1
|
Rahman MT, Kaung Y, Shannon L, Androjna C, Sharifi N, Labhasetwar V. Nanoparticle-mediated synergistic drug combination for treating bone metastasis. J Control Release 2023; 357:498-510. [PMID: 37059400 PMCID: PMC10243348 DOI: 10.1016/j.jconrel.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Bone metastasis at an advanced disease stage is common in most solid tumors and is untreatable. Overexpression of receptor activator of nuclear factor κB ligand (RANKL) in tumor-bone marrow microenvironment drives a vicious cycle of tumor progression and bone resorption. Biodegradable nanoparticles (NPs), designed to localize in the tumor tissue in bone marrow, were evaluated in a prostate cancer model of bone metastasis. The combination treatment, encapsulating docetaxel, an anticancer drug (TXT-NPs), and Denosumab, a monoclonal antibody that binds to RANKL (DNmb-NPs), administered intravenously regressed the tumor completely, preventing bone resorption, without causing any mortality. With TXT-NPs alone treatment, after an initial regression, the tumor relapsed and acquired resistance, whereas DNmb-NPs alone treatment was ineffective. Only in the combination treatment, RANKL was not detected in the tumor tibia, thus negating its role in tumor progression and bone resorption. The combination treatment was determined to be safe as the vital organ tissue showed no increase in inflammatory cytokine or the liver ALT/AST levels, and animals gained weight. Overall, dual drug treatment acted synergistically to modulate the tumor-bone microenvironment with encapsulation enhancing their therapeutic potency to achieve tumor regression.
Collapse
Affiliation(s)
- Mohammed Tanjimur Rahman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youzhi Kaung
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Logan Shannon
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
2
|
Keyvani V, Mollazadeh S, Kheradmand N, Mahmoudian RA, Avan A, Anvari K. Current use of Molecular Mechanisms and Signaling Pathways in Targeted Therapy of Prostate Cancer. Curr Pharm Des 2023; 29:2684-2691. [PMID: 37929740 DOI: 10.2174/0113816128265464231021172202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Prostate cancer (PC) is identified as a heterogeneous disease. About 20 to 30% of PC patients experience cancer recurrence, characterized by an increase in the antigen termed serum prostate-specific antigen (PSA). Clinical recurrence of PC commonly occurs after five years. Metastatic castration-resistant prostate cancer (mCRPC) has an intricate genomic background. Therapies that target genomic changes in DNA repair signaling pathways have been progressively approved in the clinic. Innovative therapies like targeting signaling pathways, bone niche, immune checkpoint, and epigenetic marks have been gaining promising results for better management of PC cases with bone metastasis. This review article summarizes the recent consideration of the molecular mechanisms and signaling pathways involved in local and metastatic prostate cancer, highlighting the clinical insinuations of the novel understanding.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane 4059, Australia
| | - Kazem Anvari
- Department of Radiotherapy Oncology, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Tommasi C, Pellegrino B, Diana A, Palafox Sancez M, Orditura M, Scartozzi M, Musolino A, Solinas C. The Innate Immune Microenvironment in Metastatic Breast Cancer. J Clin Med 2022; 11:jcm11205986. [PMID: 36294305 PMCID: PMC9604853 DOI: 10.3390/jcm11205986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
The immune system plays a fundamental role in neoplastic disease. In the era of immunotherapy, the adaptive immune response has been in the spotlight whereas the role of innate immunity in cancer development and progression is less known. The tumor microenvironment influences the terminal differentiation of innate immune cells, which can explicate their pro-tumor or anti-tumor effect. Different cells are able to recognize and eliminate no self and tumor cells: macrophages, natural killer cells, monocytes, dendritic cells, and neutrophils are, together with the elements of the complement system, the principal players of innate immunity in cancer development and evolution. Metastatic breast cancer is a heterogeneous disease from the stromal, immune, and biological point of view and requires deepened exploration to understand different patient outcomes. In this review, we summarize the evidence about the role of innate immunity in breast cancer metastatic sites and the potential targets for optimizing the innate response as a novel treatment opportunity.
