1
|
Protzmann J, Zeitelhofer M, Stefanitsch C, Torrente D, Adzemovic MZ, Matjunins K, Randel SJ, Lewandowski SA, Muhl L, Eriksson U, Nilsson I, Su EJ, Lawrence DA, Fredriksson L. PDGFRα inhibition reduces myofibroblast expansion in the fibrotic rim and enhances recovery after ischemic stroke. J Clin Invest 2025; 135:e171077. [PMID: 39808499 PMCID: PMC11870733 DOI: 10.1172/jci171077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Ischemic stroke is a major cause of disability in adults. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge. Here we report that genetic or pharmacologic inhibition of the PDGF-CC/PDGFRα pathway, which has previously been implicated in stroke pathology, significantly reduced myofibroblast expansion in the border of the fibrotic scar and improved outcome in a sensory-motor integration test after experimental ischemic stroke. This was supported by gene expression analyses of cerebrovascular fragments showing upregulation of profibrotic/proinflammatory genes, including genes of the TGF pathway, after ischemic stroke or intracerebroventricular injection of active PDGF-CC. Further, longitudinal intravital 2-photon imaging revealed that inhibition of PDGFRα dampened the biphasic pattern of stroke-induced vascular leakage and enhanced vascular perfusion in the ischemic lesion. Importantly, we found PDGFRα inhibition to be effective in enhancing functional recovery when initiated 24 hours after ischemic stroke. Our data implicate the PDGF-CC/PDGFRα pathway as a crucial mediator modulating post-stroke pathology and suggest a post-acute treatment opportunity for patients with ischemic stroke targeting myofibroblast expansion to foster long-term CNS repair.
Collapse
Affiliation(s)
- Jil Protzmann
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christina Stefanitsch
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Torrente
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Milena Z. Adzemovic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kirils Matjunins
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stella J.I. Randel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Enming J. Su
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Onyeogaziri FC, Smith R, Arce M, Huang H, Erzar I, Rorsman C, Malinverno M, Orsenigo F, Sundell V, Fernando D, Daniel G, Niemelä M, Laakso A, Jahromi BR, Olsson AK, Magnusson PU. Pharmacological blocking of neutrophil extracellular traps attenuates immunothrombosis and neuroinflammation in cerebral cavernous malformation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1549-1567. [PMID: 39632986 PMCID: PMC11634782 DOI: 10.1038/s44161-024-00577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease with symptoms such as strokes, hemorrhages and neurological deficits. With surgery being the only treatment strategy, understanding the molecular mechanisms of CCM is crucial in finding alternative therapeutic options for CCM. Neutrophil extracellular traps (NETs) were recently reported in CCM, and NETs were shown to have positive or negative effects in different disease contexts. In this study, we investigated the roles of NETs in CCM by pharmacologically inhibiting NET formation using Cl-amidine (a peptidyl arginine deiminase inhibitor). We show here that Cl-amidine treatment reduced lesion burden, coagulation and endothelial-to-mesenchymal transition. Furthermore, NETs promoted the activation of microglia and fibroblasts, leading to increased neuroinflammation and a chronic wound microenvironment in CCM. The inhibition of NET formation caused endothelial quiescence and promoted a healthier microenvironment. Our study suggests the inhibition of NETs as a potential therapeutic strategy in CCM.
Collapse
Affiliation(s)
- Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Iza Erzar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Charlotte Rorsman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Fabrizio Orsenigo
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dinesh Fernando
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Qin J, Ma Z, Chen X, Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front Neurol 2023; 14:1103416. [PMID: 36959826 PMCID: PMC10027711 DOI: 10.3389/fneur.2023.1103416] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Microglia are the principal resident immune cells in the central nervous system (CNS) and play important roles in the development of CNS disorders. In recent years, there have been significant developments in our understanding of microglia, and we now have greater insight into the temporal and spatial patterns of microglia activation in a variety of CNS disorders, as well as the interactions between microglia and neurons. A variety of signaling pathways have been implicated. However, to date, all published clinical trials have failed to demonstrate efficacy over placebo. This review summarizes the results of recent important studies and attempts to provide a mechanistic view of microglia activation, inflammation, tissue repair, and CNS disorders.
Collapse
|
4
|
Chung EJ, Kwon S, Shankavaram U, White AO, Das S, Citrin DE. Natural variation in macrophage polarization and function impact pneumocyte senescence and susceptibility to fibrosis. Aging (Albany NY) 2022; 14:7692-7717. [PMID: 36173617 PMCID: PMC9596223 DOI: 10.18632/aging.204309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF), a late adverse event of radiation therapy, is characterized by infiltration of inflammatory cells, progressive loss of alveolar structure, secondary to the loss of pneumocytes and accumulation of collagenous extracellular matrix, and senescence of alveolar stem cells. Differential susceptibility to lung injury from radiation and other toxic insults across mouse strains is well described but poorly understood. The accumulation of alternatively activated macrophages (M2) has previously been implicated in the progression of lung fibrosis. Using fibrosis prone strain (C57L), a fibrosis-resistant strain (C3H/HeN), and a strain with intermediate susceptibility (C57BL6/J), we demonstrate that the accumulation of M2 macrophages correlates with the manifestation of fibrosis. A comparison of primary macrophages derived from each strain identified phenotypic and functional differences, including differential expression of NADPH Oxidase 2 and production of superoxide in response to M2 polarization and activation. Further, the sensitivity of primary AECII to senescence after coculture with M2 macrophages was strain dependent and correlated to observations of sensitivity to fibrosis and senescence in vivo. Taken together, these data support that the relative susceptibility of different strains to RIPF is closely related to distinct senescence responses induced through pulmonary M2 macrophages after thoracic irradiation.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Fibrotic Scar in CNS Injuries: From the Cellular Origins of Fibroblasts to the Molecular Processes of Fibrotic Scar Formation. Cells 2022; 11:cells11152371. [PMID: 35954214 PMCID: PMC9367779 DOI: 10.3390/cells11152371] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023] Open
Abstract
Central nervous system (CNS) trauma activates a persistent repair response that leads to fibrotic scar formation within the lesion. This scarring is similar to other organ fibrosis in many ways; however, the unique features of the CNS differentiate it from other organs. In this review, we discuss fibrotic scar formation in CNS trauma, including the cellular origins of fibroblasts, the mechanism of fibrotic scar formation following an injury, as well as the implication of the fibrotic scar in CNS tissue remodeling and regeneration. While discussing the shared features of CNS fibrotic scar and fibrosis outside the CNS, we highlight their differences and discuss therapeutic targets that may enhance regeneration in the CNS.
