1
|
Lu Y, Su S, Chu CC, Kobayashi Y, Masoud AR, Peng H, Lien N, He M, Vuong C, Tran R, Hong S. Amino Acid-Based Protein-Mimic Hydrogel Incorporating Pro-Regenerative Lipid Mediator and Microvascular Fragments Promotes the Healing of Deep Burn Wounds. Int J Mol Sci 2024; 25:10378. [PMID: 39408708 PMCID: PMC11476471 DOI: 10.3390/ijms251910378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Pro-regenerative lipid mediator 1 (PreM1) is a specialized pro-resolving lipid mediator that promotes wound healing and regenerative functions of mesenchymal stem cells (MSCs), endothelial cells, and macrophages. The healing of third-degree (3°) burns and regenerative functions of MSCs are enhanced by ACgel1, an arginine-and-chitosan-based protein-mimic hybrid hydrogel. Adipose-tissue derived microvascular fragments (MVFs) are native vascularization units and a rich source of MSCs, endothelial cells, and perivascular cells for tissue regeneration. Here we describe an innovative PreM1-MVFs-ACgel1 construct that incorporated PreM1 and MVFs into ACgel1 via optimal design and fabrication. This construct delivered PreM1 to 3°-burn wounds at least up to 7 days-post-burn (dpb), and scaffolded and delivered MVFs. PreM1-MVFs-ACgel1 promoted the healing of 3°-burns in mice, including vascularization and collagen formation. The re-epithelization and closure of 3° burn wounds were promoted by ACgel1, MVFs, PreM1, MVFs-ACgel1, PreM1-ACgel1, or PreM1-MVFs-ACgel1 at certain time-point(s), while PreM1-MVFs-ACgel1 was most effective with 97% closure and 4.69% relative epithelial gap at 13 dpb compared to saline control. The PreM1-ACgel1 and MVFs-ACgel1 also promoted blood vessel regeneration of 3°-burns although PreM1-MVFs-ACgel1 is significantly more effective. These PreM1- and/or MVF-functionalized ACgel1 have nonexistent or minimal graft-donor requirements and are promising adjuvant therapeutic candidates for treating deep burns.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Shanchun Su
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Chih-Chang Chu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yuichi Kobayashi
- Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Nathan Lien
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Mingyu He
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Christopher Vuong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Ryan Tran
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
- Department of Ophthalmology, Louisiana State University Health, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Lu Y, Tian H, Peng H, Wang Q, Bunnell BA, Bazan NG, Hong S. Novel lipid mediator 7 S,14 R-docosahexaenoic acid: biogenesis and harnessing mesenchymal stem cells to ameliorate diabetic mellitus and retinal pericyte loss. Front Cell Dev Biol 2024; 12:1380059. [PMID: 38533089 PMCID: PMC10963555 DOI: 10.3389/fcell.2024.1380059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ β-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 β-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Haibin Tian
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji University, Shanghai, China
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Quansheng Wang
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bruce A. Bunnell
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, United States
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| |
Collapse
|
3
|
Baravkar SB, Lu Y, Masoud AR, Zhao Q, He J, Hong S. Development of a Novel Covalently Bonded Conjugate of Caprylic Acid Tripeptide (Isoleucine-Leucine-Aspartic Acid) for Wound-Compatible and Injectable Hydrogel to Accelerate Healing. Biomolecules 2024; 14:94. [PMID: 38254694 PMCID: PMC10813153 DOI: 10.3390/biom14010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Third-degree burn injuries pose a significant health threat. Safer, easier-to-use, and more effective techniques are urgently needed for their treatment. We hypothesized that covalently bonded conjugates of fatty acids and tripeptides can form wound-compatible hydrogels that can accelerate healing. We first designed conjugated structures as fatty acid-aminoacid1-amonoacid2-aspartate amphiphiles (Cn acid-AA1-AA2-D), which were potentially capable of self-assembling into hydrogels according to the structure and properties of each moiety. We then generated 14 novel conjugates based on this design by using two Fmoc/tBu solid-phase peptide synthesis techniques; we verified their structures and purities through liquid chromatography with tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Of them, 13 conjugates formed hydrogels at low concentrations (≥0.25% w/v), but C8 acid-ILD-NH2 showed the best hydrogelation and was investigated further. Scanning electron microscopy revealed that C8 acid-ILD-NH2 formed fibrous network structures and rapidly formed hydrogels that were stable in phosphate-buffered saline (pH 2-8, 37 °C), a typical pathophysiological condition. Injection and rheological studies revealed that the hydrogels manifested important wound treatment properties, including injectability, shear thinning, rapid re-gelation, and wound-compatible mechanics (e.g., moduli G″ and G', ~0.5-15 kPa). The C8 acid-ILD-NH2(2) hydrogel markedly accelerated the healing of third-degree burn wounds on C57BL/6J mice. Taken together, our findings demonstrated the potential of the Cn fatty acid-AA1-AA2-D molecular template to form hydrogels capable of promoting the wound healing of third-degree burns.
