1
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Tompa A, Faresjö M. Shift in the B cell subsets between children with type 1 diabetes and/or celiac disease. Clin Exp Immunol 2024; 216:36-44. [PMID: 38134245 PMCID: PMC10929695 DOI: 10.1093/cei/uxad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Our purpose was to characterize the pattern of B cell subsets in children with a combined diagnosis of type 1 diabetes (T1D) and celiac disease (C) since children with single or double diagnosis of these autoimmune diseases may differ in peripheral B cell subset phenotype patterns. B cells were analyzed with flow cytometry for the expression of differentiation/maturation markers to identify transitional, naive, and memory B cells. Transitional (CD24hiCD38hiCD19+) and memory Bregs (mBregs; CD24hiCD27+CD19+, CD1d+CD27+CD19+, and CD5+CD1d+CD19+) were classified as B cells with regulatory capacity. Children with a combined diagnosis of T1D and C showed a pattern of diminished peripheral B cell subsets. The B cells compartment in children with combined diagnosis had higher percentages of memory B subsets and Bregs, including activated subsets, compared to children with either T1D or C. Children with combined diagnosis had a lower percentage of naive B cells (CD27-CD19+; IgD+CD19+) and an increased percentage of memory B cells (CD27+CD19+; IgD-CD19+). A similar alteration was seen among the CD39+ expressing naive and memory B cells. Memory Bregs (CD1d+CD27+CD19+) were more frequent, contrary to the lower percentage of CD5+ transitional Bregs in children with a combined diagnosis. In children with either T1D or C, the peripheral B cell compartment was dominated by naive cells. Differences in the pattern of heterogeneous peripheral B cell repertoire subsets reflect a shifting in the B cell compartment between children with T1D and/or C. This is an immunological challenge of impact on the pathophysiology of these autoimmune diseases.
Collapse
Affiliation(s)
- Andrea Tompa
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Division of Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Maria Faresjö
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Department of Life Sciences, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Leonardi AJ, Argyropoulos CP, Hamdy A, Proenca RB. Understanding the Effects of Age and T-Cell Differentiation on COVID-19 Severity: Implicating a Fas/FasL-mediated Feed-Forward Controller of T-Cell Differentiation. Front Immunol 2022; 13:853606. [PMID: 35309371 PMCID: PMC8927653 DOI: 10.3389/fimmu.2022.853606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 01/14/2023] Open
Affiliation(s)
- Anthony J Leonardi
- Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Christos P Argyropoulos
- Department of Internal Medicine, Division of Nephrology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Adam Hamdy
- Independent Researcher, Port Louis, Mauritius
| | - Rui B Proenca
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell DR, Lee S, Zhang H, Michels A, Desiderio S, Sadegh-Nasseri S, Rabb H, Gritsch S, Suva ML, Cahan P, Zhou R, Jie C, Donner T, Hamad ARA. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell 2020; 177:1583-1599.e16. [PMID: 31150624 DOI: 10.1016/j.cell.2019.05.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adebola Giwa
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Cornwell
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neha Majety
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David R Bell
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Sangyun Lee
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Stephen Desiderio
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Simon Gritsch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Patrick Cahan
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA 50312, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Giwa AM, Ahmed R, Omidian Z, Majety N, Karakus KE, Omer SM, Donner T, Hamad ARA. Current understandings of the pathogenesis of type 1 diabetes: Genetics to environment. World J Diabetes 2020; 11:13-25. [PMID: 31938470 PMCID: PMC6927819 DOI: 10.4239/wjd.v11.i1.13] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that usually strikes early in life, but can affect individuals at almost any age. It is caused by autoreactive T cells that destroy insulin-producing beta cells in the pancreas. Epidemiological studies estimate a prevalence of 1 in 300 children in the United States with an increasing incidence of 2%-5% annually worldwide. The daily responsibility, clinical management, and vigilance required to maintain blood sugar levels within normal range and avoid acute complications (hypoglycemic episodes and diabetic ketoacidosis) and long term micro- and macro-vascular complications significantly affects quality of life and public health care costs. Given the expansive impact of T1D, research work has accelerated and T1D has been intensively investigated with the focus to better understand, manage and cure this condition. Many advances have been made in the past decades in this regard, but key questions remain as to why certain people develop T1D, but not others, with the glaring example of discordant disease incidence among monozygotic twins. In this review, we discuss the field’s current understanding of its pathophysiology and the role of genetics and environment on the development of T1D. We examine the potential implications of these findings with an emphasis on T1D inheritance patterns, twin studies, and disease prevention. Through a better understanding of this process, interventions can be developed to prevent or halt it at early stages.