Collapse
Affiliation(s)
- Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
- Correspondence:
| | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Marta Palafox Sancez
- Tumor Heterogeneity, Metastasis and Resistance Laboratory, University of Basel, 4001 Basel, Switzerland
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Mario Scartozzi
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Cinzia Solinas
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
4
|
Eichberger J, Weber F, Spanier G, Gerken M, Schreml S, Schulz D, Fiedler M, Ludwig N, Bauer RJ, Reichert TE, Ettl T. Loss of MMP-27 Predicts Mandibular Bone Invasion in Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14164044. [PMID: 36011038 PMCID: PMC9406335 DOI: 10.3390/cancers14164044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The growth of oral squamous cell carcinoma into the mandible poses significant challenges to head and neck surgery. The resulting need for extensive procedures has a decisive influence on subsequent esthetics and function and therefore also on the patient’s quality of life. The molecular mechanism behind this remains obscure to date. Hence, we investigated the influence of MMP-27, Osteoprotegerin and RANKL, three proteins with importance in bone remodeling. The results showed that tumors exhibited less bone-invasive behavior in the presence of MMP-27. This may be an incentive for further studies to elucidate the molecular mechanisms of mandibular bone invasion in OSCC. Abstract Invasion of the mandibular bone is frequent in oral squamous cell carcinoma (OSCC), which often results in extensive ablative and reconstructive procedures for the patient. The purpose of this single-center, retrospective study was to identify and evaluate potential biomarkers and risk factors for bone invasion in OSCC. Initially, in silico gene expression analysis was performed for different HNSCC tumor T-stages to find factors associated with invasive (T4a) tumor growth. Afterwards, the protein expression of bone-metabolizing MMP-27, TNFRSF11B (Osteoprotegerin, OPG), and TNFSF11 (RANKL) was investigated via Tissue Microarrays (TMAs) for their impact on mandibular bone invasion. TMAs were assembled from the bone–tumor interface of primary OSCCs of the floor of the mouth and gingiva from 119 patients. Sixty-four carcinomas with patho-histological jaw invasion (pT4a) were compared to 55 carcinomas growing along the mandible without invasion (pT2, pT3). Tissue samples were additionally evaluated for patterns of invasion using the WPOI grading system. Statistical analysis of in silico data revealed decreased MMP-27 mRNA expression to be strongly associated with the pT4a-stage in OSCC, indicating invasive tumor growth with infiltration of adjacent anatomical structures. Our own clinico-pathological data on OSCCs presented a significant decrease of MMP-27 in tumors invading the nearby mandible (pT4a), compared to pT2 and pT3 tumors without bone invasion. Loss of MMP27 evolved as the strongest predictor of mandibular bone invasion in binary logistic regression analysis. To our knowledge, this is the first study investigating the role of MMP-27 expression in OSCC and demonstrating the importance of the loss of MMP-27 in mandibular bone invasion.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Gerken
- Tumor Center Regensburg, Institute for Quality Assurance and Health Services Research, University of Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Fiedler
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Torsten Eugen Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Deligiorgi MV, Trafalis DT. The safety profile of denosumab in oncology beyond the safety of denosumab as an anti-osteoporotic agent: still more to learn. Expert Opin Drug Saf 2020; 20:191-213. [PMID: 33287586 DOI: 10.1080/14740338.2021.1861246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Initially endorsed as an antiosteoporotic agent, denosumab ‒ human monoclonal antibody inhibiting the receptor activator of nuclear factor kappa-B ligand (RANKL)‒ has currently shown an anticancer potential, rationalizing its exploitation in oncology. A prerequisite for leveraging denosumab in oncology is a favorable safety profile. AREAS COVERED The present review provides an overview of the adverse events of denosumab in oncology, with a focus on hypocalcemia, medication-related osteonecrosis of the jaw, atypical femoral fracture(s), post-denosumab vertebral fractures, increased risk of infections, and excess of second primary cancer. Representative studies addressing the safety and efficacy of denosumab compared to bisphosphonates in oncology are summarized. Critical gaps in the literature concerning the safety of denosumab in oncology are highlighted as opposed to plenty of available safety data on denosumab as an antiosteoporotic agent. EXPERT OPINION Despite the generally acceptable safety profile of denosumab in oncology, many issues remain unresolved. Further research is mandatory to counteract current challenges, namely: (i) validation of risk factors for adverse events; (ii) elucidation of the pathophysiology of the adverse events in search of actionable molecular pathways; (iii) illumination of the association of denosumab with increased risk of infections and/or second primary cancer; (iv) establishment of optimal diagnostic, and therapeutic protocols.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology - Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine , Athens, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology - Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine , Athens, Greece
| |
Collapse
|
7
|
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol 2020; 10:1283. [PMID: 32850393 PMCID: PMC7426519 DOI: 10.3389/fonc.2020.01283] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
RANKL and RANK are expressed in different cell types and tissues throughout the body. They were originally described for their essential roles in bone remodeling and the immune system but have subsequently been shown to provide essential signals from regulating mammary gland homeostasis during pregnancy to modulating tumorigenesis. The success of RANKL/RANK research serves as a paragon for translational research from the laboratory to the bedside. The case in point has been the development of Denosumab, a RANKL-blocking monoclonal antibody which has already helped millions of patients suffering from post-menopausal osteoporosis and skeletal related events in cancer. Here we will provide an overview of the pathway from its origins to its clinical relevance in disease, with a special focus on emerging evidence demonstrating the therapeutic value of targeting the RANKL/RANK/OPG axis not only in breast cancer but also as an addition to the cancer immunotherapy arsenal.