Collapse
Affiliation(s)
- Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Jibao He
- Microscopy Laboratory, Tulane University, New Orleans, LA 70118, USA
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Abstract
Angiogenesis, the growth of new blood vessels, plays a critical role in tissue repair and regeneration, as well as in cancer. A paradigm shift is emerging in our understanding of the resolution of inflammation as an active biochemical process with the discovery of novel endogenous specialized pro-resolving mediators (SPMs), including resolvins. Angiogenesis and the resolution of inflammation are critical interdependent processes. Disrupted inflammation resolution can accelerate tumor growth, which is angiogenesis-dependent. SPMs, including resolvins and lipoxins, inhibit physiologic and pathological angiogenesis at nanogram concentrations. The failure of resolution of inflammation is an emerging hallmark of angiogenesis-dependent diseases including arthritis, psoriasis, diabetic retinopathy, age-related macular degeneration, inflammatory bowel disease, atherosclerosis, endometriosis, Alzheimer's disease, and cancer. Whereas therapeutic angiogenesis repairs tissue damage (e.g., limb ischemia), inhibition of pathological angiogenesis suppresses tumor growth and other non-neoplastic diseases such as retinopathies. Stimulation of resolution of inflammation via pro-resolving lipid mediators promotes the repair of tissue damage and wound healing, accelerates tissue regeneration, and inhibits cancer. Here we provide an overview of the mechanisms of cross talk between angiogenesis and inflammation resolution in chronic inflammation-driven diseases. Stimulating the resolution of inflammation via pro-resolving lipid mediators has emerged as a promising new field to treat angiogenic diseases.
Collapse
Affiliation(s)
- Abigail G Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
| |
Collapse
|
5
|
Balta MG, Papathanasiou E, Christopoulos PF. Specialized Pro-Resolving Mediators as Potential Regulators of Inflammatory Macrophage Responses in COVID-19. Front Immunol 2021; 12:632238. [PMID: 33717168 PMCID: PMC7943727 DOI: 10.3389/fimmu.2021.632238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The recent outbreak of SARS-CoV2 has emerged as one of the biggest pandemics of our century, with outrageous health, social and economic consequences globally. Macrophages may lay in the center of COVID-19 pathogenesis and lethality and treatment of the macrophage-induced cytokine storm has emerged as essential. Specialized pro-resolving mediators (SPMs) hold strong therapeutic potentials in the management of COVID-19 as they can regulate macrophage infiltration and cytokine production but also promote a pro-resolving macrophage phenotype. In this review, we discuss the homeostatic functions of SPMs acting directly on macrophages on various levels, towards the resolution of inflammation. Moreover, we address the molecular events that link the lipid mediators with COVID-19 severity and discuss the clinical potentials of SPMs in COVID-19 immunotherapeutics.
Collapse
Affiliation(s)
- Maria G. Balta
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
| | | |
Collapse
|
6
|
Brennan E, Kantharidis P, Cooper ME, Godson C. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat Rev Nephrol 2021; 17:725-739. [PMID: 34282342 PMCID: PMC8287849 DOI: 10.1038/s41581-021-00454-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Obesity, diabetes mellitus, hypertension and cardiovascular disease are risk factors for chronic kidney disease (CKD) and kidney failure. Chronic, low-grade inflammation is recognized as a major pathogenic mechanism that underlies the association between CKD and obesity, impaired glucose tolerance, insulin resistance and diabetes, through interaction between resident and/or circulating immune cells with parenchymal cells. Thus, considerable interest exists in approaches that target inflammation as a strategy to manage CKD. The initial phase of the inflammatory response to injury or metabolic dysfunction reflects the release of pro-inflammatory mediators including peptides, lipids and cytokines, and the recruitment of leukocytes. In self-limiting inflammation, the evolving inflammatory response is coupled to distinct processes that promote the resolution of inflammation and restore homeostasis. The discovery of endogenously generated lipid mediators - specialized pro-resolving lipid mediators and branched fatty acid esters of hydroxy fatty acids - which promote the resolution of inflammation and attenuate the microvascular and macrovascular complications of obesity and diabetes mellitus highlights novel opportunities for potential therapeutic intervention through the targeting of pro-resolution, rather than anti-inflammatory pathways.
Collapse
Affiliation(s)
- Eoin Brennan
- grid.7886.10000 0001 0768 2743Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Phillip Kantharidis
- grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| | - Mark E. Cooper
- grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| | - Catherine Godson
- grid.7886.10000 0001 0768 2743Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Jara CP, Mendes NF, Prado TPD, de Araújo EP. Bioactive Fatty Acids in the Resolution of Chronic Inflammation in Skin Wounds. Adv Wound Care (New Rochelle) 2020; 9:472-490. [PMID: 32320357 DOI: 10.1089/wound.2019.1105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Significance: Optimal skin wound healing is crucial for maintaining tissue homeostasis, particularly in response to an injury. The skin immune system is under regulation of mediators such as bioactive lipids and cytokines that can initiate an immune response with controlled inflammation, followed by efficient resolution. However, nutritional deficiency impacts wound healing by hindering fibroblast proliferation, collagen synthesis, and epithelialization, among other crucial functions. In this way, the correct nutritional support of bioactive lipids and of other essential nutrients plays an important role in the outcome of the wound healing process. Recent Advances and Critical Issues: Several studies have revealed the potential role of lipids as a treatment for the healing of skin wounds. Unsaturated fatty acids such as linoleic acid, α-linolenic acid, oleic acid, and most of their bioactive products have shown an effective role as a topical treatment of chronic skin wounds. Their effect, when the treatment starts at day 0, has been observed mainly in the inflammatory phase of the wound healing process. Moreover, some of them were associated with different dressings and were tested for clinical purposes, including pluronic gel, nanocapsules, collagen films and matrices, and polymeric bandages. Therefore, future research is still needed to evaluate these dressing technologies in association with different bioactive fatty acids in a wound healing context. Future Directions: This review summarizes the main results of the available clinical trials and basic research studies and provides evidence-based conclusions. Together, current data encourage the use of bioactive fatty acids for an optimal wound healing resolution.