Collapse
|
6
|
Kaminiów K, Kozak S, Paprocka J. Recent Insight into the Genetic Basis, Clinical Features, and Diagnostic Methods for Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2022; 23:5729. [PMID: 35628533 PMCID: PMC9145894 DOI: 10.3390/ijms23105729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare, inherited, neurodegenerative lysosomal storage disorders that affect children and adults. They are traditionally grouped together, based on shared clinical symptoms and pathological ground. To date, 13 autosomal recessive gene variants, as well as one autosomal dominant gene variant, of NCL have been described. These genes encode a variety of proteins, whose functions have not been fully defined; most are lysosomal enzymes, transmembrane proteins of the lysosome, or other organelles. Common symptoms of NCLs include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and, in rare adult-onset cases, dementia. Depending on the mutation, these symptoms can vary, with respect to the severity and onset of symptoms by age. Currently, all forms of NCL are fatal, and no curative treatments are available. Herein, we provide an overview to summarize the current knowledge regarding the pathophysiology, genetics, and clinical manifestation of these conditions, as well as the approach to diagnosis.
Collapse
Affiliation(s)
- Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Justyna Paprocka
- Pediatric Neurology Department, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
7
|
Duc Nguyen H, Hoang NMH, Jo WH, Ham JR, Lee MK, Kim MS. Associations among the TREM-1 Pathway, Tau Hyperphosphorylation, Prolactin Expression, and Metformin in Diabetes Mice. Neuroimmunomodulation 2022; 29:359-368. [PMID: 35130556 DOI: 10.1159/000521013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is a risk factor for Alzheimer's disease (AD). Increasing evidence indicates that the triggering receptor expressed on myeloid cells (TREM)-1 amplifies chronic inflammation, as well as the roles of prolactin (PRL) and metformin (MET) in tau hyperphosphorylation. However, the associations among TREM-1, tau hyperphosphorylation, PRL expression, and MET in DM remain unclear. METHODS Streptozotocin was used to induce experimental DM in C57BL/6N mice. MET was orally administered at a dose of 400 mg/kg body weight for 6 weeks prior to hippocampal collection in DM mice. Various parameters pertaining to the TREM-1 pathway, tau hyperphosphorylation, PRL, and related factors were analyzed. RESULTS Quantitative polymerase chain reaction and Western blot analysis demonstrated that the expression levels of TREM-1, DAP12, casp1, interleukin-1β, Cox2, inducible nitric oxide synthase, pituitary transcriptional factor-1 (Pit-1), and PRL were significantly increased in the hippocampus of DM mice; the expression levels of these pro-inflammatory mediators, PRL receptor (PRLR) short or long (PRLR-S and PRLR-L), and PRL regulatory element-binding (Preb) protein in DM mice treated with MET (DM + MET) were significantly decreased compared with those in control (CON) mice. The levels of p-Tau and glycogen synthase kinase-3 in the DM group were significantly higher than those in the CON group and significantly lower than those in the DM + MET group. CONCLUSION We confirmed the therapeutic potential of MET for both DM and neurodegeneration. Our findings shed new light on the effects of DM on the pathophysiology of AD via the TREM-1 pathway and PRL expression. Thus, an improved understanding of the TREM-1 pathway in hyperglycemic conditions, as well as PRL, Preb, Pit-1, PRLR-L, and PRLR-S gene expression in the liver, brain, and other sites, may help unravel the pathogenesis of insulin resistance and neurodegeneration.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Ngoc Minh Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, Republic of Korea
- Mokpo Marine Food-Industry Research Center, Mokpo, Jeonam, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, Republic of Korea
| | - Min Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| |
Collapse
|
8
|
Dorrier CE, Jones HE, Pintarić L, Siegenthaler JA, Daneman R. Emerging roles for CNS fibroblasts in health, injury and disease. Nat Rev Neurosci 2022; 23:23-34. [PMID: 34671105 PMCID: PMC8527980 DOI: 10.1038/s41583-021-00525-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Recent transcriptomic, histological and functional studies have begun to shine light on the fibroblasts present in the meninges, choroid plexus and perivascular spaces of the brain and spinal cord. Although the origins and functions of CNS fibroblasts are still being described, it is clear that they represent a distinct cell population, or populations, that have likely been confused with other cell types on the basis of the expression of overlapping cellular markers. Recent work has revealed that fibroblasts play crucial roles in fibrotic scar formation in the CNS after injury and inflammation, which have also been attributed to other perivascular cell types such as pericytes and vascular smooth muscle cells. In this Review, we describe the current knowledge of the location and identity of CNS perivascular cell types, with a particular focus on CNS fibroblasts, including their origin, subtypes, roles in health and disease, and future areas for study.