Collapse
Affiliation(s)
- Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Deligiorgi MV, Panayiotidis MI, Griniatsos J, Trafalis DT. Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond. Clin Exp Metastasis 2020; 37:13-30. [PMID: 31578655 DOI: 10.1007/s10585-019-09997-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
More than 2 decades ago, the discovery of osteoprotegerin (OPG) as inhibitor of the receptor of activator of nuclear factor Kb (RANK) ligand (RANKL) revolutionized our understanding of bone biology and oncology. Besides acting as decoy receptor for RANKL, OPG acts as decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). OPG, RANKL, and TRAIL are ubiquitously expressed, stimulating per se pivotal signaling cascades implicated in cancer. In the context of cancer cell-bone cell interactions, cancer cells skew the OPG/RANKL/RANK (RANKL cognate receptor) balance towards bone destruction and tumor growth through favoring the RANKL/RANK interface, circumventing OPG. Numerous preclinical and clinical studies demonstrate the dual role of OPG in cancer: antitumor and tumor-promoting. OPG potentially conveys an antitumor signal through inhibiting the tumor-promoting RANKL signaling-both the osteoclast-dependent and the osteoclast-independent-and the tumor-promoting TRAIL signaling. On the other hand, the presumed tumor-promoting functions of OPG are: (i) abrogation of TRAIL-induced apoptosis of cancer cells; (ii) abrogation of RANKL-induced antitumor immunity; and (iii) stimulation of oncogenic and prometastatic signaling cascades downstream of the interaction of OPG with diverse proteins. The present review dissects the role of OPG in bone oncology. It presents the available preclinical and clinical data sustaining the dual role of OPG in cancer and focuses on the imbalanced RANKL/RANK/OPG interplay in the landmark "vicious cycle" of skeletal metastatic disease, osteosarcoma, and multiple myeloma. Finally, current challenges and future perspectives in exploiting OPG signaling in bone oncology therapeutics are discussed.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Clinical Pharmacology Unit, Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Goudi, 11527, Athens, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Ellison Building, Room A516, Newcastle upon Tyne, NE1 8ST, UK
| | - John Griniatsos
- 1st Department of Surgery, Faculty of Medicine, National and Kapodistrian University of Athens, Laikon General Hospital, 17 Agiou Thoma Str, Goudi, 115-27, Athens, Greece
| | - Dimitrios T Trafalis
- Clinical Pharmacology Unit, Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Goudi, 11527, Athens, Greece
| |
Collapse
|
9
|
The Non-Bone-Related Role of RANK/RANKL Signaling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:53-62. [PMID: 33119864 DOI: 10.1007/978-3-030-50224-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RANK ligand (RANKL) is a member of the tumor necrosis factor alpha superfamily of cytokines. It is the only known ligand binding to a membrane receptor named receptor activator of nuclear factor-kappa B (RANK), thereby triggering recruitment of TNF receptor-associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor, osteoprotegerin (OPG), but also has additional more complex levels of regulation. It is crucial for the differentiation of bone-resorbing osteoclasts and is deregulated in disease processes such as osteoporosis and cancer bone metastasis. Cells expressing RANK and RANKL are commonly found in the tumor environment. In many tumor types, the RANK/RANKL pathway is overexpressed, and this is in most cases correlated with poor prognosis. RANK signaling plays an important role in the innate and adaptive immune response, generates regulatory T (Treg) cells, and increases the production of cytokines. It is also involved in chemo resistance in vitro. Recent evidence suggests that RANKL blockade improves the efficacy of anti-CTLA-4 antibodies against solid tumors and experimental metastasis. Therefore, there is increasing interest to use RANKL inhibition as an immunomodulatory strategy in an attempt to make immune-resistant tumor responsive to immune therapy.