Collapse
Affiliation(s)
- Carlos Poblete Jara
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Natália Ferreira Mendes
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Thais Paulino do Prado
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Eliana Pereira de Araújo
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
8
|
Ishihara T, Yoshida M, Arita M. Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis. Int Immunol 2019; 31:559-567. [PMID: 30772915 DOI: 10.1093/intimm/dxz001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 01/03/2025] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid, display a wide range of beneficial effects in humans and animals. Many of the biological functions of PUFAs are mediated via bioactive metabolites produced by fatty acid oxygenases such as cyclooxygenases, lipoxygenases and cytochrome P450 monooxygenases. Liquid chromatography-tandem mass spectrometry-based mediator lipidomics revealed a series of novel bioactive lipid mediators derived from omega-3 PUFAs. Here, we describe recent advances on omega-3 PUFA-derived mediators, mainly focusing on their enzymatic oxygenation pathway, and their biological functions in controlling inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Mio Yoshida
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Proresolving Lipid Mediators: Endogenous Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8107265. [PMID: 31316721 PMCID: PMC6604337 DOI: 10.1155/2019/8107265] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Specialized proresolving mediators (SPMs) are a novel class of endogenous lipids, derived by ω-6 and ω-3 essential polyunsaturated fatty acids such as arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) that trigger and orchestrate the resolution of inflammation, which is the series of cellular and molecular events that leads to spontaneous regression of inflammatory processes and restoring of tissue homeostasis. These lipids are emerging as highly effective therapeutic agents that exert their immunoregulatory activity by activating the proresolving pathway, as reported by a consistent bulk of evidences gathered in the last two decades since their discovery. The production of reactive oxygen (ROS) and nitrogen (RNS) species by immune cells plays indeed an important role in the inflammatory mechanisms of host defence, and it is now clear that oxidative stress, viewed as an imbalance between such species and their elimination, can lead to many chronic inflammatory diseases. This review, the first of its kind, is aimed at exploring the manifold effects of SPMs on modulation of reactive species production, along with the mechanisms through which they either inhibit molecular signalling pathways that are activated by oxidative stress or induce the expression of endogenous antioxidant systems. Furthermore, the possible role of SPMs in oxidative stress-mediated chronic disorders is also summarized, suggesting not only that their anti-inflammatory and proresolving properties are strictly associated with their antioxidant role but also that these endogenous lipids might be exploited in the treatment of several pathologies in which uncontrolled production of ROS and RNS or impairment of the antioxidant machinery represents a main pathogenetic mechanism.
Collapse
|
10
|
Alapure BV, Lu Y, He M, Chu CC, Peng H, Muhale F, Brewerton YL, Bunnell B, Hong S. Accelerate Healing of Severe Burn Wounds by Mouse Bone Marrow Mesenchymal Stem Cell-Seeded Biodegradable Hydrogel Scaffold Synthesized from Arginine-Based Poly(ester amide) and Chitosan. Stem Cells Dev 2018; 27:1605-1620. [PMID: 30215325 PMCID: PMC6276600 DOI: 10.1089/scd.2018.0106] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Severe burns are some of the most challenging problems in clinics and still lack ideal modalities. Mesenchymal stem cells (MSCs) incorporated with biomaterial coverage of burn wounds may offer a viable solution. In this report, we seeded MSCs to a biodegradable hybrid hydrogel, namely ACgel, that was synthesized from unsaturated arginine-based poly(ester amide) (UArg-PEA) and chitosan derivative. MSC adhered to ACgels. ACgels maintained a high viability of MSCs in culture for 6 days. MSC seeded to ACgels presented well in third-degree burn wounds of mice at 8 days postburn (dpb) after the necrotic full-thickness skin of burn wounds was debrided and filled and covered by MSC-carrying ACgels. MSC-seeded ACgels promoted the closure, reepithelialization, granulation tissue formation, and vascularization of the burn wounds. ACgels alone can also promote vascularization but less effectively compared with MSC-seeded ACgels. The actions of MSC-seeded ACgels or ACgels alone involve the induction of reparative, anti-inflammatory interleukin-10, and M2-like macrophages, as well as the reduction of inflammatory cytokine TNFα and M1-like macrophages at the late inflammatory phase of burn wound healing, which provided the mechanistic insights associated with inflammation and macrophages in burn wounds. For the studied regimens of these treatments, no toxicity was identified to MSCs or mice. Our results indicate that MSC-seeded ACgels have potential use as a novel adjuvant therapy for severe burns to complement commonly used skin grafting and, thus, minimize the downsides of grafting.