Collapse
Affiliation(s)
- Cayce E Dorrier
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Hannah E Jones
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lucija Pintarić
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Julie A Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Richard Daneman
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Wang YJ, Downey MA, Choi S, Shoup TM, Elmaleh DR. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci Rep 2021; 11:22161. [PMID: 34772945 PMCID: PMC8589953 DOI: 10.1038/s41598-021-00465-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aβ42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3β signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.
Collapse
Affiliation(s)
| | | | - Sungwoon Choi
- Department of New Drug Discovery, Chungnam National University, Daejeon, South Korea
| | - Timothy M Shoup
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA
| | - David R Elmaleh
- AZTherapies, Inc., Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA.
| |
Collapse
|
10
|
Yang Z, Yang Y, Qi X, Liu N, Wang P, Zhang L, Han M, Han S. Thickening of the walls of deep brain abscesses is associated with macrophage infiltration. Exp Ther Med 2021; 22:1080. [PMID: 34447473 PMCID: PMC8355639 DOI: 10.3892/etm.2021.10514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to compare the thickness of brain abscesses in the deep and the superficial brain and to investigate the factors that influence the capsule of brain abscesses. The thickness of the brain abscess wall was evaluated on imaging. Bacteriological examination was performed on the abscess pus and wall, and immunohistochemical staining was used to count the number of macrophages. Kaplan-Meier curves were used to analyze overall survival. The results indicated that the wall of deep-brain abscesses was thicker than that of superficial abscesses. There was a difference in the extent of macrophage infiltration of deep- and superficial-brain abscess walls, and differences in the extent of macrophage infiltration in the wall of brain abscesses caused by various microorganisms were statistically significant. Of note, among the brain abscesses caused by Staphylococcus, the extent of macrophage/microglia infiltration and the thickness of the wall of the deep-brain abscesses were greater than those of superficial-brain abscesses and there was a positive correlation between the number of macrophages and the thickness of the abscess wall. The overall survival (OS) of patients with deep-brain abscess was not significantly shorter than that of patients with superficial-brain abscess. Furthermore, OS was not significantly different among groups of patients receiving different types of treatment. In conclusion, the wall of deep-brain abscesses is thicker than that of superficial abscesses and the infiltration of macrophages is abundant. The thick wall of abscesses in the deep brain may be associated with macrophage infiltration.
Collapse
Affiliation(s)
- Zuocheng Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Yakun Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Ning Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Pengfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Linpeng Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Mingyang Han
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Song Han
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
11
|
Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediators Inflamm 2021; 2021:9999146. [PMID: 34158806 PMCID: PMC8187052 DOI: 10.1155/2021/9999146] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The concept of central nervous system (CNS) inflammation has evolved over the last decades. Neuroinflammation is the response of reactive CNS components to altered homeostasis, regardless of the cause to be endogenous or exogenous. Neurological diseases, whether traumatic, neoplastic, ischemic, metabolic, toxic, infectious, autoimmune, developmental, or degenerative, involve direct and indirect immune-related neuroinflammation. Brain infiltrates of the innate and adaptive immune system cells appear in response to an infective or otherwise noxious agent and produce inflammatory mediators. Mediators of inflammation include local and recruited cells and signals. Processes derived from extrinsic and intrinsic CNS diseases also elicit the CNS inflammatory response. A deeper understanding of immune-related inflammation in health and disease is necessary to find potential therapeutic targets for preventing or reducing CNS damage. This review is aimed at discussing the innate and adaptive immune system functions and their roles in regulating brain cell responses in disease and homeostasis maintenance.
Collapse
|
12
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
13
|
OʼShea TM, Wollenberg AL, Kim JH, Ao Y, Deming TJ, Sofroniew MV. Foreign body responses in mouse central nervous system mimic natural wound responses and alter biomaterial functions. Nat Commun 2020; 11:6203. [PMID: 33277474 PMCID: PMC7718896 DOI: 10.1038/s41467-020-19906-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/22/2020] [Indexed: 01/30/2023] Open
Abstract
Biomaterials hold promise for therapeutic applications in the central nervous system (CNS). Little is known about molecular factors that determine CNS foreign body responses (FBRs) in vivo, or about how such responses influence biomaterial function. Here, we probed these factors in mice using a platform of injectable hydrogels readily modified to present interfaces with different physiochemical properties to host cells. We found that biomaterial FBRs mimic specialized multicellular CNS wound responses not present in peripheral tissues, which serve to isolate damaged neural tissue and restore barrier functions. We show that the nature and intensity of CNS FBRs are determined by definable properties that significantly influence hydrogel functions, including resorption and molecular delivery when injected into healthy brain or stroke injuries. Cationic interfaces elicit stromal cell infiltration, peripherally derived inflammation, neural damage and amyloid production. Nonionic and anionic formulations show minimal levels of these responses, which contributes to superior bioactive molecular delivery. Our results identify specific molecular mechanisms that drive FBRs in the CNS and have important implications for developing effective biomaterials for CNS applications.
