Aydinlar University
- Acibadem Maslak Hospital Assisted Reproductive Techniques Unit, Istanbul, Turkey
| | | | - Emre Seli
- IVI RMA New Jersey, Basking Ridge, New Jersey
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Li S, Ding X, Yan X, Qian J, Tan Q. ceAF Ameliorates Diabetic Wound Healing by Alleviating Inflammation and Oxidative Stress via TLR4/NF-κB and Nrf2 Pathways. J Diabetes Res 2023; 2023:2422303. [PMID: 37064758 PMCID: PMC10098416 DOI: 10.1155/2023/2422303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Background. With the rise in diabetes incidence, diabetic foot ulcers have become the most common clinically chronic refractory wounds. Persistent chronic inflammation is a typical feature of diabetic cutaneous wounds, and diabetic wound healing can be improved by alleviating inflammation and oxidative stress. Chick early amniotic fluids (ceAF) consist of native conglutinant substances with balanced amounts of growth factors, cytokines, and chemokines. However, whether ceAF modulates inflammation and oxidative stress and thus promotes diabetic wound healing remains unknown. Materials and Methods. RAW264.7 cells were categorized into four groups: negative control, LPS, LPS + ceAF, and ceAF. 10% of ceAF was selected to treat different groups of mice with a full-thickness skin defect wound. Then, RT-qPCR, western blot, immunofluorescence, and other assays were carried out to explore the effect of ceAF on wound healing and its molecular mechanism. Results. Topical administration of ceAF improved M2 macrophage polarization and inflammatory response in the wound tissues, thereby ameliorating delayed wound healing. Histological improvement could be observed in the grade of inflammation, collagen deposition, and neovascularization in wound edge tissues. ceAF also increased M2 macrophage-specific markers expression and exogenous ceAF suppressed LPS-induced cellular inflammatory response in vitro high glucose environment. Additionally, ceAF could activate TLR4/NF-κB and Nrf2 signal transductions to promote M2 macrophage polarization in vitro. Conclusions. In summary, ceAF downregulates inflammatory response, regulates M2 macrophage transition via TLR4/NF-κB and Nrf2 signaling pathways, and thus improves diabetic wound healing.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Jin Qian
- Anhui Hygeiancells BioMedical Co. Ltd., Huangshan, Anhui, China
- Stem Cell Application Research Center, The Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Hangzhou, Zhejiang 310019, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
- Department of Burns and Plastic Surgery, Anqing Shihua Hospital, Nanjing Drum Tower Hospital Group, Anqing 246002, China
| |
Collapse
|
8
|
Martin MM, Chan M, Antoine C, Bar-El L, Bornstein E, Young BK. Clinical potential of human amniotic fluid stem cells. J Perinat Med 2023; 51:117-124. [PMID: 35985014 DOI: 10.1515/jpm-2022-0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/06/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To determine whether amniotic fluid derived stem cells maintain their stem cell characteristics (a) after processing by a licensed cell therapy center and (b) after the cells undergo simulated clinical application. METHODS Amniotic fluid was collected by laparotomy - a small uterine incision was made at proposed site for delivery and a sterile catheter inserted to collect fluid into a sterile bag. After flow stopped the catheter was withdrawn, the cesarean completed and the collected fluid delivered to the cell therapy center for processing and cryostorage. A clinical setting was simulated where amniotic fluid cells received from cell therapy center were thawed at room temperature for a maximum of 3 h and passed through a clinical cell delivery device to monitor cell viability. The cells were examined for viability, stability, growth, differentiation, and markers of stemness. RESULTS Amniotic fluid stem cells processed from a clinical cell therapy center behave similarly to amniotic fluid stem cells processed in a research laboratory with respects to viability, stability, growth, differentiation and maintain markers of stemness. There were differences due to heterogeneity of samples which were not methodological. Growth in cell culture and differentiation were satisfactory. Simulation of treating the cells in a clinical environment show a general stability in viability of amniotic fluid cells at room temperature for 3 h minimum and when passed through a clinically approved delivery device. CONCLUSIONS The data indicate human amniotic fluid processed in a clinical facility could be used therapeutically if proven to be safe.
