1
|
Ohtani N, Kamiya T, Kawada N. Recent updates on the role of the gut-liver axis in the pathogenesis of NAFLD/NASH, HCC, and beyond. Hepatol Commun 2023; 7:e0241. [PMID: 37639702 PMCID: PMC10462074 DOI: 10.1097/hc9.0000000000000241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023] Open
Abstract
The gut and the liver are anatomically and physiologically connected, and this connection is called the "gut-liver axis," which exerts various influences on liver physiology and pathology. The gut microbiota has been recognized to trigger innate immunity and modulate the liver immune microenvironment. Gut microbiota influences the physiological processes in the host, such as metabolism, by acting on various signaling receptors and transcription factors through their metabolites and related molecules. The gut microbiota has also been increasingly recognized to modulate the efficacy of immune checkpoint inhibitors. In this review, we discuss recent updates on gut microbiota-associated mechanisms in the pathogenesis of chronic liver diseases such as NAFLD and NASH, as well as liver cancer, in light of the gut-liver axis. We particularly focus on gut microbial metabolites and components that are associated with these liver diseases. We also discuss the role of gut microbiota in modulating the response to immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Tomonori Kamiya
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
2
|
Sohrab SS, Raj R, Nagar A, Hawthorne S, Paiva-Santos AC, Kamal MA, El-Daly MM, Azhar EI, Sharma A. Chronic Inflammation's Transformation to Cancer: A Nanotherapeutic Paradigm. Molecules 2023; 28:molecules28114413. [PMID: 37298889 DOI: 10.3390/molecules28114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riya Raj
- Department of Biochemistry, Bangalore University, Banglore 560056, India
| | - Amka Nagar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mohammad Amjad Kamal
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics Inc., Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Mai M El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ankur Sharma
- Strathclyde Institute of Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow G1 0RE, UK
| |
Collapse
|
3
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
4
|
Chen C, Guan J, Gu X, Chu Q, Zhu H. Prostaglandin E2 and Receptors: Insight Into Tumorigenesis, Tumor Progression, and Treatment of Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:834859. [PMID: 35356289 PMCID: PMC8959932 DOI: 10.3389/fcell.2022.834859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common primary liver cancer with ∼750,000 annual incidence rates globally. PGE2, usually known as a pro-inflammatory cytokine, is over-expressed in various human malignancies including HCC. PGE2 binds to EP receptors in HCC cells to influence tumorigenesis or enhance tumor progression through multiple pathways such as EP1-PKC-MAPK, EP2-PKA-GSK3β, and EP4-PKA-CREB. In the progression of hepatocellular carcinoma, PGE2 can promote the proliferation and migration of liver cancer cells by affecting hepatocytes directly and the tumor microenvironment (TME) through ERK/COX-2/PGE2 signal pathway in hepatic stellate cells (HSC). For the treatment of hepatocellular carcinoma, there are drugs such as T7 peptide and EP1 antagonist ONO-8711 targeting Cox-2/PGE2 axis to inhibit tumor progression. In conclusion, PGE2 has been shown to be a traditional target with pleiotropic effects in tumorigenesis and progression of HCC that could be used to develop a new potential clinical impact. For the treatment study focusing on the COX-PGE2 axis, the exclusive usage of non-steroidal anti-inflammatory agents (NSAIDs) or COX-2-inhibitors may be replaced by a combination of selective EP antagonists and traditional anti-tumoral drugs to alleviate severe side effects and achieve better outcomes.
Collapse
|
5
|
Martín-Sanz P, Casado M, Boscá L. Cyclooxygenase 2 in liver dysfunction and carcinogenesis: Facts and perspectives. World J Gastroenterol 2017; 23:3572-3580. [PMID: 28611510 PMCID: PMC5449414 DOI: 10.3748/wjg.v23.i20.3572] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
The biosynthesis of prostaglandins and thromboxanes has been a focus of interest in the management of many liver diseases. Cyclooxygenases are the enzymes involved in the first step of the biosynthesis of these lipid mediators and selective inhibitors for these isoenzymes as well as pharmacological analogues of prostaglandins have been developed and are currently applied therapeutically. Here we discuss the implications of these enzymes in the onset of metabolic and lipid disorders in the liver and their potential role in the progression of the diseases towards fibrosis and hepatocellular carcinogenesis.