Collapse
|
10
|
van Dam PA, Verhoeven Y, Jacobs J, Wouters A, Tjalma W, Lardon F, Van den Wyngaert T, Dewulf J, Smits E, Colpaert C, Prenen H, Peeters M, Lammens M, Trinh XB. RANK-RANKL Signaling in Cancer of the Uterine Cervix: A Review. Int J Mol Sci 2019; 20:E2183. [PMID: 31052546 PMCID: PMC6540175 DOI: 10.3390/ijms20092183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
RANK ligand (RANKL) is a member of the tumor necrosis factor alpha superfamily of cytokines. It is the only known ligand binding to a membrane receptor named receptor activator of nuclear factor-kappa B (RANK), thereby triggering recruitment of tumor necrosis factor (TNF) receptor associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor called osteoprotegerin (OPG), but also has additional more complex levels of regulation. The existing literature on RANK/RANKL signaling in cervical cancer was reviewed, particularly focusing on the effects on the microenvironment. RANKL and RANK are frequently co-expressed in cervical cancer cells lines and in carcinoma of the uterine cervix. RANKL and OPG expression strongly increases during cervical cancer progression. RANKL is directly secreted by cervical cancer cells, which may be a mechanism they use to create an immune suppressive environment. RANKL induces expression of multiple activating cytokines by dendritic cells. High RANK mRNA levels and high immunohistochemical OPG expression are significantly correlated with high clinical stage, tumor grade, presence of lymph node metastases, and poor overall survival. Inhibition of RANKL signaling has a direct effect on tumor cell proliferation and behavior, but also alters the microenvironment. Abundant circumstantial evidence suggests that RANKL inhibition may (partially) reverse an immunosuppressive status. The use of denosumab, a monoclonal antibody directed to RANKL, as an immunomodulatory strategy is an attractive concept which should be further explored in combination with immune therapy in patients with cervical cancer.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Julie Jacobs
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Wiebren Tjalma
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Tim Van den Wyngaert
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Jonatan Dewulf
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Evelien Smits
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Cécile Colpaert
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Gasthuiszusters Antwerpen (GZA) Hospitals, B2610 Wilrijk, Belgium.
| | - Hans Prenen
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Marc Peeters
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Martin Lammens
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| |
Collapse
|
11
|
Clar KL, Hinterleitner C, Schneider P, Salih HR, Maurer S. Inhibition of NK Reactivity Against Solid Tumors by Platelet-Derived RANKL. Cancers (Basel) 2019; 11:cancers11030277. [PMID: 30813611 PMCID: PMC6468810 DOI: 10.3390/cancers11030277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022] Open
Abstract
NK cells play an important role in tumor immunosurveillance. Their reactivity is governed by various activating and inhibitory surface receptors, which include several members of the TNF/TNF receptor family. For more than 50 years, it has been recognized that tumor immunosurveillance and in particular NK cell antitumor reactivity is largely influenced by platelets, but the underlying mechanisms remain to be fully elucidated. Here we report that upon activation, which reportedly occurs following interaction with cancer cells, platelets upregulate the TNF family member RANKL. Comparative analysis of the expression of RANK among different NK cell subsets and RANKL on platelets in cancer patients and healthy volunteers revealed a distinct malignant phenotype, and platelet-derived RANKL was found to inhibit the activity of normal NK cells against cancer cells. Notably, NK cell antitumor reactivity could be partially restored by application of denosumab, a RANKL-neutralizing antibody approved for treatment of benign and malignant osteolysis. Together, our data not only unravel a novel mechanism of tumor immune evasion mediated by platelets, but they also provide a functional explanation for the clinical observation that denosumab, beyond protecting from bone loss, may prolong disease-free survival in patients with solid tumors.
Collapse
Affiliation(s)
- Kim L Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen 72076, Germany.
| | - Clemens Hinterleitner
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen 72076, Germany.
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland.
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen 72076, Germany.
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen 72076, Germany.
| |
Collapse
|
12
|
The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clin Transl Oncol 2019; 21:977-991. [PMID: 30656607 DOI: 10.1007/s12094-018-02023-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Drug repurposing offers advantages over traditional drug development in terms of cost, speed and improved patient outcomes. The receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) inhibitor denosumab is approved for the prevention of skeletal-related events in patients with advanced malignancies involving bone, including solid tumours and multiple myeloma. Following improved understanding of the role of RANK/RANKL in cancer biology, denosumab has already been repurposed as a treatment for giant cell tumour of bone. Here, we review the role of RANK/RANKL in tumourigenesis, including effects on tumour initiation, progression and metastasis and consider the impact of RANK/RANKL on tumour immunology and immune evasion. Finally, we look briefly at ongoing trials and future opportunities for therapeutic synergy when combining denosumab with anti-cancer agents such as immune checkpoint inhibitors.