Collapse
Affiliation(s)
- Timothy M OʼShea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Alexander L Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - Jae H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Timothy J Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
| |
Collapse
|
14
|
Bozic M, Caus M, Rodrigues-Diez RR, Pedraza N, Ruiz-Ortega M, Garí E, Gallel P, Panadés MJ, Martinez A, Fernández E, Valdivielso JM. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun 2020; 11:1943. [PMID: 32327648 PMCID: PMC7181766 DOI: 10.1038/s41467-020-15732-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
Kidney fibrosis is a highly deleterious process and a final manifestation of chronic kidney disease. Alpha-(α)-synuclein (SNCA) is an actin-binding neuronal protein with various functions within the brain; however, its role in other tissues is unknown. Here, we describe the expression of SNCA in renal epithelial cells and demonstrate its decrease in renal tubules of murine and human fibrotic kidneys, as well as its downregulation in renal proximal tubular epithelial cells (RPTECs) after TGF-β1 treatment. shRNA-mediated knockdown of SNCA in RPTECs results in de novo expression of vimentin and α-SMA, while SNCA overexpression represses TGF-β1-induced mesenchymal markers. Conditional gene silencing of SNCA in RPTECs leads to an exacerbated tubulointerstitial fibrosis (TIF) in two unrelated in vivo fibrotic models, which is associated with an increased activation of MAPK-p38 and PI3K-Akt pathways. Our study provides an evidence that disruption of SNCA signaling in RPTECs contributes to the pathogenesis of renal TIF by facilitating partial epithelial-to-mesenchymal transition and extracellular matrix accumulation.
Collapse
Affiliation(s)
- Milica Bozic
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain.
| | - Maite Caus
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - Raul R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Neus Pedraza
- Cell Cycle, Department of Basic Medical Science, IRBLleida, University of Lleida, Lleida, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Eloi Garí
- Cell Cycle, Department of Basic Medical Science, IRBLleida, University of Lleida, Lleida, Spain
| | - Pilar Gallel
- Department of Pathology and Molecular Genetics, University Hospital Arnau de Vilanova and University of Lleida, IRBLleida, Spain
| | - Maria José Panadés
- Department of Pathology and Molecular Genetics, University Hospital Arnau de Vilanova and University of Lleida, IRBLleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - Elvira Fernández
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - José Manuel Valdivielso
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain.
| |
Collapse
|
15
|
Feng CW, Chen NF, Sung CS, Kuo HM, Yang SN, Chen CL, Hung HC, Chen BH, Wen ZH, Chen WF. Therapeutic Effect of Modulating TREM-1 via Anti-inflammation and Autophagy in Parkinson's Disease. Front Neurosci 2019; 13:769. [PMID: 31440123 PMCID: PMC6691936 DOI: 10.3389/fnins.2019.00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common age-related neurodegenerative diseases, and neuroinflammation has been identified as one of its key pathological characteristics. Triggering receptors expressed on myeloid cells-1 (TREM-1) amplify the inflammatory response and play a role in sepsis and cancer. Recent studies have demonstrated that the attenuation of TREM-1 activity produces cytoprotective and anti-inflammatory effects in macrophages. However, no study has examined the role of TREM-1 in neurodegeneration. We showed that LP17, a synthetic peptide blocker of TREM-1, significantly inhibited the lipopolysaccharide (LPS)-induced upregulation of proinflammatory cascades of inducible nitric oxide synthase (iNOS), cyclooxygenase-2, and nuclear factor-kappa B. Moreover, LP17 enhanced the LPS-induced upregulation of autophagy-related proteins such as light chain-3 and histone deacetylase-6. We also knocked down TREM-1 expression in a BV2 cell model to further confirm the role of TREM-1. LP17 inhibited 6-hydroxydopamine-induced locomotor deficit and iNOS messenger RNA expression in zebrafish. We also observed therapeutic effects of LP17 administration in 6-hydroxydopamine-induced PD syndrome using a rat model. These data suggest that the attenuation of TREM-1 could ameliorate neuroinflammatory responses in PD and that this neuroprotective effect might occur via the activation of autophagy and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Chien-Wei Feng
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan.,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - San-Nan Yang
- Department of Pediatrics, E-Da Hospital, Kaohsiung City, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Chien-Liang Chen
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Han-Chun Hung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan.,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.,Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, China
| |
Collapse
|
16
|
Infiltrating CCR2 + monocytes and their progenies, fibrocytes, contribute to colon fibrosis by inhibiting collagen degradation through the production of TIMP-1. Sci Rep 2019; 9:8568. [PMID: 31189971 PMCID: PMC6562037 DOI: 10.1038/s41598-019-45012-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Abstract
Intestinal fibrosis is a serious complication in inflammatory bowel disease (IBD). Despite the remarkable success of recent anti-inflammatory therapies for IBD, incidence of intestinal fibrosis and need for bowel resection have not significantly changed. To clarify the contribution of haematopoietic-derived cells in intestinal fibrosis, we prepared bone marrow (BM) chimeric mice (chimeras), which were reconstituted with BM cells derived from enhanced green fluorescent protein (EGFP)-transgenic mice or CC chemokine receptor 2 (CCR2)-deficient mice. After 2 months of transplantation, BM chimeras were treated with azoxymethane/dextran sodium sulphate. During chronic inflammation, CCR2+ BM-derived monocyte and fibrocyte infiltration into the colon and CC chemokine ligand 2 production increased, leading to colon fibrosis in EGFP BM chimeras. In CCR2-deficient BM chimeras, monocyte and fibrocyte numbers in the colonic lamina propria significantly decreased, and colon fibrosis was attenuated. In colon tissue, mRNA expression of tissue inhibitor of metalloproteinase (TIMP)-1 but not of collagen I, transforming growth factor-β1 or matrix metalloproteinases was significantly different between the two chimeras. CCR2+ monocytes and fibrocytes showed high Timp1 mRNA expression. Our results suggest that infiltrating CCR2+ monocytes and their progenies, fibrocytes, promote colon fibrosis by inhibiting collagen degradation through TIMP-1 production.