Collapse
|
6
|
Francés DE, Motiño O, Agrá N, González-Rodríguez Á, Fernández-Álvarez A, Cucarella C, Mayoral R, Castro-Sánchez L, García-Casarrubios E, Boscá L, Carnovale CE, Casado M, Valverde ÁM, Martín-Sanz P. Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance. Diabetes 2015; 64:1522-1531. [PMID: 25422106 DOI: 10.2337/db14-0979] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023]
Abstract
Accumulation evidence links obesity-induced inflammation as an important contributor to the development of insulin resistance, which plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. Cyclooxygenase (COX)-1 and -2 catalyze the first step in prostanoid biosynthesis. Because adult hepatocytes fail to induce COX-2 expression regardless of the proinflammatory stimuli used, we have evaluated whether this lack of expression under mild proinflammatory conditions might constitute a permissive condition for the onset of insulin resistance. Our results show that constitutive expression of human COX-2 (hCOX-2) in hepatocytes protects against adiposity, inflammation, and, hence, insulin resistance induced by a high-fat diet, as demonstrated by decreased hepatic steatosis, adiposity, plasmatic and hepatic triglycerides and free fatty acids, increased adiponectin-to-leptin ratio, and decreased levels of proinflammatory cytokines, together with an enhancement of insulin sensitivity and glucose tolerance. Furthermore, hCOX-2 transgenic mice exhibited increased whole-body energy expenditure due in part by induction of thermogenesis and fatty acid oxidation. The analysis of hepatic insulin signaling revealed an increase in insulin receptor-mediated Akt phosphorylation in hCOX-2 transgenic mice. In conclusion, our results point to COX-2 as a potential therapeutic target against obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Daniel E Francés
- Institute of Experimental Physiology (Instituto de Fisiología Experimental), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Omar Motiño
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Agrá
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Fernández-Álvarez
- Institute of Experimental Physiology (Instituto de Fisiología Experimental), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Carme Cucarella
- Biomedical Institute of Valencia, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rafael Mayoral
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Luis Castro-Sánchez
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Ester García-Casarrubios
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Lisardo Boscá
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina E Carnovale
- Institute of Experimental Physiology (Instituto de Fisiología Experimental), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Marta Casado
- Biomedical Institute of Valencia, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ángela M Valverde
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Martín-Sanz
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Xia ZJ, Hu W, Wang YB, Zhou K, Sun GJ. Expression heterogeneity research of ITGB3 and BCL-2 in lung adenocarcinoma tissue and adenocarcinoma cell line. ASIAN PAC J TROP MED 2015; 7:473-7. [PMID: 25066397 DOI: 10.1016/s1995-7645(14)60077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To analyze expression heterogeneity of Integrin beta 3 (ITGB3) and B-cell lymphoma 2 (BCL-2) in lung adenocarcinoma tissue and adenocarcinoma cell line and further provide theoretical direction for molecular biological research of lung adenocarcinoma. METHODS Tissue microarray was used to observe relation among expression, heterogeneitpy and clinical characteristics of ITGB3 and BCL-2 in lung cancer. RESULTS ITGB3 and BCL-2 increased significantly in A549 cells in CAFs group withβ-actin as control; the expression level of BCL-2 also increased in ITGB3 transfected cells with GFP plasmid transfected A549 cells as control; immunohistochemistry staining showed that positive rates of ITGB3, ITGB1 and BCL-2 in normal lung tissues were 0, the positive rates in lung adenocarcinoma were 7.04%, 84.51% and 4.23%, respectively; in the results of immunohistochemistry staining, the expression of Girdin protein in lung adenocarcinoma was homogeneous, however protein expression of ITGB3, ITGB1 and BCL-2 showed different patterns in the same location with significant heterogeneity; majority of ITGB3, ITGB1 or BCL-2 positive tissue showed heterogeneity that expression in trailing edge was higher than that of trailing edge in lung adenocarcinoma tissue, the patients with BCL-2 heterogeneity showed higher lymph node metastasis ratio and lower clinical stage (P<0.05); and the expression of ITGB3 and the clinical characteristics of patients were not significant related (P>0.05). CONCLUSIONS Expression of ITGB3 and BCL-2 in lung adenocarcinoma and adenocarcinoma cell line showed heterogeneity that expression in trailing edge was higher than that of trailing edge, which may play an important role in promoting tumor lymph node metastasis and vascular invasion, and provides a new research direction for exploration of lung adenocarcinoma metastasis mechanism.