Collapse
Affiliation(s)
- Monique M Martin
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY, USA
| | - Michael Chan
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY, USA
| | - Clarel Antoine
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY, USA
| | - Liron Bar-El
- Department of Obstetrics and Gynecology, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Eran Bornstein
- Department of Obstetrics and Gynecology, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Bruce K Young
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
9
|
Rosner M, Hengstschläger M. Amniotic Fluid Stem Cells: What They Are and What They Can Become. Curr Stem Cell Res Ther 2023; 18:7-16. [PMID: 34895127 DOI: 10.2174/1574888x16666211210143640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
In the last two decades, fetal amniotic fluid stem cells progressively attracted attention in the context of both basic research and the development of innovative therapeutic concepts. They exhibit broadly multipotent plasticity with the ability to differentiate into cells of all three embryonic germ layers and low immunogenicity. They are convenient to maintain, highly proliferative, genomically stable, non-tumorigenic, perfectly amenable to genetic modifications, and do not raise ethical concerns. However, it is important to note that among the various fetal amniotic fluid cells, only c-Kit+ amniotic fluid stem cells represent a distinct entity showing the full spectrum of these features. Since amniotic fluid additionally contains numerous terminally differentiated cells and progenitor cells with more limited differentiation potentials, it is of highest relevance to always precisely describe the isolation procedure and characteristics of the used amniotic fluid-derived cell type. It is of obvious interest for scientists, clinicians, and patients alike to be able to rely on up-todate and concisely separated pictures of the utilities as well as the limitations of terminally differentiated amniotic fluid cells, amniotic fluid-derived progenitor cells, and c-Kit+ amniotic fluid stem cells, to drive these distinct cellular models towards as many individual clinical applications as possible.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Balsamo F, Tian Y, Pierro A, Li B. Amniotic fluid stem cells: A novel treatment for necrotizing enterocolitis. Front Pediatr 2022; 10:1020986. [PMID: 36533245 PMCID: PMC9751649 DOI: 10.3389/fped.2022.1020986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a gastrointestinal disease frequently prevalent in premature neonates. Despite advances in research, there is a lack of accurate, early diagnoses of NEC and the current therapeutic approaches remain exhausted and disappointing. In this review, we have taken a close look at the regenerative medical literature available in the context of NEC treatment. Stem cells from amniotic fluid (AFSC) administration may have the greatest protective and restorative effects on NEC. This review summarizes the potential protection and restoration AFSCs have on NEC-induced intestinal injury while comparing various components within AFSCs like conditioned medium (CM) and extracellular vesicles (EVs). In addition to therapeutic interventions that focus on targeting intestinal epithelial damage and regeneration, a novel discovery that AFSCs act in a Wnt-dependent manner provides insight into this mechanism of protection. Finally, we have highlighted the most important aspects that remain unknown that should be considered to guide future research on the translational application of AFSC-based therapy. We hope that this will be a beneficial frame of reference for the guidance of future studies and towards the clinical application of AFSC and/or its derivatives as a treatment against NEC.
Collapse
Affiliation(s)
- Felicia Balsamo
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yina Tian
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
11
|
de Kroon RR, de Baat T, Senger S, van Weissenbruch MM. Amniotic Fluid: A Perspective on Promising Advances in the Prevention and Treatment of Necrotizing Enterocolitis. Front Pediatr 2022; 10:859805. [PMID: 35359891 PMCID: PMC8964040 DOI: 10.3389/fped.2022.859805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a common and potentially fatal disease that typically affects preterm (PIs) and very low birth weight infants (VLBWIs). Although NEC has been extensively studied, the current therapeutic approaches are unsatisfactory. Due to the similarities in the composition between human amniotic fluid (AF) and human breast milk (BM), which plays a protective role in the development of NEC in PIs and VLBWIs, it has been postulated that AF has similar effects on the outcome of NEC and potential therapeutic implications. AF has been long used for its diagnostic purposes and is often discarded after birth as "biological waste". However, researchers have started to elucidate its therapeutic potential. Experimental studies in animal models have shown that diseases of various organ systems can possibly benefit from AF-based therapy. Hence, we have identified three approaches which show promising results for future clinical application in the prevention and/or treatment of NEC: (1) administration of processed AF (PAF) isolated from donor mothers, (2) administration of AF stem cells (AFSCs), and (3) administration of simulated AF (SAF) formulated to mimic the composition of physiological AF. We have highlighted the most important aspects that should be taken into account to guide further research on the clinical application of AF-based therapy. We hope that this review can provide a framework to identify the challenges of AF-based therapy and help to design future studies to better evaluate AF-based approaches for the treatment and/or prevention of NEC in PIs and VLBWIs.