Collapse
Affiliation(s)
- Bhagwat V. Alapure
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Mingyu He
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York
| | - Chih-Chang Chu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Filipe Muhale
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
11
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
12
|
Chen S, Li R, Cheng C, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Wang H, Lu L, Xu GT, Tian H. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice. Cell Biol Int 2018; 42:877-889. [PMID: 29512223 DOI: 10.1002/cbin.10955] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/17/2018] [Indexed: 12/28/2022]
Abstract
Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype.
Collapse
Affiliation(s)
- Sinuo Chen
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Renren Li
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Chun Cheng
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Hong Wang
- Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Lixia Lu
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Shanghai Tenth People's Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Nishimura K, Sakaguchi T, Nanba Y, Suganuma Y, Morita M, Hong S, Lu Y, Jun B, Bazan NG, Arita M, Kobayashi Y. Stereoselective Total Synthesis of Macrophage-Produced Prohealing 14,21-Dihydroxy Docosahexaenoic Acids. J Org Chem 2017; 83:154-166. [PMID: 29224348 DOI: 10.1021/acs.joc.7b02510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synthesis of 14S,21R- and 14S,21S-dihydroxy-DHA (diHDHA) among the four possible stereoisomers of 14,21-diHDHA was studied. Methyl (R)-lactate (>97% ee), selected as a C20-C22 fragment (DHA numbering), was converted to the C17-C22 phosphonium salt, which was subjected to a Wittig reaction with racemic C16-aldehyde of the C12-C16 part with the TMS and TBS-oxy groups at C12 and C14, yielding the C12-C22 derivative with 14R/S and 21R chirality. Kinetic resolution using Sharpless asymmetric epoxidation of the TBS-deprotected allylic alcohol with l-(+)-DIPT/Ti(O-i-Pr)4 afforded 14S-epoxy alcohol and 14R-allylic alcohol with >99% diastereomeric excess (de) for both. The CN group was introduced to the epoxy alcohol by reaction with Et2AlCN. The 14R-allylic alcohol was also converted to the nitrile via Mitsunobu inversion. Reduction of the nitrile with DIBAL afforded the key aldehyde corresponding to the C11-C22 moiety. The Wittig reaction of this aldehyde with a phosphonium salt of the remaining C1-C10 part followed by functional group manipulation gave 14S,21R-diHDHA. Similarly, ethyl (S)-lactate (>99% ee) was converted to 14S,21S-diHDHA. The chiral LC-UV-MS/MS analysis demonstrated that each of these two 14,21-diHDHAs synthesized using the presented total organic synthesis was highly stereoselective and identical to the macrophage-produced counterpart.
Collapse
Affiliation(s)
- Keita Nishimura
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Tsuyoshi Sakaguchi
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yutaro Nanba
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yuta Suganuma
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Masao Morita
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States.,Department of Ophthalmology, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States.,Department of Ophthalmology, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences , 1-7-22, Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan.,Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy , 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuichi Kobayashi
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
14
|
Bazan HA, Lu Y, Jun B, Fang Z, Woods TC, Hong S. Circulating inflammation-resolving lipid mediators RvD1 and DHA are decreased in patients with acutely symptomatic carotid disease. Prostaglandins Leukot Essent Fatty Acids 2017; 125:43-47. [PMID: 28987721 PMCID: PMC5909403 DOI: 10.1016/j.plefa.2017.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/18/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Efficient biomarkers for early prediction and diagnosis of an acutely symptomatic carotid plaque rupture event are currently lacking, impairing the ability to diagnose and treat patients with an acute plaque rupture events in a timely fashion. Resolvins are endogenous inflammation-resolving lipid mediators that are induced by inflammatory insults. We hypothesized that resolvin and other lipid profiles in sera likely mark the process towards plaque rupture. METHODS Circulating lipids associated with plaque rupture events were quantitatively profiled via targeted mediator-lipidomics using ultraperformance liquid chromatography tandem mass spectrometry in patients with acutely symptomatic and asymptomatic carotid disease. RESULTS Resolvin D1 (RvD1, 82 ± 11pM vs. 152 ± 17pM, p = 0.001) and docosahexaenoic acid (DHA) (0.052 ± 0.007µM versus 0.076 ± 0.008µM, p = 0.025) levels are decreased in the sera of patients presenting with an acutely symptomatic carotid plaque rupture event (n = 21) compared to patients with asymptomatic (n = 24) high-grade carotid stenosis. Circulating arachidonic acid (AA) levels, however, were higher (0.429 ± 0.046µM versus 0.257 ± 0.035µM, p < 0.01) in acutely symptomatic compared to asymptomatic carotid patients. ROC curve analysis demonstrates that the serum ratio AA:RvD1 (AUC 0.84, sensitivity 0.71, specificity 0.92) and AA:DHA (AUC 0.86, sensitivity 0.90, specificity 0.71) are biomarkers for the risk of atherosclerotic plaque rupture. CONCLUSIONS A circulating pro-inflammatory lipid profile, characterized by high AA:RvD1 and AA:DHA, is associated with acutely symptomatic carotid disease and stroke.