Collapse
Affiliation(s)
- Zong-Jiang Xia
- Department of Thoracic surgery, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wei Hu
- Department of Thoracic surgery, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yue-Bin Wang
- Department of Thoracic surgery, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Kun Zhou
- Department of Thoracic surgery, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guo-Ju Sun
- Department of Cardiology, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
8
|
Regulated expression of PTPRJ by COX-2/PGE2 axis in endothelial cells. PLoS One 2014; 9:e114996. [PMID: 25532119 PMCID: PMC4274085 DOI: 10.1371/journal.pone.0114996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/17/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This study was designed to examine a novel role of COX-2/PGE2 signaling as a regulator of PTPRJ expression in endothelial cells. METHODS A bioinformatics analysis of a whole genome array was carried out to search for regulators of PTPRJ expression in endothelial cells. PTPRJ expression was also measured in endothelial cells derived from a balloon injury-induced neointimal hyperplasia model in male New Zealand Rabbits. Changes in PTPRJ expression in HUVEC cells was examined by RT-PCR and western blotting after transfection of COX-2 plasmids or treatment with varying concentrations of a COX-2 inhibitor. RESULTS A significant correlation was identified between COX-2 and PTPRJ in GSE39264 (Pearson correlation coefficient = -0.87; n = 22; P < 0.01, two-tailed). PTPRJ expression was reduced during the progression of neointimal hyperplasia after balloon injury, which correlated with an increase in COX-2 expression. In HUVECs, after transfection with 1 µg/ml, 0.5 µg/ml, or 0.25 µg/ml COX-2 plasmids, PTPRJ protein expression was reduced to 0.60- (± 0.08), 0.75- (± 0.09), and 0.88- (± 0.04) fold, respectively, while mRNA expression was reduced to 0.15- (± 0.03), 0.26- (± 0.05), and 0.47- (± 0.09) fold, respectively. After treatment of HUVECs with 10 µmol/L or 20 µmol/L celecoxib, the reduction in PTPRJ expression induced by COX-2 over-expression was not only rescued but in fact increased by 2.05-fold (± 0.28) and 3.34-fold (± 0.37), respectively, compared with control. CONCLUSIONS Our results suggest that COX-2/PGE2 signaling may function as a negative regulator of PTPRJ expression in endothelial cells both in vivo and vitro.
Collapse
|
9
|
Zhao JA, Peng L, Geng CZ, Liu YP, Wang X, Yang HC, Wang SJ. Preventive effect of hydrazinocurcumin on carcinogenesis of diethylnitrosamine-induced hepatocarcinoma in male SD rats. Asian Pac J Cancer Prev 2014; 15:2115-21. [PMID: 24716943 DOI: 10.7314/apjcp.2014.15.5.2115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The purpose of the present study was to evaluate the preventive effects of hydrazinocurcumin (HZC) on diethylnitrosamine (DEN)-induced hepatocarcinogenesis in a male Sprague Dawley (SD) rat model. One hundred and twenty male SD rats used in this study were divided into six groups. Those receiving DEN with curcumin (CUR) or HZC were studied compared with the DEN-alone group. The study demonstrated that DEN induced severe histological and immunohistochemical changes in liver tissues, significantly increasing the levels of liver marker enzymes (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT) and total bilirubin level (TBL)). The hepatocarcinoma incidences were 100.0%, 36.7% and 20.0% in the DEN-alone, DEN-CUR and DEN-HZC groups, respectively. Although macroscopic and microscopic features suggested that both CUR and HZC were effective in inhibiting DEN- induced hepatocarcinogenesis, HZC was exerted a stronger influence. Immunohistochemical analysis with PCNA demonstrated significantly differences among the groups (all P < 0.05). Taken together, the results suggested application of CUR and HZC could prevent the occurrence of carcinogenesis and HZC may be a more potent compound for prevention of DEN-induced hepatocarcinogenesis in rats than CUR.
Collapse
Affiliation(s)
- Ji-An Zhao
- Department of Hepatobiliary Surgery, The First Affilliated Hospital, Hebei Medical University, Shijiazhuang, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
10
|
Castro-Sánchez L, Agra N, Llorente Izquierdo C, Motiño O, Casado M, Boscá L, Martín-Sanz P. Regulation of 15-hydroxyprostaglandin dehydrogenase expression in hepatocellular carcinoma. Int J Biochem Cell Biol 2013; 45:2501-2511. [PMID: 23954207 DOI: 10.1016/j.biocel.2013.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/12/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase-2 (COX-2), a rate limiting step in arachidonic acid cascade, plays a key role in the biosynthesis of prostaglandin E2 (PGE2) upon inflammatory stimuli, growth factors, hormones and other cellular stresses. Overproduction of PGE2 stimulates proliferation of various cancer cells, confers resistance to apoptosis and favors metastasis and angiogenesis. The steady-state level of PGE2 is maintained by interplay between the biosynthetic pathway including COX and PGE2 synthases and the catabolic pathways involving nicotinamide adenine dinucleotide (NAD(+))-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). 15-PGDH is a crucial enzyme responsible for the biological inactivation of PGE2. Adult hepatocytes fail to induce COX-2 expression regardless of the pro-inflammatory factors used. COX-2 is induced in hepatocytes after partial hepatectomy (PH), in animal models of cirrhosis, in human hepatoma cell lines, in human HCC and after HBV and HCV infection. However, no data are available regarding 15-PGDH expression in HCC. Our results show that 15-PGDH is downregulated in human hepatoma cells with a high COX-2 expression, in chemical and genetic murine models of HCC and in human HCC biopsies. Moreover, 15-PGDH expression is suppressed by EGF (epidermal growth factor) and HGF (hepatocyte growth factor) mainly involving PI3K (phosphatidylinositol-3-kinase), ERK (extracellular signal-regulated kinase) and p38MAPK (mitogen-activated protein kinase) activation. Conversely, ectopic expression of 15-PGDH induces apoptosis in hepatoma cells and decreases the growth of hepatoma cells in nude mice whereas the silencing of 15-PGDH increases the tumor formation. These data suggest a potential therapeutic application of 15-PGDH in HCC.