Collapse
Affiliation(s)
- Rimke Romee de Kroon
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tessa de Baat
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefania Senger
- Department of Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
12
|
Lale Ataei M, Karimipour M, Shahabi P, Pashaei-Asl R, Ebrahimie E, Pashaiasl M. The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury. Cells 2021; 10:cells10102565. [PMID: 34685545 PMCID: PMC8534241 DOI: 10.3390/cells10102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition within the neural system which is clinically manifested by sensory-motor dysfunction, leading, in some cases, to neural paralysis for the rest of the patient’s life. In the current study, mesenchymal stem cells (MSCs) were isolated from the human amniotic fluid, in order to study their juxtacrine and paracrine activities. Flow cytometry analysis was performed to identify the MSCs. A conditioned medium (CM) was collected to measure the level of BDNF, IL-1β, and IL-6 proteins using the ELISA assay. Following the SCI induction, MSCs and CM were injected into the lesion site, and also CM was infused intraperitoneally in the different groups. Two weeks after SCI induction, the spinal cord samples were examined to evaluate the expression of the doublecortin (DCX) and glial fibrillary acid protein (GFAP) markers using immunofluorescence staining. The MSCs’ phenotype was confirmed upon the expression and un-expression of the related CD markers. Our results show that MSCs increased the expression level of the DCX and decreased the level of the GFAP relative to the injury group (p < 0.001). Additionally, the CM promoted the DCX expression rate (p < 0.001) and decreased the GFAP expression rate (p < 0.01) as compared with the injury group. Noteworthily, the restorative potential of the MSCs was higher than that of the CM (p < 0.01). Large-scale meta-analysis of transcriptomic data highlighted PAK5, ST8SIA3, and NRXN1 as positively coexpressed genes with DCX. These genes are involved in neuroactive ligand–receptor interaction. Overall, our data revealed that both therapeutic interventions could promote the regeneration and restoration of the damaged neural tissue by increasing the rate of neuroblasts and decreasing the astrocytes.
Collapse
Affiliation(s)
- Maryam Lale Ataei
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Roghiyeh Pashaei-Asl
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
| | - Esmaeil Ebrahimie
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia;
- Genomics Research Platform, Research & Industry Engagement, La Trobe University, Melbourne, VIC 3086, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz 5166614766, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: ; Tel.: +98-41-33348573
| |
Collapse
|
13
|
Yang C, Wu M, You M, Chen Y, Luo M, Chen Q. The therapeutic applications of mesenchymal stromal cells from human perinatal tissues in autoimmune diseases. Stem Cell Res Ther 2021; 12:103. [PMID: 33541422 PMCID: PMC7859900 DOI: 10.1186/s13287-021-02158-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The autoimmune diseases are characterized by overactivation of immune cells, chronic inflammation, and immune response to self-antigens, leading to the damage and dysfunction of multiple organs. Patients still do not receive desired clinical outcomes while suffer from various adverse effects imparted by current therapies. The therapeutic strategies based on mesenchymal stromal cell (MSC) transplantation have become the promising approach for the treatment of autoimmune diseases due to the immunomodulation property of MSCs. MSCs derived from perinatal tissues are collectively known as perinatal MSCs (PMSCs), which can be obtained via painless procedures from donors with lower risk of being contaminated by viruses than those MSCs from adult tissue sources. Therefore, PMSCs may be the ideal cell source for the treatment of autoimmune diseases. This article summarizes recent progress and possible mechanisms of PMSCs in treating autoimmune diseases in animal experiments and clinical studies. This review also presents existing challenges and proposes solutions, which may provide new hints on PMSC transplantation as a therapeutic strategy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China.
| | - Mingjun Wu
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., 15 Jinquan Road, Chengdu, 610036, China.