Collapse
|
13
|
van Dam PA, Verhoeven Y, Trinh XB, Wouters A, Lardon F, Prenen H, Smits E, Baldewijns M, Lammens M. RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol 2018; 133:85-91. [PMID: 30661662 DOI: 10.1016/j.critrevonc.2018.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 12/22/2022] Open
Abstract
Binding between the receptor activator of nuclear factor-kB (RANK) and its ligand (RANKL) triggers recruitment of TNF receptor associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor called osteoprotegerin (OPG) which interacts with RANKL. Additional networks regulating RANK/RANKL signaling are active in a context specific manner. RANK/RANKL signaling is essential for the differentiation of bone-resorbing osteoclasts, and is deregulated in pathological processes such as postmenopausal osteoporosis or cancer induced bone destruction. Cells expressing RANK and RANKL are commonly found in the tumor microenvironment. The RANKL/RANK pathway is often overexpressed in tumors of the breast, prostate, endometrium, cervix, stomach, oesophagus and bladder, thyroid and correlated with poor prognosis. RANK signaling plays an important role in the innate and adaptive immune response as it generates regulatory T (Treg) cells and increases production of cytokines. RANK expression induces chemoresistance in vitro through the activation of multiple signal transduction pathways. RANKL blockade improves the efficacy of anti-CTLA-4 monoclonal antibodies against solid tumors and experimental metastases. As RANK inhibition enhances the immune response there is an increasing interest in combining it with immune therapy in an attempt to sensitize immune resistant tumors to immune therapies. Several studies are ongoing to assess this concept. The role of RANK/RANKL inhibition should be further pursued as an immunomodulatory strategy in combination with other treatment modalities.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium.
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Xuan B Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Hans Prenen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium; Fase 1 Unit of Experimental Oncology, Antwerp University, Edegem, B2650, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Marcella Baldewijns
- Department of Histopathology, Antwerp University Hospital, Edegem, B2650, Belgium
| | - Martin Lammens
- Department of Histopathology, Antwerp University Hospital, Edegem, B2650, Belgium
| |
Collapse
|
14
|
Cuyàs E, Corominas-Faja B, Martín MMS, Martin-Castillo B, Lupu R, Brunet J, Bosch-Barrera J, Menendez JA. BRCA1 haploinsufficiency cell-autonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells. Oncotarget 2018; 8:35019-35032. [PMID: 28388533 PMCID: PMC5471031 DOI: 10.18632/oncotarget.16558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Denosumab, a monoclonal antibody to the receptor activator of nuclear factor-κB ligand (RANKL), might be a novel preventative therapy for BRCA1-mutation carriers at high risk of developing breast cancer. Beyond its well-recognized bone-targeted activity impeding osteoclastogenesis, denosumab has been proposed to interfere with the cross-talk between RANKL-producing sensor cells and cancer-initiating RANK+ responder cells that reside within premalignant tissues of BRCA1-mutation carriers. We herein tested the alternative but not mutually exclusive hypothesis that BRCA1 deficiency might cell-autonomously activate RANKL expression to generate cellular states with cancer stem cell (CSC)-like properties. Using isogenic pairs of normal-like human breast epithelial cells in which the inactivation of a single BRCA1 allele results in genomic instability, we assessed the impact of BRCA1 haploinsufficiency on the expression status of RANK and RANKL. RANK expression remained unaltered but RANKL was dramatically up-regulated in BRCA1mut/+ haploinsufficient cells relative to isogenic BRCA1+/+ parental cells. Neutralizing RANKL with denosumab significantly abrogated the ability of BRCA1 haploinsufficient cells to survive and proliferate as floating microtumors or "mammospheres" under non-adherent/non-differentiating conditions, an accepted surrogate of the relative proportion and survival of CSCs. Intriguingly, CSC-like states driven by epithelial-to-mesenchymal transition or HER2 overexpression traits responded to some extent to denosumab. We propose that breast epithelium-specific mono-allelic inactivation of BRCA1 might suffice to cell-autonomously generate RANKL-addicted, denosumab-responsive CSC-like states. The convergent addiction to a hyperactive RANKL/RANK axis of CSC-like states from genetically diverse breast cancer subtypes might inaugurate a new era of cancer prevention and treatment based on denosumab as a CSC-targeted agent.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Bruna Corominas-Faja
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - María Muñoz-San Martín
- Neuroimmunology and Multiple Sclerosis Unit, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Unit of Clinical Research, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Ruth Lupu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Joan Brunet
- Deparment of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Joaquim Bosch-Barrera
- Deparment of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
15
|
Abstract
Oncogenic events combined with a favourable environment are the two main factors in the oncological process. The tumour microenvironment is composed of a complex, interconnected network of protagonists, including soluble factors such as cytokines, extracellular matrix components, interacting with fibroblasts, endothelial cells, immune cells and various specific cell types depending on the location of the cancer cells (e.g. pulmonary epithelium, osteoblasts). This diversity defines specific "niches" (e.g. vascular, immune, bone niches) involved in tumour growth and the metastatic process. These actors communicate together by direct intercellular communications and/or in an autocrine/paracrine/endocrine manner involving cytokines and growth factors. Among these glycoproteins, RANKL (receptor activator nuclear factor-κB ligand) and its receptor RANK (receptor activator nuclear factor), members of the TNF and TNFR superfamilies, have stimulated the interest of the scientific community. RANK is frequently expressed by cancer cells in contrast with RANKL which is frequently detected in the tumour microenvironment and together they participate in every step in cancer development. Their activities are markedly regulated by osteoprotegerin (OPG, a soluble decoy receptor) and its ligands, and by LGR4, a membrane receptor able to bind RANKL. The aim of the present review is to provide an overview of the functional implication of the RANK/RANKL system in cancer development, and to underline the most recent clinical studies.