Collapse
|
17
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
18
|
Arginase-1 Expression in Myeloid Cells Regulates Staphylococcus aureus Planktonic but Not Biofilm Infection. Infect Immun 2018; 86:IAI.00206-18. [PMID: 29661929 DOI: 10.1128/iai.00206-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of device-associated biofilm infections, which represent a serious health care concern based on their chronicity and antibiotic resistance. We previously reported that S. aureus biofilms preferentially recruit myeloid-derived suppressor cells (MDSCs), which promote monocyte and macrophage anti-inflammatory properties. This is associated with increased myeloid arginase-1 (Arg-1) expression, which has been linked to anti-inflammatory and profibrotic activities that are observed during S. aureus biofilm infections. To determine whether MDSCs and macrophages utilize Arg-1 to promote biofilm infection, Arg-1 was deleted in myeloid cells by use of Tie-2Cre mice. Despite Arg-1 expression in biofilm-associated myeloid cells, bacterial burdens and leukocyte infiltrates were similar between wild-type (WT) and Arg-1fl/fl;Tie-2Cre conditional knockout (KO) mice from days 3 to 14 postinfection in both orthopedic implant and catheter-associated biofilm models. However, inducible nitric oxide synthase (iNOS) expression was dramatically elevated in biofilm-associated MDSCs from Arg-1fl/fl;Tie-2Cre animals, suggesting a potential Arg-1-independent compensatory mechanism for MDSC-mediated immunomodulation. Treatment of Arg-1fl/fl;Tie-2Cre mice with the iNOS inhibitor N6-(1-iminoethyl)-l-lysine (l-NIL) had no effect on biofilm burdens or immune infiltrates, whereas treatment of WT mice with the Arg-1/ornithine decarboxylase inhibitor difluoromethylornithine (DFMO) increased bacterial titers, but only in the surrounding soft tissues, which possess attributes of a planktonic environment. A role for myeloid-derived Arg-1 in regulating planktonic infection was confirmed using a subcutaneous abscess model, in which S. aureus burdens were significantly increased in Arg-1fl/fl;Tie-2Cre mice compared to those in WT mice. Collectively, these results indicate that the effects of myeloid Arg-1 are context dependent and are manifest during planktonic but not biofilm infection.
Collapse
|
19
|
Heindryckx F, Li JP. Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biol 2018; 68-69:589-601. [PMID: 29382609 DOI: 10.1016/j.matbio.2018.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 12/19/2022]
Abstract
Fibrosis is defined as the thickening and scarring of connective tissue, usually as a consequence of tissue damage. The central nervous system (CNS) is special in the sense that fibrogenic cells are restricted to vascular and meningeal areas. Inflammation and the disruption of the blood-brain barrier can lead to the infiltration of fibroblasts and trigger fibrotic response. While the initial function of the fibrotic tissue is to restore the blood-brain barrier and to limit the site of injury, it also demolishes the structure of extracellular matrix and impedes the healing process by producing inhibitory molecules and forming a physical and biochemical barrier that prevents axon regeneration. As a major constituent in the extracellular matrix, proteoglycans participate in the neuro-inflammation, modulating the fibrotic process. In this review, we will discuss the pathophysiology of fibrosis during acute injuries of the CNS, as well as during chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and age-related neurodegeneration with focus on the functional roles of proteoglycans.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology/SciLifeLab, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Donat CK, Scott G, Gentleman SM, Sastre M. Microglial Activation in Traumatic Brain Injury. Front Aging Neurosci 2017; 9:208. [PMID: 28701948 PMCID: PMC5487478 DOI: 10.3389/fnagi.2017.00208] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI.
Collapse
Affiliation(s)
| | | | | | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
21
|
The emerging roles of β-arrestins in fibrotic diseases. Acta Pharmacol Sin 2015; 36:1277-87. [PMID: 26388156 DOI: 10.1038/aps.2015.74] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
β-Arrestins and β-arrestin2 are important adaptor proteins and signal transduction proteins that are mainly involved in the desensitization and internalization of G-protein-coupled receptors. Fibrosis is characterized by accumulation of excess extracellular matrix (ECM) molecules caused by chronic tissue injury. If highly progressive, the fibrotic process leads to organ malfunction and, eventually, death. The incurable lung fibrosis, renal fibrosis and liver fibrosis are among the most common fibrotic diseases. Recent studies show that β-arrestins can activate signaling cascades independent of G-protein activation and scaffold many intracellular signaling networks by diverse types of signaling pathways, including the Hedgehog, Wnt, Notch and transforming growth factor-β pathways, as well as downstream kinases such as MAPK and PI3K. These signaling pathways are involved in the pathological process of fibrosis and fibrotic diseases. This β-arrestin-mediated regulation not only affects cell growth and apoptosis, but also the deposition of ECM, activation of inflammatory response and development of fibrotic diseases. In this review, we survey the involvement of β-arrestins in various signaling pathways and highlight different aspects of their regulation of fibrosis. We also discuss the important roles of β-arrestins in the process of fibrotic diseases by regulating the inflammation and deposit of ECM. It is becoming more evident that targeting β-arrestins may offer therapeutic potential for the treatment of fibrotic diseases.
Collapse
|
22
|
Fernández-Klett F, Priller J. The fibrotic scar in neurological disorders. Brain Pathol 2015; 24:404-13. [PMID: 24946078 DOI: 10.1111/bpa.12162] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 01/18/2023] Open
Abstract
Tissue fibrosis, or scar formation, is a common response to damage in most organs of the body. The central nervous system (CNS) is special in that fibrogenic cells are restricted to vascular and meningeal niches. However, disruption of the blood-brain barrier and inflammation can unleash stromal cells and trigger scar formation. Astroglia segregate from the inflammatory lesion core, and the so-called "glial scar" composed of hypertrophic astrocytes seals off the intact neural tissue from damage. In the lesion core, a second type of "fibrotic scar" develops, which is sensitive to inflammatory mediators. Genetic fate mapping studies suggest that pericytes and perivascular fibroblasts are activated, but other precursor cells may also be involved in generating a transient fibrous extracellular matrix in the CNS. The stromal cells sense inflammation and attract immune cells, which in turn drive myofibroblast transdifferentiation. We believe that the fibrotic scar represents a major barrier to CNS regeneration. Targeting of fibrosis may therefore prove to be a valuable therapeutic strategy for neurological disorders such as stroke, spinal cord injury and multiple sclerosis.