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.
| |
Collapse
|
14
|
Subhan BS, Kwong J, Kuhn JF, Monas A, Sharma S, Rabbani PS. Amniotic fluid-derived multipotent stromal cells drive diabetic wound healing through modulation of macrophages. J Transl Med 2021; 19:16. [PMID: 33407615 PMCID: PMC7789548 DOI: 10.1186/s12967-020-02674-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/11/2020] [Indexed: 01/13/2023] Open
Abstract
Background Cutaneous wounds in patients with diabetes exhibit impaired healing due to physiological impediments and conventional care options are severely limited. Multipotent stromal cells (MSCs) have been touted as a powerful new therapy for diabetic tissue repair owing to their trophic activity and low immunogenicity. However, variations in sources and access are limiting factors for broader adaptation and study of MSC-based therapies. Amniotic fluid presents a relatively unexplored source of MSCs and one with wide availability. Here, we investigate the potential of amniotic fluid-derived multipotent stromal cells (AFMSCs) to restore molecular integrity to diabetic wounds, amend pathology and promote wound healing. Method We obtained third trimester amniotic fluid from term cesarean delivery and isolated and expanded MSCs in vitro. We then generated 10 mm wounds in Leprdb/db diabetic mouse skin, and splinted them open to allow for humanized wound modeling. Immediately after wounding, we applied AFMSCs topically to the sites of injuries on diabetic mice, while media application only, defined as vehicle, served as controls. Post-treatment, we compared healing time and molecular and cellular events of AFMSC-treated, vehicle-treated, untreated diabetic, and non-diabetic wounds. A priori statistical analyses measures determined significance of the data. Result Average time to wound closure was approximately 19 days in AFMSC-treated diabetic wounds. This was significantly lower than the vehicle-treated diabetic wounds, which required on average 27.5 days to heal (p < 0.01), and most similar to time of closure in wild type untreated wounds (an average of around 18 days). In addition, AFMSC treatment induced changes in the profiles of macrophage polarizing cytokines, resulting in a change in macrophage composition in the diabetic wound bed. We found no evidence of AFMSC engraftment or biotherapy induced immune response. Conclusion Treatment of diabetic wounds using amniotic fluid-derived MSCs encourages cutaneous tissue repair through affecting inflammatory cell behavior in the wound site. Since vehicle-treated diabetic wounds did not demonstrate accelerated healing, we determined that AFMSCs were therapeutic through their paracrine activities. Future studies should be aimed towards validating our observations through further examination of the paracrine potential of AFMSCs. In addition, investigations concerning safety and efficacy of this therapy in clinical trials should be pursued.
Collapse
Affiliation(s)
- Bibi S Subhan
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, 540 First Avenue, New York, 10016, USA
| | - Jennifer Kwong
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, 540 First Avenue, New York, 10016, USA
| | - Joseph F Kuhn
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, 540 First Avenue, New York, 10016, USA
| | - Arie Monas
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, 540 First Avenue, New York, 10016, USA
| | - Sonali Sharma
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, 540 First Avenue, New York, 10016, USA
| | - Piul S Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, 540 First Avenue, New York, 10016, USA.
| |
Collapse
|
15
|
Pooladanda V, Thatikonda S, Godugu C. The current understanding and potential therapeutic options to combat COVID-19. Life Sci 2020; 254:117765. [PMID: 32437797 PMCID: PMC7207108 DOI: 10.1016/j.lfs.2020.117765] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
The ongoing wreaking global outbreak of the novel human beta coronavirus (CoV) pathogen was presumed to be from a seafood wholesale market in Wuhan, China, belongs to the Coronaviridae family in the Nidovirales order. The virus is highly contagious with potential human-human transmission which was named as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread across six continents and emerged as a global pandemic in short span with alarming levels of spread and severity. This virus associated symptoms and infectious respiratory illness is designated as coronavirus disease 19 (COVID-19). The SARS-CoV-2 possesses enveloped club-like spike protein projections with positive-sense large RNA genome and has a unique replication strategy. This virus was believed to have zoonotic origin with genetical identity to bat and pangolin CoV. In the current review, we introduce a general overview about the human CoVs and the associated diseases, the origin, structure, replication and key clinical events that occur in the COVID-19 pathogenicity. Furthermore, we focused on possible therapeutic options such as repurposing drugs including antimalarials, antivirals, antiparasitic drugs, and anti-HIV drugs, as well as monoclonal antibodies, vaccines as potential treatment options. Also we have summarized the latest research progress on the usage of stem cell therapy, human convalescent serum, interferon's, in the treatment of COVID-19.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
16
|
An update on stem cell therapy for Asherman syndrome. J Assist Reprod Genet 2020; 37:1511-1529. [PMID: 32445154 DOI: 10.1007/s10815-020-01801-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The current treatment for Asherman syndrome is limited and not very effective. The aim of this review is to summarize the most recent evidence for stem cells in the treatment of Asherman syndrome. The advent of stem cell therapy has propagated experimentation on mice and humans as a novel treatment. The consensus is that the regenerative capacity of stem cells has demonstrated improved outcomes in terms of fertility and fibrosis in both mice and humans with Asherman syndrome. Stem cells have effects on tissue repair by homing to the injured site, recruiting other cells by secreting chemokines, modulating the immune system, differentiating into other types of cells, proliferating into daughter cells, and potentially having antimicrobial activity. The studies reviewed examine different origins and administration modalities of stem cells. In preclinical models, therapeutic systemic injection of stem cells is more effective than direct intrauterine injection in regenerating the endometrium. In conjunction, bone marrow-derived stem cells have a stronger effect on uterine regeneration than uterine-derived stem cells, likely due to their broader differentiation potency. Clinical trials have demonstrated the initial safety and effectiveness profiles of menstrual, bone marrow, umbilical cord, and adipose tissue-derived stem cells in resumption of menstruation, fertility outcomes, and endometrial regeneration.