Collapse
Affiliation(s)
- Hernan A. Bazan
- Department of Surgery, Section of Vascular/Endovascular Surgery, Ochsner Clinic and The University of Queensland School of Medicine, Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121
- Correspondence: Dr. Hernan Bazan, Ochsner Clinic, 1514 Jefferson Highway, New Orleans, LA 70121 | | 504 842 4053 (office); 504 842 5017 (fax)
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - T. Cooper Woods
- Department of Physiology and the Heart & Vascular Institute, Tulane School of Medicine, New Orleans, LA 70112
| | - Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Correspondence: Dr. Hernan Bazan, Ochsner Clinic, 1514 Jefferson Highway, New Orleans, LA 70121 | | 504 842 4053 (office); 504 842 5017 (fax)
| |
Collapse
|
15
|
Alapure BV, Lu Y, Peng H, Hong S. Surgical Denervation of Specific Cutaneous Nerves Impedes Excisional Wound Healing of Small Animal Ear Pinnae. Mol Neurobiol 2017; 55:1236-1243. [PMID: 28110472 DOI: 10.1007/s12035-017-0390-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
Abstract
Damage to cutaneous nerves inhibits wound healing in patients. Results from animals on the nerve contributions to healing are various and sometimes contradictory. Here, we aim to clearly define the collective role of central, caudal, and rostral nerves in ear wound healing of mice, rats, and rabbits. These wounds heal with minimal contraction like wounds in humans. We resected central, caudal, and rostral nerves at the base of ear pinnae by microsurgery and created excisional full-thickness skin wounds in the pinnae neurologically downstream from the resections. Denervation in mice resulted in no closure for 14 days post-wounding (dpw) and led to only 17.2% closure at 21 dpw when the excisional wounds of non-denervated ear pinnae were completely closed. Compared to excisional wounds that were not denervated in sham surgery, wounds with denervation showed an increase of excisional wound areas for 5.0% by 7 dpw and a 43.7% reduction of wound closure at 12 dpw for rats. In rabbits, denervation attenuated wound closure for 14.2, 34.4, and 28.3% at 7, 14, and 18 dpw, respectively. Our histological analysis showed marked denervation impairment in pivotal healing processes, re-epithelialization and granulation tissue growth, suggesting denervation impairment in the regeneration of blood capillaries and/or connective tissue in wounds. These results reveal the critical contributions made by central, caudal, and rostral nerves in ear pinnae to minimal-contraction skin wound healing. Our study also provides small animal models of minimal-contraction wound healing of denervated ear skins that recapitulate human wound healing involving surgical or traumatic nerve damages.
Collapse
Affiliation(s)
- Bhagwat V Alapure
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier St., Suite D, New Orleans, LA, 70112, USA
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier St., Suite D, New Orleans, LA, 70112, USA
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45221, USA
| | - Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier St., Suite D, New Orleans, LA, 70112, USA. .,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Klek S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. J Clin Med 2016; 5:E34. [PMID: 26959070 PMCID: PMC4810105 DOI: 10.3390/jcm5030034] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Intravenous lipid emulsions are an essential component of parenteral nutrition regimens. Originally employed as an efficient non-glucose energy source to reduce the adverse effects of high glucose intake and provide essential fatty acids, lipid emulsions have assumed a larger therapeutic role due to research demonstrating the effects of omega-3 and omega-6 polyunsaturated fatty acids (PUFA) on key metabolic functions, including inflammatory and immune response, coagulation, and cell signaling. Indeed, emerging evidence suggests that the effects of omega-3 PUFA on inflammation and immune response result in meaningful therapeutic benefits in surgical, cancer, and critically ill patients as well as patients requiring long-term parenteral nutrition. The present review provides an overview of the mechanisms of action through which omega-3 and omega-6 PUFA modulate the immune-inflammatory response and summarizes the current body of evidence regarding the clinical and pharmacoeconomic benefits of intravenous n-3 fatty acid-containing lipid emulsions in patients requiring parenteral nutrition.
Collapse
Affiliation(s)
- Stanislaw Klek
- Stanley Dudrick's Memorial Hospital, General Surgery Unit, Skawina 32-050, Poland.
| |
Collapse
|
17
|
Mirza RE, Fang MM, Novak ML, Urao N, Sui A, Ennis WJ, Koh TJ. Macrophage PPARγ and impaired wound healing in type 2 diabetes. J Pathol 2015; 236:433-44. [PMID: 25875529 DOI: 10.1002/path.4548] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/06/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022]
Abstract
Macrophages undergo a transition from pro-inflammatory to healing-associated phenotypes that is critical for efficient wound healing. However, the regulation of this transition during normal and impaired healing remains to be elucidated. In our studies, the switch in macrophage phenotypes during skin wound healing was associated with up-regulation of the peroxisome proliferator-activated receptor (PPAR)γ and its downstream targets, along with increased mitochondrial content. In the setting of diabetes, up-regulation of PPARγ activity was impaired by sustained expression of IL-1β in both mouse and human wounds. In addition, experiments with myeloid-specific PPARγ knockout mice indicated that loss of PPARγ in macrophages is sufficient to prolong wound inflammation and delay healing. Furthermore, PPARγ agonists promoted a healing-associated macrophage phenotype both in vitro and in vivo, even in the diabetic wound environment. Importantly, topical administration of PPARγ agonists improved healing in diabetic mice, suggesting an appealing strategy for down-regulating inflammation and improving the healing of chronic wounds.