Collapse
|
16
|
Schmohl JU, Nuebling T, Wild J, Kroell T, Kanz L, Salih HR, Schmetzer H. Expression of RANK-L and in part of PD-1 on blasts in patients with acute myeloid leukemia correlates with prognosis. Eur J Haematol 2016; 97:517-527. [DOI: 10.1111/ejh.12762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Joerg Uwe Schmohl
- Section of Molecular Cancer Therapeutics; Therapeutic Radiology-Radiation Oncology; University of Minnesota; Masonic Cancer Center; Minneapolis MN USA
- Department for Hematology and Oncology; Med Dept II; University Hospital of Tuebingen; Tuebingen Germany
| | - Tina Nuebling
- Department for Hematology and Oncology; Med Dept II; University Hospital of Tuebingen; Tuebingen Germany
- Clinical Collaboration Unit Translational Immunology; German Cancer Consortium and German Cancer Research Center; Partner site Tuebingen; Department for Internal Medicine II; Eberhard Karls University Tuebingen; Tuebingen Germany
| | - Julia Wild
- Department for Hematology and Oncology; Med Dept II; University Hospital of Tuebingen; Tuebingen Germany
- Clinical Collaboration Unit Translational Immunology; German Cancer Consortium and German Cancer Research Center; Partner site Tuebingen; Department for Internal Medicine II; Eberhard Karls University Tuebingen; Tuebingen Germany
| | - Tanja Kroell
- Department for Hematopoetic Cell Transplantation; Med. Dept.III; University Hospital of Munich; Munich Germany
| | - Lothar Kanz
- Department for Hematology and Oncology; Med Dept II; University Hospital of Tuebingen; Tuebingen Germany
| | - Helmut Rainer Salih
- Department for Hematology and Oncology; Med Dept II; University Hospital of Tuebingen; Tuebingen Germany
- Clinical Collaboration Unit Translational Immunology; German Cancer Consortium and German Cancer Research Center; Partner site Tuebingen; Department for Internal Medicine II; Eberhard Karls University Tuebingen; Tuebingen Germany
| | - Helga Schmetzer
- Department for Hematopoetic Cell Transplantation; Med. Dept.III; University Hospital of Munich; Munich Germany
| |
Collapse
|
17
|
Receptor activator of NF-κB ligand induces cell adhesion and integrin α2 expression via NF-κB in head and neck cancers. Sci Rep 2016; 6:23545. [PMID: 27009236 PMCID: PMC4806381 DOI: 10.1038/srep23545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/09/2016] [Indexed: 01/16/2023] Open
Abstract
Cellular interactions with the extracellular matrix play critical roles in tumor progression. We previously reported that receptor activator of NF-κB ligand (RANKL) specifically facilitates head and neck squamous cell carcinoma (HNSCC) progression in vivo. Here, we report a novel role for RANKL in the regulation of cell adhesion. Among the major type I collagen receptors, integrin α2 was significantly upregulated in RANKL-expressing cells, and its knockdown suppressed cell adhesion. The mRNA abundance of integrin α2 positively correlated with that of RANKL in human HNSCC tissues. We also revealed that RANK-NF-κB signaling mediated integrin α2 expression in an autocrine/paracrine manner. Interestingly, the amount of active integrin β1 on the cell surface was increased in RANKL-expressing cells through the upregulation of integrin α2 and endocytosis. Moreover, the RANK-integrin α2 pathway contributed to RANKL-dependent enhanced survival in a collagen gel and inhibited apoptosis in a xenograft model, demonstrating an important role for RANKL-mediated cell adhesion in three-dimensional environments.