Collapse
MESH Headings
- Adult
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Biopsy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Epidermal Growth Factor/pharmacology
- ErbB Receptors/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatocyte Growth Factor/pharmacology
- Humans
- Hydroxyprostaglandin Dehydrogenases/metabolism
- Intramolecular Oxidoreductases/metabolism
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Inbred C57BL
- Phosphatidylinositol 3-Kinases/metabolism
- Prostaglandin-E Synthases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Luis Castro-Sánchez
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Llorente-Izquierdo C, Mayoral R, Cucarella C, Grau C, Alvarez MS, Flores JM, García-Palencia P, Agra N, Castro-Sánchez L, Boscá L, Martín-Sanz P, Casado M. Progression of liver oncogenesis in the double transgenic mice c-myc/TGF α is not enhanced by cyclooxygenase-2 expression. Prostaglandins Other Lipid Mediat 2013; 106:106-115. [PMID: 23579063 DOI: 10.1016/j.prostaglandins.2013.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase-2 (COX-2) has been associated with cell growth regulation, tissue remodeling and carcinogenesis. Overexpression of COX-2 in hepatocytes constitutes an ideal condition to evaluate the role of prostaglandins (PGs) in liver pathogenesis. The effect of COX-2-dependent PGs in genetic hepatocarcinogenesis has been investigated in triple c-myc/transforming growth factor α (TGF-α) transgenic mice that express human COX-2 in hepatocytes on a B6CBAxCD1xB6DBA2 background. Analysis of the contribution of COX-2-dependent PGs to the development of hepatocarcinogenesis, evaluated in this model, suggested a minor role of COX-2-dependent prostaglandins to liver oncogenesis as indicated by liver histopathology, morphometric analysis and specific markers of tumor progression. This allows concluding that COX-2 is insufficient for modifying the hepatocarcinogenesis course mediated by c-myc/TGF-α.
Collapse
Affiliation(s)
- Cristina Llorente-Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Francés DEA, Ingaramo PI, Mayoral R, Través P, Casado M, Valverde ÁM, Martín-Sanz P, Carnovale CE. Cyclooxygenase-2 over-expression inhibits liver apoptosis induced by hyperglycemia. J Cell Biochem 2013; 114:669-80. [PMID: 23059845 DOI: 10.1002/jcb.24409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022]
Abstract
Increased expression of COX-2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX-2 protects hepatocytes from several pro-apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX-2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX-2 (hCOX-2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post-injection, Wt diabetic animals showed a decrease in PI3K activity and P-Akt levels, an increase of P-JNK, P-p38, pro-apoptotic Bad and Bax, release of cytochrome c and activities of caspases-3 and -9, leading to an increased apoptotic index. This situation was improved in diabetic COX-2 Tg. In addition, SID COX-2 Tg showed increased expression of anti-apoptotic Mcl-1 and XIAP. Pro-apoptotic state in the liver of diabetic animals was improved by over-expression of COX-2. We also analyzed the roles of high glucose-induced apoptosis and hCOX-2 in vitro. Non-transfected and hCOX-2-transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non-transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX-2-transfected cells was suppressed by addition of DFU (COX-2 selective inhibitor), and mimicked by addition of PGE(2) in non-transfected cells. Taken together, these results demonstrate that hyperglycemia-induced hepatic apoptosis is protected by hCOX-2 expression.
Collapse
Affiliation(s)
- Daniel E A Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Agra Andrieu N, Motiño O, Mayoral R, Llorente Izquierdo C, Fernández-Alvarez A, Boscá L, Casado M, Martín-Sanz P. Cyclooxygenase-2 is a target of microRNA-16 in human hepatoma cells. PLoS One 2012; 7:e50935. [PMID: 23226427 PMCID: PMC3511388 DOI: 10.1371/journal.pone.0050935] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/26/2012] [Indexed: 02/07/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC); however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a) by binding directly to the microRNA response element (MRE) in the COX-2 3'-UTR promoting translational suppression of COX-2 mRNA; b) by decreasing the levels of the RNA-binding protein Human Antigen R (HuR). Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Base Sequence
- Biopsy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Down-Regulation
- ELAV Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Protein Biosynthesis/genetics
- Protein Stability
- RNA Stability/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Noelia Agra Andrieu
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Omar Motiño
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Rafael Mayoral
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristina Llorente Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Ana Fernández-Alvarez
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|