Collapse
Affiliation(s)
- Francisco Fernández-Klett
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
23
|
Yan J, Zhang Z, Yang J, Mitch WE, Wang Y. JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis. J Am Soc Nephrol 2015; 26:3060-71. [PMID: 26032813 DOI: 10.1681/asn.2014070717] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/17/2015] [Indexed: 12/30/2022] Open
Abstract
Renal fibrosis is a final common manifestation of CKD resulting in progressive loss of kidney function. Bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the signaling mechanisms underlying the activation of bone marrow-derived fibroblast precursors in the kidney are not fully understood. In this study, we investigated the role of the Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT6) signaling pathway in the activation of bone marrow-derived fibroblasts. In cultured mouse monocytes, IL-4 or IL-13 activated STAT6 and induced expression of α-smooth muscle actin and extracellular matrix proteins (fibronectin and collagen I), which was abolished by a JAK3 inhibitor (CP690,550) in a dose-dependent manner or blocked in the absence of STAT6. In vivo, STAT6 was activated in interstitial cells of the obstructed kidney, an effect that was abolished by CP690,550. Mice treated with CP690,550 accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys compared with vehicle-treated mice. Treatment with CP690,550 also significantly reduced myofibroblast transformation, matrix protein expression, fibrosis development, and apoptosis in obstructed kidneys. Furthermore, STAT6-deficient mice accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys, produced less extracellular matrix protein, and developed much less fibrosis. Finally, wild-type mice engrafted with STAT6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the obstructed kidneys and showed less severe renal fibrosis compared with wild-type mice engrafted with STAT6(+/+) bone marrow cells. Our results demonstrate that JAK3/STAT6 has an important role in bone marrow-derived fibroblast activation, extracellular matrix production, and interstitial fibrosis development.
Collapse
Affiliation(s)
- Jingyin Yan
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Zhengmao Zhang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jun Yang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and
| | - William E Mitch
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
24
|
Abstract
In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called astrogliosis. For many decades, astrogliosis was sparsely studied and enigmatic. This article examines recent evidence supporting a definition of astrogliosis as a spectrum of heterogeneous potential changes in astrocytes that occur in a context-specific manner as determined by diverse signaling events that vary with the nature and severity of different CNS insults. Astrogliosis is associated with essential beneficial functions, but under specific circumstances can lead to harmful effects. Potential dysfunctions of astrocytes and astrogliosis are being identified that can contribute to, or be primary causes of, CNS disorders, leading to the notion of astrocytopathies. A conceptual framework is presented that allows consideration of normally occurring and dysfunctional astrogliosis and their different roles in CNS disorders.
Collapse
Affiliation(s)
- Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
25
|
Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014; 81:229-48. [PMID: 24462092 DOI: 10.1016/j.neuron.2013.12.034] [Citation(s) in RCA: 1038] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2013] [Indexed: 02/07/2023]
Abstract
The CNS is prone to heterogeneous insults of diverse etiologies that elicit multifaceted responses. Acute and focal injuries trigger wound repair with tissue replacement. Diffuse and chronic diseases provoke gradually escalating tissue changes. The responses to CNS insults involve complex interactions among cells of numerous lineages and functions, including CNS intrinsic neural cells, CNS intrinsic nonneural cells, and CNS extrinsic cells that enter from the circulation. The contributions of diverse nonneuronal cell types to outcome after acute injury, or to the progression of chronic disease, are of increasing interest as the push toward understanding and ameliorating CNS afflictions accelerates. In some cases, considerable information is available, in others, comparatively little, as examined and reviewed here.
Collapse
Affiliation(s)
- Joshua E Burda
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Michael V Sofroniew
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
26
|
Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett 2013; 565:23-9. [PMID: 24361547 DOI: 10.1016/j.neulet.2013.12.030] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/01/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
Astrocytes respond to injury and disease in the central nervous system (CNS) with a process referred to as reactive astrogliosis. Recent progress demonstrates that reactive astrogliosis is not a simple all-or-none phenomenon, but is a finely gradated continuum of changes that range from reversible alterations in gene expression and cell hypertrophy, to scar formation with permanent tissue rearrangement. There is now compelling evidence that reactive astrocytes exhibit a substantial potential for heterogeneity at multiple levels, including gene expression, cell morphology, topography (distance from lesions), CNS regions, local (among neighboring cells), cell signaling and cell function. Structural and functional changes are regulated in reactive astrocytes by many different potential signaling events that occur in a context dependent manner. It is noteworthy that different stimuli of astrocyte reactivity can lead to similar degrees of GFAP upregulation while causing substantially different changes in transcriptome profiles and cell function. Thus, it is not possible to equate simple and uniform measures such as cell hypertrophy and upregulation of GFAP expression with a single, uniform concept of astrocyte reactivity. Instead, it is necessary to recognize the considerable potential for heterogeneity and determine the functional implications of astrocyte reactivity in a context specific manner as regulated by specific signaling events.