Collapse
Affiliation(s)
- Rita E Mirza
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
| | - Milie M Fang
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
| | - Margaret L Novak
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
| | - Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA.,Center for Tissue Repair and Regeneration, University of Illinois, Chicago, IL, USA
| | - Audrey Sui
- Department of Surgery, University of Illinois, Chicago, IL, USA
| | - William J Ennis
- Department of Surgery, University of Illinois, Chicago, IL, USA.,Center for Tissue Repair and Regeneration, University of Illinois, Chicago, IL, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA.,Center for Tissue Repair and Regeneration, University of Illinois, Chicago, IL, USA
| |
Collapse
|
18
|
Vrbnjak D, Pajnkihar M, Langerholc T. Uporabnost maščobnih kislin omega-3 pri obravnavi ran na koži. OBZORNIK ZDRAVSTVENE NEGE 2015. [DOI: 10.14528/snr.2015.49.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uvod: Namen članka je prikazati analizo podatkov o učinkih maščobnih kislin omega-3 na celjenje ran ter njihovo uporabnost pri obravnavi ran na koži.
Metode: Za pregled literature ter analizo dobljenih virov so bile uporabljene podatkovne baze: PubMed, CINAHL, Medline in ScienceDirect. Iskanje je bilo izvedeno s ključnimi besedami v angleščini: omega-3, fish oil, polyunsaturated fatty acid (PUFA), wound, wound healing, in Boolovim operatorjem AND. V analizo so bile vključene eksperimentalne ali randomizirane klinične raziskave, objavljene v angleškem jeziku in izdane od 1993 do januarja 2014, ki so vključevale preprečevanje ali zdravljenje akutnih ali kroničnih ran na koži z uporabo maščobnih kislin omega-3. Izključitveni kriterij je bil obravnava uporabe maščobnih kislin omega-3 pri opeklinah. Iz iskalnega nabora 1151 zadetkov je bilo v podrobno analizo vključenih 15 raziskav.
Rezultati: Rezultati analize literature so pokazali, da so maščobne kisline omega-3 večinoma neučinkovite pri obravnavi travmatskih in kirurških ran na koži, potencialno učinkovite pri obravnavi diabetičnih ran in učinkovite pri obravnavi razjed zaradi pritiska.
Diskusija in zaključek: Protivnetni učinek maščobnih kislin omega-3 upočasnjuje in moti celjenje akutnih ran na koži, vendar lahko z njimi obvladujemo lokalne vnetne odzive in pospešujemo reepitelizacijo pri kroničnih ranah. Za oblikovanje natančnih smernic uporabe bodo potrebna nadaljnja raziskovanja.
Collapse
|
19
|
Hong S, Tian H, Lu Y, Laborde JM, Muhale FA, Wang Q, Alapure BV, Serhan CN, Bazan NG. Neuroprotectin/protectin D1: endogenous biosynthesis and actions on diabetic macrophages in promoting wound healing and innervation impaired by diabetes. Am J Physiol Cell Physiol 2014; 307:C1058-67. [PMID: 25273880 DOI: 10.1152/ajpcell.00270.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dysfunction of macrophages (MΦs) in diabetic wounds impairs the healing. MΦs produce anti-inflammatory and pro-resolving neuroprotectin/protectin D1 (NPD1/PD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid); however, little is known about endogenous NPD1 biosynthesis by MΦs and the actions of NPD1 on diabetic MΦ functions in diabetic wound healing. We used an excisional skin wound model of diabetic mice, MΦ depletion, MΦs isolated from diabetic mice, and mass spectrometry-based targeted lipidomics to study the time course progression of NPD1 levels in wounds, the roles of MΦs in NPD1 biosynthesis, and NPD1 action on diabetic MΦ inflammatory activities. We also investigated the healing, innervation, chronic inflammation, and oxidative stress in diabetic wounds treated with NPD1 or NPD1-modulated MΦs from diabetic mice. Injury induced endogenous NPD1 biosynthesis in wounds, but diabetes impeded NPD1 formation. NPD1 was mainly produced by MΦs. NPD1 enhanced wound healing and innervation in diabetic mice and promoted MΦs functions that accelerated these processes. The underlying mechanisms for these actions of NPD1 or NPD1-modulated MΦs involved 1) attenuating MΦ inflammatory activities and chronic inflammation and oxidative stress after acute inflammation in diabetic wound, and 2) increasing MΦ production of IL10 and hepatocyte growth factor. Taken together, NPD1 appears to be a MΦs-produced factor that accelerates diabetic wound healing and promotes MΦ pro-healing functions in diabetic wounds. Decreased NPD1 production in diabetic wound is associated with impaired healing. This study identifies a new molecular target that might be useful in development of more effective therapeutics based on NPD1 and syngeneic diabetic MΦs for treatment of diabetic wounds.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
| | - Haibin Tian
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - James Monroe Laborde
- Department of Orthopedic Surgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
| | - Filipe A Muhale
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Quansheng Wang
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Bhagwat V Alapure
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital; Department of Anaesthesia (Biochemistry and Molecular Pharmacology), Harvard Medical School; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
20
|
Maresin-like lipid mediators are produced by leukocytes and platelets and rescue reparative function of diabetes-impaired macrophages. ACTA ACUST UNITED AC 2014; 21:1318-1329. [PMID: 25200603 DOI: 10.1016/j.chembiol.2014.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/25/2014] [Accepted: 06/09/2014] [Indexed: 01/13/2023]
Abstract
Nonhealing diabetic wounds are associated with impaired macrophage (Mf) function. Leukocytes and platelets (PLT) play crucial roles in wound healing by poorly understood mechanisms. Here we report the identification and characterization of the maresin-like(L) mediators 14,22-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acids, 14S,22-diHDHA (maresin-L1), and 14R,22-diHDHA (maresin-L2) that are produced by leukocytes and PLT and involved in wound healing. We show that 12-lipoxygenase-initiated 14S-hydroxylation or cytochrome P450 catalyzed 14R-hydroxylation and P450-initiated ω(22)-hydroxylation are required for maresin-L biosynthesis. Maresin-L treatment restores reparative functions of diabetic Mfs, suggesting that maresin-Ls act as autocrine/paracrine factors responsible for, at least in part, the reparative functions of leukocytes and PLT in wounds. Additionally, maresin-L ameliorates Mf inflammatory activation and has the potential to suppress the chronic inflammation in diabetic wounds caused by activation of Mfs. These findings provide initial insights into maresin-L biosynthesis and mechanism of action and potentially offer a therapeutic option for better treatment of diabetic wounds.