Collapse
Affiliation(s)
- Adebola Matthew Giwa
- Department of Pediatrics, Johns Hopkins Medical Center, Baltimore, MD 21287, United States
| | - Rizwan Ahmed
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| | - Neha Majety
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| | | | - Sarah M Omer
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| |
Collapse
|
7
|
Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells. Cell Mol Immunol 2019; 17:843-855. [PMID: 31728048 DOI: 10.1038/s41423-019-0324-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
Regulatory B cells (Bregs) suppress and reduce autoimmune pathology. However, given the variety of Breg subsets, the role of Bregs in the pathogenesis of type 1 diabetes is still unclear. Here, we dissect this fundamental mechanism. We show that natural protection from type 1 diabetes in nonobese diabetic (NOD) mice is associated with increased numbers of IL-10-producing B cells, while development of type 1 diabetes in NOD mice occurs in animals with compromised IL-10 production by B cells. However, B cells from diabetic mice regain IL-10 function if activated by the innate immune receptor TLR4 and can suppress insulin-specific CD8 T cells in a dendritic cell (DC)-dependent, IL-10-mediated fashion. Suppression of CD8 T cells is reliant on B-cell contact with DCs. This cell contact results in deactivation of DCs, inducing a tolerogenic state, which in turn can regulate pathogenic CD8 T cells. Our findings emphasize the importance of DC-Breg interactions during the development of type 1 diabetes.
Collapse
|
8
|
Trivedi PM, Fynch S, Kennedy LM, Chee J, Krishnamurthy B, O'Reilly LA, Strasser A, Kay TWH, Thomas HE. Soluble FAS ligand is not required for pancreatic islet inflammation or beta-cell destruction in non-obese diabetic mice. Cell Death Discov 2019; 5:136. [PMID: 31552143 PMCID: PMC6755132 DOI: 10.1038/s41420-019-0217-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
CD8+ T cells play a central role in beta-cell destruction in type 1 diabetes. CD8+ T cells use two main effector pathways to kill target cells, perforin plus granzymes and FAS ligand (FASL). We and others have established that in non-obese diabetic (NOD) mice, perforin is the dominant effector molecule by which autoreactive CD8+ T cells kill beta cells. However, blocking FASL pharmacologically was shown to protect NOD mice from diabetes, indicating that FASL may have some role. FASL can engage with its receptor FAS on target cells either as membrane bound or soluble FASL. It has been shown that membrane-bound FASL is required to stimulate FAS-induced apoptosis in target cells, whereas excessive soluble FASL can induce NF-κB-dependent gene expression and inflammation. Because islet inflammation is a feature of autoimmune diabetes, we tested whether soluble FASL could be important in disease pathogenesis independent of its cell death function. We generated NOD mice deficient in soluble FASL, while maintaining expression of membrane-bound FASL due to a mutation in the FASL sequence required for cleavage by metalloproteinase. NOD mice lacking soluble FASL had normal numbers of lymphocytes in their spleen and thymus. Soluble FASL deficient NOD mice had similar islet inflammation as wild-type NOD mice and were not protected from diabetes. Our data indicate that soluble FASL is not required in development of autoimmune diabetes.