Collapse
Affiliation(s)
- Mark A Anderson
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1763, United States
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1763, United States
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1763, United States.
| |
Collapse
|
27
|
Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 2013; 33:12870-86. [PMID: 23904622 DOI: 10.1523/jneurosci.2121-13.2013] [Citation(s) in RCA: 604] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Astroglial scars surround damaged tissue after trauma, stroke, infection, or autoimmune inflammation in the CNS. They are essential for wound repair, but also interfere with axonal regrowth. A better understanding of the cellular mechanisms, regulation, and functions of astroglial scar formation is fundamental to developing safe interventions for many CNS disorders. We used wild-type and transgenic mice to quantify and dissect these parameters. Adjacent to crush spinal cord injury (SCI), reactive astrocytes exhibited heterogeneous phenotypes as regards proliferation, morphology, and chemistry, which all varied with distance from lesions. Mature scar borders at 14 d after SCI consisted primarily of newly proliferated astroglia with elongated cell processes that surrounded large and small clusters of inflammatory, fibrotic, and other cells. During scar formation from 5 to 14 d after SCI, cell processes deriving from different astroglia associated into overlapping bundles that quantifiably reoriented and organized into dense mesh-like arrangements. Selective deletion of STAT3 from astroglia quantifiably disrupted the organization of elongated astroglia into scar borders, and caused a failure of astroglia to surround inflammatory cells, resulting in increased spread of these cells and neuronal loss. In cocultures, wild-type astroglia spontaneously corralled inflammatory or fibromeningeal cells into segregated clusters, whereas STAT3-deficient astroglia failed to do so. These findings demonstrate heterogeneity of reactive astroglia and show that scar borders are formed by newly proliferated, elongated astroglia, which organize via STAT3-dependent mechanisms to corral inflammatory and fibrotic cells into discrete areas separated from adjacent tissue that contains viable neurons.
Collapse
|
28
|
Weidemann F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, Ortiz A. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis 2013; 8:116. [PMID: 23915644 PMCID: PMC3750297 DOI: 10.1186/1750-1172-8-116] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/01/2013] [Indexed: 12/30/2022] Open
Abstract
Fabry disease is a rare X-linked hereditary disease caused by mutations in the AGAL gene encoding the lysosomal enzyme alpha-galactosidase A. Enzyme replacement therapy (ERT) is the current cornerstone of Fabry disease management. Involvement of kidney, heart and the central nervous system shortens life span, and fibrosis of these organs is a hallmark of the disease. Fibrosis was initially thought to result from tissue ischemia secondary to endothelial accumulation of glycosphingolipids in the microvasculature. However, despite ready clearance of endothelial deposits, ERT is less effective in patients who have already developed fibrosis. Several potential explanations of this clinical observation may impact on the future management of Fabry disease. Alternative molecular pathways linking glycosphingolipids and fibrosis may be operative; tissue injury may recruit secondary molecular mediators of fibrosis that are unresponsive to ERT, or fibrosis may represent irreversible tissue injury that limits the therapeutic response to ERT. We provide an overview of Fabry disease, with a focus on the assessment of fibrosis, the clinical consequences of fibrosis, and recent advances in understanding the cellular and molecular mechanisms of fibrosis that may suggest novel therapeutic approaches to Fabry disease.
Collapse
Affiliation(s)
- Frank Weidemann
- Department of Medicine, Divisions of Cardiology and Nephrology, The Comprehensive Heart Failure Center at the University of Würzburg, Würzburg, Germany
| | | | - Juan Politei
- Trinity Dupuytren Clinic, Neurology department, Buenos Aires, Argentina
| | | | - Christoph Wanner
- Department of Medicine, Divisions of Cardiology and Nephrology, The Comprehensive Heart Failure Center at the University of Würzburg, Würzburg, Germany
| | | | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-UAM, IRSIN/REDINREN, Madrid, Spain
- Unidad de Dialisis, IIS-Fundacion Jimenez Diaz, Av Reyes católicos 2, Madrid, 28040, Spain
| |
Collapse
|
29
|
Cheatle J, Aldrich A, Thorell WE, Boska MD, Kielian T. Compartmentalization of immune responses during Staphylococcus aureus cranial bone flap infection. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:450-8. [PMID: 23747950 DOI: 10.1016/j.ajpath.2013.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 12/22/2022]
Abstract
Decompressive craniectomy is often required after head trauma, stroke, or cranial bleeding to control subsequent brain swelling and prevent death. The infection rate after cranial bone flap replacement ranges from 0.8% to 15%, with an alarming frequency caused by methicillin-resistant Staphylococcus aureus, which is problematic because of recalcitrance to antibiotic therapy. Herein we report the establishment of a novel mouse model of S. aureus cranial bone flap infection that mimics several aspects of human disease. Bacteria colonized bone flaps for up to 4 months after infection, as revealed by scanning electron microscopy and quantitative culture, demonstrating the chronicity of the model. Analysis of a human cranial bone flap with confirmed S. aureus infection by scanning electron microscopy revealed similar structural attributes as the mouse model, demonstrating that it closely parallels structural facets of human disease. Inflammatory indices were most pronounced within the subcutaneous galeal compartment compared with the underlying brain parenchyma. Specifically, neutrophil influx and chemokine expression (CXCL2 and CCL5) were markedly elevated in the galea, which demonstrated substantial edema on magnetic resonance images, whereas the underlying brain parenchyma exhibited minimal involvement. Evaluation of immune mechanisms required for bacterial containment and inflammation revealed critical roles for MyD88-dependent signaling and neutrophils. This novel mouse model of cranial bone flap infection can be used to identify key immunologic and therapeutic mechanisms relevant to persistent bone flap infection in humans.