Collapse
|
18
|
Tohyama R, Kayamori K, Sato K, Hamagaki M, Sakamoto K, Yasuda H, Yamaguchi A. Establishment of a xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of RANKL. J Oral Pathol Med 2015; 45:356-64. [PMID: 26859422 DOI: 10.1111/jop.12376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The molecular mechanism underlying bone invasion caused by oral squamous cell carcinoma (OSCC) is not well understood. To elucidate the molecular mechanism, the development of more suitable xenograft models mimicking human mandibular bone destruction by OSCC has been required. MATERIALS AND METHODS Human OSCC cell lines, HSC3, HSC3-C1, and HSC3-R2, were injected in the periosteal region of the mandible in athymic mice, and the bone destruction was analyzed. Receptor activators of nuclear factor κ-B ligand (RANKL) mRNA and protein expression levels were measured in the OSCC cell lines. Antibody that specifically neutralizes mouse RANKL and human RANKL, respectively, was injected into HSC3-cell-transplanted mice. RESULTS Transplantation of HSC3 cells induced mandibular bone destruction. Histological examination revealed numerous osteoclasts on the bone destruction surface. Fibroblastic cell intervention between the cancer nests and resorbing bone surface was observed in a similar fashion to those observed in human OSCC cases. The number of osteoclasts and fibroblasts was significantly correlated. Bone destruction induced by the transplantation of HSC3 cells was reduced by injection of an antibody that specifically neutralizes mouse RANKL. Transplantation of HSC3-R2 cells, which overexpresses RANKL, induced advanced bone destruction compared to that of HSC3-C1 cells, which only overexpress the empty vector. CONCLUSIONS We established a useful xenograft model for investigating the molecular mechanism underlying the bone destruction induced by OSCC in the jaw. This model will be used to investigate the precise roles of several cytokines synthesized by both cancer cells and fibroblastic cells in OSCC-associated bone destruction in the jaw.
Collapse
Affiliation(s)
- Rei Tohyama
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Sato
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miwako Hamagaki
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
19
|
Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors. PLoS One 2015; 10:e0128467. [PMID: 26061636 PMCID: PMC4464738 DOI: 10.1371/journal.pone.0128467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields) with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL)/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer), the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer.
Collapse
|
20
|
Abstract
Acting through its cognate receptor, receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) is an essential mediator of osteoclast function and survival. Preclinical data have now firmly established that blockade of tumor-induced osteoclastogenesis by RANKL inhibition will not only protect against bone destruction but will also inhibit the progression of established bone metastases and delay the formation of de novo bone metastases in cancer models. In patients with bone metastases, skeletal complications are driven by increased osteoclastic activity and may result in pathological fractures, spinal cord compression and the need for radiotherapy to the bone or orthopedic surgery (collectively known as skeletal-related events (SREs)). Denosumab, a fully human monoclonal antibody against RANKL, has been demonstrated to prevent or delay SREs in patients with solid tumors that have metastasized to bone. In addition to its central role in tumor-induced osteolysis, bone destruction and skeletal tumor progression, there is emerging evidence for direct pro-metastatic effects of RANKL, independent of osteoclasts. For example, RANKL also stimulates metastasis via activity on RANK-expressing cancer cells, resulting in increased invasion and migration. Pharmacological inhibition of RANKL may also reduce bone and lung metastasis through blockade of the direct action of RANKL on metastatic cells. This review describes these distinct but potentially overlapping mechanisms by which RANKL may promote metastases.
Collapse
|
21
|
Conway RE, Joiner K, Patterson A, Bourgeois D, Rampp R, Hannah BC, McReynolds S, Elder JM, Gilfilen H, Shapiro LH. Prostate specific membrane antigen produces pro-angiogenic laminin peptides downstream of matrix metalloprotease-2. Angiogenesis 2013; 16:847-60. [PMID: 23775497 DOI: 10.1007/s10456-013-9360-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/10/2013] [Indexed: 12/18/2022]
Abstract
Prostate specific membrane antigen (PSMA) is a pro-angiogenic cell-surface protease that we previously demonstrated regulates blood vessel formation in a laminin and integrin β1-dependent manner. Here, we examine the principal mechanism of PSMA activation of integrin β1. We show that digesting laminin sequentially with recombinant matrix metalloprotease-2 (MMP-2) and PSMA generates small peptides that enhance endothelial cell adhesion and migration in vitro. We also provide evidence that these laminin peptides activate adhesion via integrin α6β1 and focal adhesion kinase. Using an in vivo Matrigel implant assay, we show that these MMP/PSMA-derived laminin peptides also increase angiogenesis in vivo. Together, our results reveal a novel mechanism of PSMA activation of angiogenesis by processing laminin downstream of MMP-2.