Collapse
Affiliation(s)
- Prerak M Trivedi
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia.,5Present Address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Stacey Fynch
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia
| | - Lucy M Kennedy
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia
| | - Jonathan Chee
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia.,6Present Address: University of Western Australia, Nedlands, Western Australia 6009 Australia
| | | | - Lorraine A O'Reilly
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050 Australia.,4Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050 Australia.,4Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Thomas W H Kay
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia
| | - Helen E Thomas
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia
| |
Collapse
|
9
|
Hamad ARA, Sadasivam M, Rabb H. Hybrid lipids, peptides, and lymphocytes: new era in type 1 diabetes research. J Clin Invest 2019; 12:9. [PMID: 31380812 DOI: 10.1172/jci130313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing β cells in islets of Langerhans. Many genetic and immunological insights into autoimmune disease pathogenesis were initially uncovered in the context of T1D and facilitated by preclinical studies using the nonobese diabetic (NOD) mouse model. Recently, the study of T1D has led to the discovery of fatty acid esters of hydroxyl fatty acids (FAHFAs), which are naturally occurring hybrid peptides that modulate inflammation and diabetes pathogenesis, and a hybrid lymphocyte that expresses both B and T cell receptors. Palmitic acid esters of hydroxy stearic acids (PAHSAs) are the most extensively studied FAHFA. In this issue of the JCI, Syed et al. have shown that PAHSAs both attenuate autoimmune responses and promote β cell survival in NOD mice. Given the lack of effective T1D therapies and the paucity of known side effects of PAHSAs, this lipid may have therapeutic potential for individuals at risk for or newly diagnosed with T1D.
Collapse
Affiliation(s)
| | | | - Hamid Rabb
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Omidian Z, Ahmed R, Giwa A, Donner T, Hamad ARA. IL-17 and limits of success. Cell Immunol 2018; 339:33-40. [PMID: 30765202 DOI: 10.1016/j.cellimm.2018.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022]
Abstract
Interleukin-17 (IL-17) is a potent proinflammatory cytokine that protects a host against fungal and extracellular bacterial infections. On the other hand, excessive or dysregulated production of IL-17 underlines susceptibility to autoimmune disease. Consequently, blocking IL-17 has become an effective strategy for modulating several autoimmune diseases, including multiple sclerosis (MS), psoriasis, and rheumatoid arthritis (RA). Notably, however, IL-17 blockade remains ineffective or even pathogenic against important autoimmune diseases such as inflammatory bowel disease (IBD). Furthermore, the efficacy of IL-17 blockade against other autoimmune diseases, including type 1 diabetes (T1D) is currently unknown and waiting results of ongoing clinical trials. Coming years will determine whether the efficacy of IL-17 blockade is limited to certain autoimmune diseases or can be expanded to other autoimmune diseases. These efforts include new clinical trials aimed at testing second-generation agents with the goal of increasing the efficiency, spectrum, and ameliorating side effects of IL-17 blockade. Here we briefly review the roles of IL-17 in the pathogenesis of selected autoimmune diseases and provide updates on ongoing and recently completed trials of IL-17 based immunotherapies.