Collapse
Affiliation(s)
- Joseph Cheatle
- Division of Neurosurgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | |
Collapse
|
30
|
Held J, Preuße C, Döser A, Richter L, Heppner FL, Stenzel W. Enhanced acute immune response in IL-12p35-/- mice is followed by accelerated distinct repair mechanisms in Staphylococcus aureus-induced murine brain abscess. J Infect Dis 2013; 208:749-60. [PMID: 23532102 DOI: 10.1093/infdis/jit126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Murine Staphylococcus aureus-mediated brain abscess comprises 2 major phases, an initial phase of cerebritis, followed by a healing phase characterized by capsule formation. METHODS C57BL/6 wild-type (WT) and IL-12p35(-/-) mice were intracerebrally infected with S. aureus to induce brain abscesses. Clinical disease activity and bacterial load were monitored. The cell populations that were involved, as well as their specific mediators, were analyzed by immunohistochemistry, quantitative real-time polymerase chain reaction, and flow cytometry. RESULTS In the acute phase, IL-12p35(-/-) mice were protected from disease. This was associated with enhanced recruitment of granulocytes, accompanied by upregulated expression of Il17a, Csf2 (which encodes granulocyte-macrophage colony-stimulating factor), Cxcl1, and Cxcl5, as well as increased expression of proinflammatory mediators, including Nos2 (which encodes inducible nitric oxide synthase), Ptgs2 (which encodes cyclooxygenase 2), and Tnf, that were primarily produced by granulocytes and activated microglia/macrophages. Furthermore, mechanisms associated with beneficial wound healing, including an accelerated formation of a fibrous capsule, were demonstrated by prominent VEGF-A production and collagen deposition driven by an earlier onset of T-helper 2 immunity in the absence of interleukin 12 (IL-12). CONCLUSIONS Brain abscess development is orchestrated by IL-12 at different stages of disease. Our data indicate that IL-12 has a nonprotective role in the acute phase and that IL-12 deficiency results in the accelerated formation of a protective capsule during the healing phase, which we consider crucial for early recovery from disease.
Collapse
Affiliation(s)
- Josephin Held
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Rusu MC, Didilescu AC, Stănescu R, Pop F, Mănoiu VM, Jianu AM, Vâlcu M. The mandibular ridge oral mucosa model of stromal influences on the endothelial tip cells: an immunohistochemical and TEM study. Anat Rec (Hoboken) 2012. [PMID: 23192856 DOI: 10.1002/ar.22630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate by immunohistochemistry and transmission electron microscopy (TEM) the morphological features of the oral mucosa endothelial tip cells (ETCs) and to determine the immune and ultrastructural patterns of the stromal nonimmune cells which could influence healing processes. Immune labeling was performed on bioptic samples obtained from six edentulous patients undergoing surgery for dental implants placement; three normal samples were collected from patients prior to the extraction of the third mandibular molar. The antibodies were tested for CD34, CD117(c-kit), platelet derived growth factor receptor-alpha (PDGFR-α), Mast Cell Tryptase, CD44, vimentin, CD45, CD105, alpha-smooth muscle actin, FGF2, Ki67. In light microscopy, while stromal cells (StrCs) of the reparatory and normal oral mucosa, with a fibroblastic appearance, were found positive for a CD34/CD44/CD45/CD105/PDGFR-α/vimentin immune phenotype, the CD117/c-kit labeling led to a positive stromal reaction only in the reparatory mucosa. In TEM, non-immune StrCs presenting particular ultrastructural features were identified as circulating fibrocytes (CFCs). Within the lamina propria CFCs were in close contact with ETCs. Long processes of the ETCs were moniliform, and hook-like collaterals were arising from the dilated segments, suggestive for a different stage migration. Maintenance and healing of oral mucosa are so supported by extensive processes of angiogenesis, guided by ETCs that, in turn, are influenced by the CFCs that populate the stromal compartment both in normal and reparatory states. Therefore, CFCs could be targeted by specific therapies, with pro- or anti-angiogenic purposes.
Collapse
Affiliation(s)
- Mugurel Constantin Rusu
- Division of Anatomy, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | | | | | | | | | | | | |
Collapse
|
32
|
IL-1RI (interleukin-1 receptor type I) signalling is essential for host defence and hemichannel activity during acute central nervous system bacterial infection. ASN Neuro 2012; 4:AN20120008. [PMID: 22414156 PMCID: PMC3328864 DOI: 10.1042/an20120008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1) response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood–brain barrier permeability. To assess the combined actions of IL-1α and IL-1β during CNS (central nervous system) infection, host defence responses were evaluated in IL-1RI (IL-1 receptor type I) KO (knockout) animals. IL-1RI KO mice were exquisitely sensitive to intracerebral S. aureus infection, as demonstrated by enhanced mortality rates and bacterial burdens within the first 24 h following pathogen exposure compared with WT (wild-type) animals. Loss of IL-1RI signalling also dampened the expression of select cytokines and chemokines, concomitant with significant reductions in neutrophil and macrophage infiltrates into the brain. In addition, the opening of astrocyte hemichannels during acute infection was shown to be dependent on IL-1RI activity. Collectively, these results demonstrate that IL-1RI signalling plays a pivotal role in the genesis of immune responses during the acute stage of brain abscess development through S. aureus containment, inflammatory mediator production, peripheral immune cell recruitment, and regulation of astrocyte hemichannel activity. Taken in the context of previous studies with MyD88 (myeloid differentiation primary response gene 88) and TLR2 (Toll-like receptor 2) KO animals, the current report advances our understanding of MyD88-dependent cascades and implicates IL-1RI signalling as a major antimicrobial effector pathway during acute brain-abscess formation.
Collapse
|