Collapse
|
17
|
Wang D, Liu N, Xie Y, Song B, Kong S, Sun X. Different culture method changing CD105 expression in amniotic fluid MSCs without affecting differentiation ability or immune function. J Cell Mol Med 2020; 24:4212-4222. [PMID: 32119193 PMCID: PMC7171344 DOI: 10.1111/jcmm.15081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
MSCs are kind of cultured cells that reside in different tissues as inducers or regulators of physiological and pathological processes. Here, we derived MSCs from amniotic fluid and compared their differentiation ability and immunosuppression effect on PHA‐activated PBMC with those of MSCs isolated from umbilical cords. Amniotic fluid MSCs were isolated and cultured on commercial AFC medium and classic MSC medium, and the number and size of colonies were used to evaluate differences in primary and passaged culture. Rate of proliferation, population doubling time, cell morphology, cell surface markers and mRNA expression were measured in subcultured cells. Furthermore, a comparative study was performed with umbilical cord MSCs to assess the ability of differentiation and immunosuppressive effect of PHA‐stimulated PBMCs. Amniotic fluid MSCs were isolated and expanded by three methods, and exhibited nearly all the characteristics of umbilical cord MSCs. Compared with umbilical cord MSCs, amniotic fluid MSCs had an enhanced osteogenic and chrondrogenic differentiation capability, and stronger immunosuppression effect of inhibition of PHA‐activated PBMC division. Culture with commercial AFCs medium yielded the highest percentage of CD105 expression and showed some advantages in primary cell isolation, cell source‐specific marker retention and cell proliferation. We demonstrated that amniotic fluid MSCs exhibited some advantages over umbilical cord MSCs, and different culture media caused cell proliferation, cell surface marker and cell morphology change, but were not associated with varying differentiation capability and immune effects.
Collapse
Affiliation(s)
- Ding Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nengqing Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing Song
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shu Kong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Jasinska AJ, Rostamian D, Davis AT, Kavanagh K. Transcriptomic Analysis of Cell-free Fetal RNA in the Amniotic Fluid of Vervet Monkeys ( Chlorocebus sabaeus). Comp Med 2020; 70:67-74. [PMID: 31969210 PMCID: PMC7024774 DOI: 10.30802/aalas-cm-19-000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
NHP are important translational models for understanding the genomic underpinnings of growth, development, fetal programming, and predisposition to disease, with potential for the development of early health biomarkers. Understanding how prenatal gene expression is linked to pre- and postnatal health and development requires methods for assessing the fetal transcriptome. Here we used RNAseq methodology to analyze the expression of cell-free fetal RNA in the amniotic fluid supernatant (AFS) of vervet monkeys. Despite the naturally high level of degradation of free-floating RNA, we detected more than 10,000 gene transcripts in vervet AFS. The most highly expressed genes were H19, IGF2, and TPT1, which are involved in embryonic growth and glycemic health. We noted global similarities in expression profiles between vervets and humans, with genes involved in embryonic growth and glycemic health among the genes most highly expressed in AFS. Our study demonstrates both the feasibility and usefulness of prenatal transcriptomic profiles, by using amniocentesis procedures to obtain AFS and cell-free fetal RNA from pregnant vervets.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland;,
| | - Dalar Rostamian
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California
| | - Ashley T Davis
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
19
|