Collapse
Affiliation(s)
- Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Adebola Giwa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
11
|
Ahmed R, Omidian Z, Donner T, Hamad ARA. Hiding in plain sight: time to unlock autoimmune clues in human CD5+ B cells by using nextgen technology. DISCOVERY MEDICINE 2018; 26:79-83. [PMID: 30399325 PMCID: PMC7879960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
CD5+ B cells expand in many autoimmune diseases, including type 1 diabetes (T1D), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). Furthermore, CD5+ B cells contain important subsets: IL-10-producing B-reg cells, FasL-expressing subset, and the majority of pre-naive B cells. In addition, they are major sources of natural autoantibodies, which are polyreactive and autoreactive. Thus, CD5+ B cells are clearly loaded with autoimmune clues that are yet to be unlocked and understood. We hypothesize that human CD5+ B cells are likely to yield enormously important novel information about the role of B cells in autoimmune disease if analyzed using the new technological advances in molecular biology and genomics. Use of high-throughput sequencing of B cell receptors (BCR) of CD5+ B cells could reveal public BCRs associated with autoimmune diseases, whereas transcriptional analysis of CD5+ B cells using single-cell RNA-seq may delineate distinct sublineages and their relationship to conventional B cells. If it turns out that autoimmune repertoires are concentrated in CD5+ B cells, given that CD5+ B cells are clearly identifiable by flow cytometry, therapeutic strategies can be developed to safely remove CD5+ B cells to mitigate ongoing autoimmunity and protect at-risk individuals.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abdel Rahiam A. Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Kroger CJ, Clark M, Ke Q, Tisch RM. Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Front Immunol 2018; 9:1891. [PMID: 30166987 PMCID: PMC6105696 DOI: 10.3389/fimmu.2018.01891] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is generally considered to be T cell-driven. Accordingly, most strategies of immunotherapy for T1D prevention and treatment in the clinic have targeted the T cell compartment. To date, however, immunotherapy has had only limited clinical success. Although certain immunotherapies have promoted a protective effect, efficacy is often short-term and acquired immunity may be impacted. This has led to the consideration of combining different approaches with the goal of achieving a synergistic therapeutic response. In this review, we will discuss the status of various T1D therapeutic strategies tested in the clinic, as well as possible combinatorial approaches to restore β cell tolerance.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Giwa A, Ahmed R, Donner T, Yagita H, Hamad ARA. Editorial: Ying and Yang Members of the Tumor Necrosis Factor Superfamily: Friends or Foes in Immune-Mediated Diseases and Cancer. Front Immunol 2017; 8:1584. [PMID: 29218044 PMCID: PMC5703765 DOI: 10.3389/fimmu.2017.01584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Adebola Giwa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Circulating B cells in type 1 diabetics exhibit fewer maturation-associated phenotypes. Clin Immunol 2017; 183:336-343. [PMID: 28951327 DOI: 10.1016/j.clim.2017.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023]
Abstract
Although autoantibodies have been used for decades as diagnostic and prognostic markers in type 1 diabetes (T1D), further analysis of developmental abnormalities in B cells could reveal tolerance checkpoint defects that could improve individualized therapy. To evaluate B cell developmental progression in T1D, immunophenotyping was used to classify circulating B cells into transitional, mature naïve, mature activated, and resting memory subsets. Then each subset was analyzed for the expression of additional maturation-associated markers. While the frequencies of B cell subsets did not differ significantly between patients and controls, some T1D subjects exhibited reduced proportions of B cells that expressed transmembrane activator and CAML interactor (TACI) and Fas receptor (FasR). Furthermore, some T1D subjects had B cell subsets with lower frequencies of class switching. These results suggest circulating B cells exhibit variable maturation phenotypes in T1D. These phenotypic variations may correlate with differences in B cell selection in individual T1D patients.
Collapse
|
15
|
Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by curcumin: The role of interleukin-10. Crit Rev Food Sci Nutr 2017; 59:89-101. [PMID: 28799796 DOI: 10.1080/10408398.2017.1358139] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytokines are small secreted proteins released by different types of cells with specific effects on cellular signaling and communication via binding to their receptors on the cell surface. IL-10 is known to be a pleiotropic and potent anti-inflammatory and immunosuppressive cytokine that is produced by both innate and adaptive immunity cells including dendritic cells, macrophages, mast cells, natural killer cells, eosinophils, neutrophils, B cells, CD8+ T cells, and TH1, TH2, and TH17 and regulatory T cells. Both direct and indirect activation of the stress axis promotes IL-10 secretion. IL-10 deregulation plays a role in the development of a large number of inflammatory diseases such as neuropathic pain, Parkinson's disease, Alzheimer's disease, osteoarthritis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus, type 1 diabetes, inflammatory bowel disease, and allergy. Curcumin is a natural anti-inflammatory compound able to induce the expression and production of IL-10 and enhancing its action on a large number of tissues. In vitro and in pre-clinical models curcumin is able to modulate the disease pathophysiology of conditions such as pain and neurodegenerative diseases, bowel inflammation, and allergy, but also of infections and cancer through its effect on IL-10 secretion. In humans, at least one part of the positive effects of curcumin on health could be related to its ability to enhance IL-10 -mediated effects.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- a Department of Physiology and Pharmacology, School of Medicine , North Khorasan University of Medical Sciences , Bojnurd , Iran
| | - Arrigo F G Cicero
- b Department of Medical and Surgical Sciences , University of Bologna , Via Albertoni 15, Bologna , Italy
| | | | - Matteo Pirro
- d Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine , University of Perugia , Perugia , Italy
| | | | - Amirhossein Sahebkar
- f Department of Medical Biotechnology, Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
16
|
Saxena A, Yagita H, Donner TW, Hamad ARA. Expansion of FasL-Expressing CD5 + B Cells in Type 1 Diabetes Patients. Front Immunol 2017; 8:402. [PMID: 28439273 PMCID: PMC5383713 DOI: 10.3389/fimmu.2017.00402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Fas ligand drives insulitis in the non-obese diabetic mouse model of type 1 diabetes (T1D) and negatively regulates IL-10-producing (IL-10pos) CD5+ B cells in pancreata. Relevance of these phenomena to the human disease is poorly understood. Here, using splenocytes from T1D, autoantibody (Ab+), and non-diabetic (ND) human subjects, we show that a subpopulation of CD5+ B cells that is characterized by expression of FasL (FasLhiCD5+) was significantly elevated in T1D subjects, many of whom had significantly reduced frequency of IL-10posCD5+ B cells compared to Ab+ subjects. The majority of FasLhiCD5+ B cells did not produce cytokines and were more highly resistant to activation-induced cell death than their IL-10posCD5+ counterparts. These results associate expansion of FasL-expressing CD5+ B cells with T1D and lay the groundwork for future mechanistic studies to understand specific role in disease pathogenesis.
Collapse
Affiliation(s)
- Ankit Saxena
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Thomas W Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abdel Rahim A Hamad
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Yolcu ES, Shirwan H, Askenasy N. Fas/Fas-Ligand Interaction As a Mechanism of Immune Homeostasis and β-Cell Cytotoxicity: Enforcement Rather Than Neutralization for Treatment of Type 1 Diabetes. Front Immunol 2017; 8:342. [PMID: 28396667 PMCID: PMC5366321 DOI: 10.3389/fimmu.2017.00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Esma S Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville , Louisville, KY , USA
| | - Haval Shirwan
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville , Louisville, KY , USA
| | - Nadir Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation , Petach Tikva , Israel
| |
Collapse
|
18
|
Sharma N, Toor D. Interleukin-10: Role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease. Cytokine 2017; 90:169-176. [DOI: 10.1016/j.cyto.2016.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
|
19
|
Fousteri G, Ippolito E, Ahmed R, Hamad ARA. Beta-cell Specific Autoantibodies: Are they Just an Indicator of Type 1 Diabetes? Curr Diabetes Rev 2017; 13:322-329. [PMID: 27117244 PMCID: PMC5266674 DOI: 10.2174/1573399812666160427104157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autoantibodies (AAbs) against islet autoantigens (AAgs) are used for type 1 diabetes (T1D) diagnosis and prediction. Islet-specific AAbs usually appear early in life and may fluctuate in terms of number and titer sometimes for over 20 years before T1D develops. Whereas their predictive power is high for pediatric subjects with high genetic risk who rapidly progress to multiple AAb positivity, they are less reliable for children with low genetic risk, single AAb positivity and slow disease progression. OBJECTIVE It is unknown how AAbs develop and whether they are involved in T1D pathogenesis. So far an increase in AAb number seems to only indicate AAg spreading and progression towards clinical T1D. The goal of this review is to