Collapse
|
21
|
Hong S, Alapure BV, Lu Y, Tian H, Wang Q. 12/15-Lipoxygenase deficiency reduces densities of mesenchymal stem cells in the dermis of wounded and unwounded skin. Br J Dermatol 2014; 171:30-38. [PMID: 24593251 DOI: 10.1111/bjd.12899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) promote skin healing. 12/15-Lipoxgenase (LOX) is crucial in producing specific lipid mediators in wounded skin. The consequences of 12/15-LOX deficiency in MSC densities in skin are unknown. OBJECTIVES To determine the effect of 12/15-LOX deficiency in MSC densities in wounded and unwounded dermis. METHODS Full-thickness skin incisional wounds were made to 12/15-LOX-deficient (12/15-LOX(-/-) ) and wild-type (WT) C57BL/6 mice. Wounded skin was collected at 3, 8, or 14 days postwounding (dpw). MSCs were analysed in skin sections using histology. 12S- or 15S-hydroxy-eicosatetraenoic acid (HETE) was analysed using a reversed-phase Chiral liquid chromatography-ultraviolet-tandem mass spectrometer. RESULTS There were more stem cell antigen (Sca)1(+) CD29(+) MSCs (cells/field) at 3, 8, and 14 dpw, more Sca1(+) CD106(+) MSCs at 3 and 14 dpw in the wounded dermis, more MSCs in unwounded dermis of WT mice compared with 12/15-LOX(-/-) mice, and more MSCs in the wounded dermis than in the unwounded dermis. For 12/15-LOX(-/-) dermis, Sca1(+) CD106(+) MSCs peaked and Sca1(+) CD29(+) MSCs reached a flat level at 8 dpw. However, for the WT dermis, MSCs increased from 8 to 14 dpw. There were more Sca1(+) CD106(+) MSCs than Sca1(+) CD29(+) MSCs in the 12/15-LOX(-/-) wounded dermis at 8 dpw. However, there were more Sca1(+) CD29(+) MSCs in the 12/15-LOX(-/-) than Sca1(+) CD106(+) MSCs in the WT wounded dermis at 3 dpw, and Sca1(+) CD106(+) MSCs and Sca1(+) CD29(+) MSCs were at comparable levels in other conditions. 12/15-LOX deficiency suppressed levels of 12/15-LOX protein and their products, 12S-HETE and 15S-HETE, in wounds. CONCLUSIONS 12/15-LOX deficiency reduces MSC densities in the dermis, which correlates with the suppressed 12/15-LOX pathways in wounded and unwounded skin.
Collapse
Affiliation(s)
- S Hong
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| | - B V Alapure
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| | - Y Lu
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| | - H Tian
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| | - Q Wang
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112
| |
Collapse
|
22
|
Börgeson E, Sharma K. Obesity, immunomodulation and chronic kidney disease. Curr Opin Pharmacol 2013; 13:618-24. [PMID: 23751262 DOI: 10.1016/j.coph.2013.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/20/2022]
Abstract
Obesity-induced inflammation is associated with numerous pathologies and is an independent risk factor of chronic kidney disease (CKD). The prevalence of CKD is escalating and current therapeutic strategies are seriously lacking in efficacy, and immunomodulation has been suggested as a potential new therapeutic approach. Indeed, specialized pro-resolving mediators (SPMs), such as lipoxins (LXs), resolvins and protectins, have demonstrated protection in adipose inflammation, restoring insulin sensitivity and adiponectin production, while modulating leukocyte infiltration and promoting resolution in visceral adipose tissue. Furthermore, SPMs display direct renoprotective effect. Thus we review current evidence of immunomodulation as a potential strategy to subvert obesity-related CKD.