Seyfizadeh N, Seyfizadeh N, Rahbarghazi R, Nourazarian A, Borzouisileh S, Palideh A, Elahimanesh F, Hamishehkar H, Salimi L, Nouri M, Abtin M. Isolation and characterization of human amniotic fluid and SH-SY5Y/BE(2)-M17 cell derived exosomes. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Slamecka J, McClellan S, Wilk A, Laurini J, Manci E, Hoerstrup SP, Weber B, Owen L. Induced pluripotent stem cells derived from human amnion in chemically defined conditions. Cell Cycle 2018; 17:330-347. [PMID: 29143560 DOI: 10.1080/15384101.2017.1403690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fetal stem cells are a unique type of adult stem cells that have been suggested to be broadly multipotent with some features of pluripotency. Their clinical potential has been documented but their upgrade to full pluripotency could open up a wide range of cell-based therapies particularly suited for pediatric tissue engineering, longitudinal studies or disease modeling. Here we describe episomal reprogramming of mesenchymal stem cells from the human amnion to pluripotency (AM-iPSC) in chemically defined conditions. The AM-iPSC expressed markers of embryonic stem cells, readily formed teratomas with tissues of all three germ layers present and had a normal karyotype after around 40 passages in culture. We employed novel computational methods to determine the degree of pluripotency from microarray and RNA sequencing data in these novel lines alongside an iPSC and ESC control and found that all lines were deemed pluripotent, however, with variable scores. Differential expression analysis then identified several groups of genes that potentially regulate this variability in lines within the boundaries of pluripotency, including metallothionein proteins. By further studying this variability, characteristics relevant to cell-based therapies, like differentiation propensity, could be uncovered and predicted in the pluripotent stage.
Collapse
Affiliation(s)
| | | | - Anna Wilk
- a Mitchell Cancer Institute, University of South Alabama , USA
| | - Javier Laurini
- c College of Medicine, University of South Alabama , Mobile , AL , USA
| | - Elizabeth Manci
- d College of Medicine, University of South Alabama , Mobile , AL , USA
| | - Simon P Hoerstrup
- b Institute for Regenerative Medicine, University of Zurich , Switzerland.,f Center for Applied Biotechnology and Molecular Medicine (CABMM) , University of Zurich - Irchel Campus , Zurich , Switzerland
| | - Benedikt Weber
- b Institute for Regenerative Medicine, University of Zurich , Switzerland.,e Department of Dermatology , University Hospital Zurich , Switzerland.,f Center for Applied Biotechnology and Molecular Medicine (CABMM) , University of Zurich - Irchel Campus , Zurich , Switzerland
| | - Laurie Owen
- g University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
21
|
The use of stem cells in aesthetic dermatology and plastic surgery procedures. A compact review of experimental and clinical applications. Postepy Dermatol Alergol 2017; 34:526-534. [PMID: 29422816 PMCID: PMC5799755 DOI: 10.5114/ada.2017.72456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of this paper was to collect currently available data related to the use of stem cells in aesthetic dermatology and plastic surgery based on a systemic review of experimental and clinical applications. We found that the use of stem cells is very promising but the current state of art is still not effective. This situation is connected with not fully known mechanisms of cell interactions, possible risks and side effects. We think that there is a big need to create and conduct different studies which could resolve problems of stem cells use for implementation into aesthetic dermatology and plastic surgery.
Collapse
|
22
|
Moraghebi R, Kirkeby A, Chaves P, Rönn RE, Sitnicka E, Parmar M, Larsson M, Herbst A, Woods NB. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Res Ther 2017; 8:190. [PMID: 28841906 PMCID: PMC5574087 DOI: 10.1186/s13287-017-0582-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. METHODS Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. RESULTS The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. CONCLUSIONS The potentially large donor base from caesarean section deliveries, the high yield of term amniotic fluid MSCs obtainable, the properties of the MSCs identified, and the suitability of the cells to be reprogrammed into the pluripotent state demonstrated these cells to be a promising and plentiful resource for further evaluation in bio-banking, cell therapy, disease modelling, and regenerative medicine applications.