shed light on the possible involvement of AAbs in T1D development. METHOD We thoroughly review the current literature and discuss possible mechanisms of AAb development and the roles they may play in disease pathogenesis. RESULTS Genetic and environmental factors instigate changes at the molecular and cellular levels that promote AAb development. Although direct involvement of AAbs in T1D is less clear, autoreactive B cells are clearly involved in various immune and autoimmune responses via antigen presentation, immunoregulation and cytokine production. CONCLUSION Our analysis suggests that understanding the mechanisms that lead to islet-specific AAb development and the diabetogenic processes that autoreactive B cells promote may uncover additional biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Georgia Fousteri
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Address correspondence to: Georgia Fousteri; ; tel: +39 02 2643 3184; Fax: +39 02 2643 7759
| | - Elio Ippolito
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rizwan Ahmed
- Department of Pathology and of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Abdel Rahim A. Hamad
- Department of Pathology and of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
20
|
Li C, Zhang L, Chen Y, Lin X, Li T. Protective role of adenovirus vector-mediated interleukin-10 gene therapy on endogenous islet β-cells in recent-onset type 1 diabetes in NOD mice. Exp Ther Med 2016; 11:1625-1632. [PMID: 27168782 DOI: 10.3892/etm.2016.3169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/11/2016] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to provide an animal experimental basis for the protective effect of the adenoviral vector-mediated interleukin-10 (Ad-mIL-10) gene on islet β-cells during the early stages of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. A total of 24 female NOD mice at the onset of diabetes were allocated at random into three groups (n=8 per group): Group 1, intraperitoneally injected with 0.1 ml Ad-mIL-10; group 2, intraperitoneally injected with 0.1 ml adenovirus vector; and group 3, was a diabetic control. In addition to groups 1, 2 and 3, 8 age- and gender-matched NOD mice were intraperitoneally injected with 0.1 ml PBS and assigned to group 4 as a normal control. All mice were examined weekly for body weight, urine glucose and blood glucose values prior to onset of diabetes, and at 1, 2 and 3 weeks after that, and all mice were sacrificed 3 weeks after injection. Serum levels of interleukin (IL)-10, interferon (IFN)-γ, IL-4, insulin and C-peptide were evaluated, and in addition the degree of insulitis and the local expression of IL-10 gene in the pancreas were detected. The apoptosis rate of pancreatic β-cells was determined using a TUNEL assay. Compared with groups 2 and 3, IL-10 levels in the serum and pancreas were elevated in group 1. Serum IFN-γ levels were decreased while serum IL-4 levels and IFN-γ/IL-4 ratio were significantly increased in group 1 (P<0.01). C-peptide and insulin levels were higher in group 1 compared with groups 2 and 3, (P<0.01). Furthermore, compared with groups 2 and 3, the degree of insulitis, islet β-cell apoptosis rate and blood glucose values did not change significantly (P>0.05). The administration of the Ad-mIL-10 gene induced limited immune regulatory and protective effects on islet β-cell function in NOD mice with early T1D, while no significant reduction in insulitis, islet β-cell apoptosis rate and blood glucose was observed.
Collapse
Affiliation(s)
- Cheng Li
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, P.R. China; Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Lijuan Zhang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, P.R. China
| | - Yanyan Chen
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Xiaojie Lin
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, P.R. China
| | - Tang Li
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, P.R. China
| |
Collapse
|
21
|
Hamad ARA, Ahmed R, Donner T, Fousteri G. B cell-targeted immunotherapy for type 1 diabetes: What can make it work? DISCOVERY MEDICINE 2016; 21:213-219. [PMID: 27115172 PMCID: PMC5266520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immunotherapy has revolutionized treatment of cancers and autoimmune diseases. Bucking the trend, however, is type 1 diabetes (T1D), although it is one of best understood autoimmune diseases and individuals at genetic risk are identifiable with high certainty. Here we review the major obstacles associated with pan-B-cell-depletion using rituximab (RTX) and discuss the notion that B cell-directed therapy may be most effective as a preventive measure. We suggest that it will be more productive to aim at identifying and targeting autoreactive B cells rather than making adjustments to pan-B cell depletion and that non-conventional alternative therapies such as antibody blockade of FasL to bolster IL-10-producing Breg cells, which work successfully in mice, should be considered.