Collapse
Affiliation(s)
- Rebecca E Conway
- Department of Biology, College of Arts and Sciences, Lipscomb University, Nashville, TN, 37204, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sato K, Lee JW, Sakamoto K, Iimura T, Kayamori K, Yasuda H, Shindoh M, Ito M, Omura K, Yamaguchi A. RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1890-9. [PMID: 23499553 DOI: 10.1016/j.ajpath.2013.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/29/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms underlying bone destruction by invading oral cancer are not well understood. Using IHC, we demonstrated that receptor activator of nuclear factor-κB ligand (RANKL)-positive fibroblasts and cancer cells were located at sites of bone invasion in human oral cancers. HSC3 and HO-1-N-1, human oral cancer cell lines, expressed RANKL and stimulated Rankl expression in the UAMS-32 murine osteoblastic cell line. We discriminated the roles of RANKL synthesized by stromal cells and cancer cells in cancer-associated bone resorption by using species-specific RANKL antibodies against murine RANKL and human RANKL, respectively. Osteoclastogenesis induced by the conditioned medium of HSC3 and HO-1-N-1 cells in a co-culture of murine bone marrow cells and UAMS-32 cells was inhibited by the addition of antibodies against either mouse or human RANKL. HSC3-induced bone destruction was greatly inhibited by the administration of anti-mouse RANKL antibody in a xenograft model. HO-1-N-1-induced bone destruction was inhibited by the administration of either anti-mouse or anti-human RANKL antibody. Bone destruction induced by the transplantation of human RANKL-overexpressing cells (HSC3-R2) was greatly inhibited by the injection of anti-human RANKL antibody. The present study revealed that RANKL produced by both stromal and cancer cells is involved in oral cancer-induced osteoclastic bone resorption. These results provide important information for understanding the cellular and molecular basis of cancer-associated bone destruction and the mechanism of action underlying RANKL antibody (denosumab) therapy.
Collapse
Affiliation(s)
- Kiyoshi Sato
- Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction. Biochem Biophys Res Commun 2012; 424:456-61. [DOI: 10.1016/j.bbrc.2012.06.132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 11/21/2022]
|
24
|
Arai R, Tsuda M, Watanabe T, Ose T, Obuse C, Maenaka K, Minami A, Ohba Y. Simultaneous inhibition of Src and Aurora kinases by SU6656 induces therapeutic synergy in human synovial sarcoma growth, invasion and angiogenesis in vivo. Eur J Cancer 2012; 48:2417-30. [PMID: 22244830 DOI: 10.1016/j.ejca.2011.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
Synovial sarcoma is an obstinate, high-grade malignancy because of its modest responses to radiotherapy and chemotherapy; the identification of effective therapeutics for this sarcoma is therefore necessary. Inhibition of Src family kinases (SFKs) suppresses the proliferation of synovial sarcoma cells in vitro, as we have previously reported. In this study, to validate the efficacy of Src inhibition in vivo, we employed SU6656, which was originally identified as a specific SFK inhibitor. SU6656 treatment significantly impaired the growth of established, existing tumours formed by synovial sarcoma cells in mice. Tumour cell invasion into the surrounding tissues was also abolished by SU6656. It is noteworthy that SU6656 but not PP2 induced a defect in cleavage furrow formation during cytokinesis, resulting in G2/M accumulation and subsequent apoptosis. Intriguingly, SU6656 abrogated the catalytic activities of Aurora kinases and led to the down-regulation of phosphorylated histone H3 coincidently with p53 accumulation, as did the Aurora kinase inhibitor VX-680. Structural comparison indicated an extensive similarity between the catalytic domains of SFKs and Aurora kinases. The structural analysis also revealed the potential binding mode of SU6656 to the ATP-binding cleft of Aurora B via four hydrogen bonds. SU6656 prevented angiogenesis within the tumours by attenuating vascular endothelial growth factor (VEGF) production by tumour cells and the subsequent chemotaxis of endothelial cells; these effects were the result of the inhibition of SFKs but not Aurora kinases. Based on these results, we hereby report a novel property of SU6656 as a dual inhibitor of SFKs and Aurora kinases, the suppression of both of which effectively abrogates tumour development and the progression of synovial sarcoma in vivo.
Collapse
Affiliation(s)
- Ryuta Arai
- Laboratory of Pathophysiology and Signal Transduction, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. Front Immunol 2012; 2:98. [PMID: 22566887 PMCID: PMC3342348 DOI: 10.3389/fimmu.2011.00098] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/28/2011] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammatory mediators exert pleiotropic effects in the development of cancer. On the one hand, inflammation favors carcinogenesis, malignant transformation, tumor growth, invasion, and metastatic spread; on the other hand inflammation can stimulate immune effector mechanisms that might limit tumor growth. The link between cancer and inflammation depends on intrinsic and extrinsic pathways. Both pathways result in the activation of transcription factors such as NF-κB, STAT-3, and HIF-1 and in accumulation of tumorigenic factors in tumor and microenvironment. STAT-3 and NF-κB interact at multiple levels and thereby boost tumor-associated inflammation which can suppress anti-tumor immune responses. These factors also promote tumor growth, progression, and metastatic spread. IL-1, IL-6, TNF, and PGHS-2 are key mediators of an inflammatory milieu by modulating the expression of tumor-promoting factors. In this review we concentrate on the crucial role of pro-inflammatory mediators in inflammation-driven carcinogenesis and outline molecular mechanisms of IL-1 signaling in tumors. In addition, we elucidate the dual roles of stress proteins as danger signals in the development of anti-cancer immunity and anti-apoptotic functions.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München Munich, Germany.
| | | | | |
Collapse
|