Collapse
Affiliation(s)
- Roksana Moraghebi
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Agnete Kirkeby
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, BMC A11, 221 84, Lund, Sweden
| | - Patricia Chaves
- Department of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 221 84, Lund, Sweden
| | - Roger E Rönn
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Ewa Sitnicka
- Department of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 221 84, Lund, Sweden
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, BMC A11, 221 84, Lund, Sweden
| | - Marcus Larsson
- Skåne University Hospital, Department of Obstetrics, Lund University, Lund, Sweden.
| | - Andreas Herbst
- Skåne University Hospital, Department of Obstetrics, Lund University, Lund, Sweden.
| | - Niels-Bjarne Woods
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden.
| |
Collapse
|
23
|
Kovac M, Vasicek J, Kulikova B, Bauer M, Curlej J, Balazi A, Chrenek P. Different RNA and protein expression of surface markers in rabbit amniotic fluid-derived mesenchymal stem cells. Biotechnol Prog 2017; 33:1601-1613. [DOI: 10.1002/btpr.2519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Michal Kovac
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Jaromir Vasicek
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
- Research Centre AgroBioTech, Slovak University of Agriculture; Nitra Slovak Republic
| | - Barbora Kulikova
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Miroslav Bauer
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
- Faculty of Natural Sciences; Constantine the Philosopher University; Nitra Slovak republic
| | - Jozef Curlej
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
| | - Andrej Balazi
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Peter Chrenek
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| |
Collapse
|
24
|
Yndriago L, Izeta A. Shh… Sweat gland in progress! Exp Dermatol 2017; 26:548-549. [DOI: 10.1111/exd.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Yndriago
- Tissue Engineering Laboratory; Bioengineering Area; Instituto Biodonostia; Hospital Universitario Donostia; San Sebastián Spain
| | - Ander Izeta
- Tissue Engineering Laboratory; Bioengineering Area; Instituto Biodonostia; Hospital Universitario Donostia; San Sebastián Spain
| |
Collapse
|
25
|
Counteracting bone fragility with human amniotic mesenchymal stem cells. Sci Rep 2016; 6:39656. [PMID: 27995994 PMCID: PMC5171815 DOI: 10.1038/srep39656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/24/2016] [Indexed: 02/08/2023] Open
Abstract
The impaired maturation of bone-forming osteoblasts results in reduced bone formation and subsequent bone weakening, which leads to a number of conditions such as osteogenesis imperfecta (OI). Transplantation of human fetal mesenchymal stem cells has been proposed as skeletal anabolic therapy to enhance bone formation, but the mechanisms underlying the contribution of the donor cells to bone health are poorly understood and require further elucidation. Here, we show that intraperitoneal injection of human amniotic mesenchymal stem cells (AFSCs) into a mouse model of OI (oim mice) reduced fracture susceptibility, increased bone strength, improved bone quality and micro-architecture, normalised bone remodelling and reduced TNFα and TGFβ sigalling. Donor cells engrafted into bones and differentiated into osteoblasts but importantly, also promoted endogenous osteogenesis and the maturation of resident osteoblasts. Together, these findings identify AFSC transplantation as a countermeasure to bone fragility. These data have wider implications for bone health and fracture reduction.
Collapse
|
26
|
O'Reilly M, Thébaud B. Cell-based therapies for neonatal lung disease. Cell Tissue Res 2016; 367:737-745. [PMID: 27770256 DOI: 10.1007/s00441-016-2517-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Preterm birth occurs in approximately 11 % of all births worldwide. Advances in perinatal care have enabled the survival of preterm infants born as early as 23-24 weeks of gestation. However, many are affected by bronchopulmonary dysplasia (BPD)-a common respiratory complication of preterm birth, which has life-long consequences for lung health. Currently, there is no specific treatment for BPD. Recent advances in stem cell research have opened new therapeutic avenues for prevention/repair of lung damage. This review summarizes recent pre-clinical data and early clinical translation of cell-based therapies for BPD.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Physiology and Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2E1
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, Canada, K1H 8L6. .,Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, 401 Smyth Road, Ottawa, ON, Canada, K1H 5B2.
| |
Collapse
|
27
|
Lynch W, Rezai S, Henderson CE. Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol 2016; 215:401. [PMID: 27177527 DOI: 10.1016/j.ajog.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
|
28
|
Dziadosz M, Young BK, Basch RS. Reply. Am J Obstet Gynecol 2016; 215:401. [PMID: 27177522 DOI: 10.1016/j.ajog.2016.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Margaret Dziadosz
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, New York University Langone Medical Center, 550 First Avenue, NBV 9 E 2, New York, NY 10016
| | - Bruce K Young
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, New York University Langone Medical Center, 550 First Avenue, NBV 9 E 2, New York, NY 10016.
| | - Ross S Basch
- Department of Pathology, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016
| |
Collapse
|