Collapse
Affiliation(s)
- Emma Börgeson
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California San Diego, La Jolla, CA, United States
| | | |
Collapse
|
23
|
Hong S, Lu Y. Omega-3 fatty acid-derived resolvins and protectins in inflammation resolution and leukocyte functions: targeting novel lipid mediator pathways in mitigation of acute kidney injury. Front Immunol 2013; 4:13. [PMID: 23386851 PMCID: PMC3558681 DOI: 10.3389/fimmu.2013.00013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/07/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation, in conjunction with leukocytes, plays a key role in most acute kidney injury (AKI). Non-resolving renal inflammation leads to chronic fibrosis and renal failure. Resolvin D series (RvDs) and E series (RvEs), protectins, and maresins (MaRs) are endogenous omega-3 fatty acid-derived lipid mediators (LMs) that potently promote inflammation resolution by shortening neutrophil life span and promoting macrophage (Mf) non-phelogistic phagocytosis of apoptotic cells and the subsequent exit of Mfs from inflammatory tissue. 14S,21R-dihydroxy docosahexaenoic acid (14S,21R-diHDHA), a Mf-produced autacrine, reprograms Mfs to rescue vascular endothelia. RvD1, RvE1, or 14S,21R-diHDHA also switches Mfs to the phenotype that produces pro-resolving interleukin-10. RvDs or protectin/neuroprotectin D1 (PD1/NPD1) inhibits neutrophil infiltration into injured kidneys, blocks toll-like receptor -mediated inflammatory activation of Mfs and mitigates renal functions. RvDs also repress renal interstitial fibrosis, and PD1 promotes renoprotective heme-oxygenase-1 expression. These findings provide novel approaches for targeting inflammation resolution and LMs or modulation of LM-associated pathways for developing better clinical treatments for AKI.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, Health Science Center, Louisiana State University New Orleans, LA, USA
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Defective wound healing is one of the most prominent clinical manifestations of both type 1 and type 2 diabetes. As the global rates of diabetes increase, a detailed understanding of the molecular and cellular defects that give rise to unresolved inflammation and delayed wound healing in diabetes is urgently required. Emerging evidence indicates that timely resolution of inflammation is mediated in part by endogenous proresolving lipid mediators, such as resolvins. Here, we review recent advances in the area of resolution and diabetes and highlight the potential of novel proresolving strategies for promoting wound healing in diabetes. RECENT FINDINGS Macrophage dysfunction is a critical underlying feature of altered wound healing in diabetic patients. This is associated with defective clearance of apoptotic cells, increased risk of infection, and altered angiogenesis. Diabetes and obesity are associated with chronic inflammation and altered biosynthesis of bioactive lipid mediators that promote the resolution of inflammation. Stimulating resolution with proresolving lipid mediators improves metabolic parameters in diabetes, blunts systemic inflammation, restores defective macrophage phagocytosis, and accelerates wound healing in animal models of obesity and diabetes. SUMMARY Stimulating resolution with proresolving lipid mediators may represent a novel strategy for promoting wound healing in diabetes.
Collapse
Affiliation(s)
- Jason Hellmann
- Diabetes and Obesity Center, Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202 USA
| | - Yunan Tang
- Diabetes and Obesity Center, Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202 USA
| | - Matthew Spite
- Diabetes and Obesity Center, Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202 USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202 USA
| |
Collapse
|
25
|
Tian H, Lu Y, Shah SP, Wang Q, Hong S. 14S,21R-dihydroxy-docosahexaenoic acid treatment enhances mesenchymal stem cell amelioration of renal ischemia/reperfusion injury. Stem Cells Dev 2011; 21:1187-99. [PMID: 21846180 DOI: 10.1089/scd.2011.0220] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) have shown potential to improve treatment of renal failure. The prohealing functions of MSCs have been found to be enhanced by treatment with the lipid mediator, 14S,21R-dihydroxy-docosa4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA). In this article, using a murine model of renal ischemia/reperfusion (I/R) injury, we found that treatment with 14S,21R-diHDHA enhanced MSC amelioration of renal I/R injury. Treated MSCs more efficiently inhibited I/R-induced elevation of serum creatinine levels, reduced renal tubular cell death, and inhibited infiltration of neutrophils, macrophages, and dendritic cells in kidneys. Conditioned medium from treated MSCs reduced the generation of tumor necrosis factor-α and reactive oxygen species by macrophages under I/R conditions. Infusion of treated MSCs more efficiently reduced I/R-damage to renal histological structures compared with untreated MSCs (injury score: 7.9±0.4 vs. 10.5±0.5). Treated MSCs were resistant to apoptosis in vivo when transplanted under capsules of I/R-injured kidneys (active caspase-3+ MSCs: 4.2%±2.8% vs. 11.7%±2.4% of control) and in vitro when cultured under I/R conditions. Treatment with 14S,21R-diHDHA promoted viability of MSCs through a mechanism involving activation of the phosphoinositide 3-kinase -Akt signaling pathway. Additionally, treatment of MSCs with 14S,21R-diHDHA promoted secretion of renotrophic hepatocyte growth factor and insulin growth factor-1. Similar results were obtained when 14S,21RdiHDHA was used to inhibit apoptosis of human MSCs (hMSCs) and to increase the generation of renotrophic cytokines from hMSCs. These findings provide a lead for new strategies in the treatment of acute kidney injury with MSCs.
Collapse
Affiliation(s)
- Haibin Tian
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|