Collapse
Affiliation(s)
- Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Georgia Fousteri
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Saxena A, Khosraviani S, Noel S, Mohan D, Donner T, Hamad ARA. Interleukin-10 paradox: A potent immunoregulatory cytokine that has been difficult to harness for immunotherapy. Cytokine 2015; 74:27-34. [PMID: 25481648 PMCID: PMC4454631 DOI: 10.1016/j.cyto.2014.10.031] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022]
Abstract
Interleukin-10 (IL-10) is arguably the most potent anti-inflammatory cytokine. It is produced by almost all the innate and adaptive immune cells. These cells also serve as its targets, indicating that IL-10 secretion and action is highly regulated and perhaps compartmentalized. Consistent with this notion, various efforts directed at systemic administration of IL-10 to modulate autoimmune diseases (type 1 diabetes, multiple sclerosis, rheumatoid arthritis, psoriasis) have produced conflicting and largely inconsequential effects. On the other hand, IL-10 can promote humoral immune responses, enhancing class II expression on B cells and inducing immunoglobulin (Ig) production. Consequently, the high IL-10 level in systemic lupus erythematosus (SLE) patients is considered pathogenic and its blockade ameliorates the disease. In this perspective, we review preclinical findings and results of recent clinical studies using exogenous IL-10 to treat the aforementioned autoimmune diseases. In addition, given the limited success of IL-10 supplementation, we suggest that future studies should be expanded beyond modulating the delivery modes to include developing new strategies to protect and replenish the endogenous sources of IL-10. As an example, we provide evidence that aberrant Fas-mediated deletion of IL-10-producing B cells subverts the immunoregulatory role of IL-10 in autoimmune diabetes and that modulation of the Fas pathway preserves the IL-10-producing B cells and completely protects NOD mice from developing the disease.
Collapse
Affiliation(s)
- Ankit Saxena
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Sam Khosraviani
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Sanjeev Noel
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Divya Mohan
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
23
|
Sargis RM. The hijacking of cellular signaling and the diabetes epidemic: mechanisms of environmental disruption of insulin action and glucose homeostasis. Diabetes Metab J 2014; 38:13-24. [PMID: 24627823 PMCID: PMC3950190 DOI: 10.4093/dmj.2014.38.1.13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The burgeoning epidemic of metabolic disease causes significant societal and individual morbidity and threatens the stability of health care systems around the globe. Efforts to understand the factors that contribute to metabolic derangements are critical for reversing these troubling trends. While excess caloric consumption and physical inactivity superimposed on a susceptible genetic background are central drivers of this crisis, these factors alone fail to fully account for the magnitude and rapidity with which metabolic diseases have increased in prevalence worldwide. Recent epidemiological evidence implicates endocrine disrupting chemicals in the pathogenesis of metabolic diseases. These compounds represent a diverse array of chemicals to which humans are exposed via multiple routes in adulthood and during development. Furthermore, a growing ensemble of animal- and cell-based studies provides preclinical evidence supporting the hypothesis that environmental contaminants contribute to the development of metabolic diseases, including diabetes. Herein are reviewed studies linking specific endocrine disruptors to impairments in glucose homeostasis as well as tying these compounds to disturbances in insulin secretion and impairments in insulin signal transduction. While the data remains somewhat incomplete, the current body of evidence supports the hypothesis that our chemically polluted environment may play a contributing role in the current metabolic crisis.
Collapse
Affiliation(s)
- Robert M. Sargis
- Committee on Molecular Metabolism and Nutrition, Kovler Diabetes Center, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Abstract
IL-10 is an anti-inflammatory cytokine that plays a significant role in controlling inflammation and modulating adaptive immune responses that cause tissue damage. IL-10-producing lymphocytes contribute to the delicate balance between inflammation and immunoregulation, and are thus regarded as a kind of "regulatory cells." Dysregulation of these cells is linked with susceptibility to numerous inflammatory diseases. In this review, we summarized what is known about the regulatory effects of IL-10 produced by lymphocytes, including T cells, B cells and natural killer cells, in inflammatory diseases. We hope to augment immune responses or prevent immunopathology through making some small changes in the levels of IL-10 produced by lymphocytes, or in the cellular location where it is produced.
Collapse
Affiliation(s)
- Yang Yao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | |
Collapse
|