1
|
Usoltseva AS, Litwin C, Lee M, Hill C, Cai J, Chen Y. Role of LIPIN 1 in regulating metabolic homeostasis in the retinal pigment epithelium. FASEB J 2024; 38:e70249. [PMID: 39673553 PMCID: PMC11809763 DOI: 10.1096/fj.202400981r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Dysregulated lipid metabolism, characterized by the accumulation of lipid deposits on Bruch's membrane and in drusen, is considered a key pathogenic event in age-related macular degeneration (AMD). The imbalance of lipid production, usage, and transport in local tissues, particularly in the retinal pigment epithelium (RPE), is increasingly recognized as crucial in AMD development. However, the molecular mechanisms governing lipid metabolism in the RPE remain elusive. LIPIN1, a multifunctional protein acting as both a modulator of transcription factors and a phosphatidate phosphatase (PAP1), is known to play important regulatory roles in lipid metabolism and related biological functions, such as inflammatory responses. While deficits in LIPIN1 have been linked to multiple diseases, its specific roles in the retina and RPE remain unclear. In this study, we investigated LIPIN1 in RPE integrity and function using a tissue-specific knockout animal model. The clinical and histological examinations revealed age-dependent degeneration in the RPE and the retina, along with impaired lipid metabolism. Bulk RNA sequencing indicated a disturbance in lipid metabolic pathways. Moreover, these animals exhibited inflammatory markers reminiscent of human AMD features, including deposition of IgG and C3d on Bruch's membrane. Collectively, our findings indicate that LIPIN1 is a critical component of the complex regulatory network of lipid homeostasis in the RPE. Disruption of LIPIN1-mediated regulation impaired lipid balance and contributed to AMD-related pathogenic changes.
Collapse
Affiliation(s)
- Anna S. Usoltseva
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Christopher Litwin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Michael Lee
- Department of College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Colton Hill
- Department of College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Jiyang Cai
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Yan Chen
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
- Dean McGee Eye Institute, Oklahoma City, OK, USA 73104
| |
Collapse
|
2
|
Kocherlakota S, Baes M. Benefits and Caveats in the Use of Retinal Pigment Epithelium-Specific Cre Mice. Int J Mol Sci 2024; 25:1293. [PMID: 38279294 PMCID: PMC10816505 DOI: 10.3390/ijms25021293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an important monolayer of cells present in the outer retina, forming a major part of the blood-retina barrier (BRB). It performs many tasks essential for the maintenance of retinal integrity and function. With increasing knowledge of the retina, it is becoming clear that both common retinal disorders, like age-related macular degeneration, and rare genetic disorders originate in the RPE. This calls for a better understanding of the functions of various proteins within the RPE. In this regard, mice enabling an RPE-specific gene deletion are a powerful tool to study the role of a particular protein within the RPE cells in their native environment, simultaneously negating any potential influences of systemic changes. Moreover, since RPE cells interact closely with adjacent photoreceptors, these mice also provide an excellent avenue to study the importance of a particular gene function within the RPE to the retina as a whole. In this review, we outline and compare the features of various Cre mice created for this purpose, which allow for inducible or non-inducible RPE-specific knockout of a gene of interest. We summarize the various benefits and caveats involved in the use of such mouse lines, allowing researchers to make a well-informed decision on the choice of Cre mouse to use in relation to their research needs.
Collapse
Affiliation(s)
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Cristante E, Liyanage SE, Smith AJ, Ali RR, Bainbridge JWB. Role of HIF1α and HIF2α in Cre Recombinase-Induced Retinal Pigment Epithelium Pathology and Its Secondary Effect on Choroidal Neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1694-1705. [PMID: 37330004 DOI: 10.1016/j.ajpath.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
CreTrp1 mice are widely used for conditional retinal pigment epithelium (RPE) gene function studies. Like other Cre/LoxP models, phenotypes in CreTrp1 mice can be affected by Cre-mediated cellular toxicity, leading to RPE dysfunction, altered morphology and atrophy, activation of innate immunity, and consequent impairment of photoreceptor function. These effects are common among the age-related alterations of RPE that feature in early/intermediate forms of age-related macular degeneration. This article characterizes Cre-mediated pathology in the CreTrp1 line to elucidate the impact of RPE degeneration on both developmental and pathologic choroidal neovascularization. Nonredundant roles of the two major components of the hypoxia-inducible factor (HIF) family of transcription regulators, HIF1α and HIF2α, were identified. Genetic ablation of Hif1a protected against Cre-induced degeneration of RPE and choroid, whereas ablation of Hif2a exacerbated this degeneration. Furthermore, HIF1α deficiency protected CreTrp1 mice against laser-induced choroidal neovascularization, whereas HIF2α deficiency exacerbated the phenotype. Cre-mediated degeneration of the RPE in CreTrp1 mice offers an opportunity to investigate the impact of hypoxia signaling in the context of RPE degeneration. These findings indicate that HIF1α promotes Cre recombinase-mediated RPE degeneration and laser-induced choroidal neovascularization, whereas HIF2α is protective.
Collapse
Affiliation(s)
| | | | - Alexander J Smith
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, United Kingdom
| | - Robin R Ali
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, United Kingdom
| | - James W B Bainbridge
- UCL Institute of Ophthalmology London, United Kingdom; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
4
|
Zhang Y, Jeong H, Mori K, Ikeda SI, Shoda C, Miwa Y, Nakai A, Chen J, Ma Z, Jiang X, Torii H, Kubota Y, Negishi K, Kurihara T, Tsubota K. Vascular endothelial growth factor from retinal pigment epithelium is essential in choriocapillaris and axial length maintenance. PNAS NEXUS 2022; 1:pgac166. [PMID: 36714840 PMCID: PMC9802415 DOI: 10.1093/pnasnexus/pgac166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 06/18/2023]
Abstract
Myopia, which prevalence is rapidly increasing, causes visual impairment; however, the onset mechanism of pathological axial length (AL) elongation remains unclear. A highly vascularized choroid between the retinal pigment epithelium (RPE) and sclera not only maintains physiological activities, but also contributes to ocular development and growth regulation. Vascular endothelial growth factor (VEGF) secreted from the RPE to the choroid is essential for retinal function and maintenance of the choriocapillaris. Herein, we demonstrated that the loss of VEGF secreted from the RPE caused abnormal choriocapillaris development and AL elongation, with features similar to those of the lens-induced myopia (LIM) mouse model, whereas VEGF overexpression by knocking-out von Hippel-Lindau (VHL) specific to the RPE expands the choriocapillaris and shortens the AL. Additionally, LDL Receptor Related Protein 2 (LRP2) deletion in the RPE downregulated VEGF expression and leads to pathological AL elongation. Furthermore, high-myopia patients without choriocapillaris demonstrated longer ALs than did those with preserved choriocapillaris. These results suggest that physiological secretion of VEGF from the RPE is required for proper AL development by maintaining the choriocapillaris. The pinpoint application of VEGF to the choriocapillaris may become a potential intervention for the prevention and treatment of axial myopia progression.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shin-Ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi City, Tokyo 173-8610, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Aichi Animal Eye Clinic, 3 Chome-17-3 Honjitori, Minami Ward, Nagoya, Aichi 457-0074, Japan
| | - Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi City, Tokyo 173-8610, Japan
| | - Junhan Chen
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ziyan Ma
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Xiaoyan Jiang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidemasa Torii
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Tsubota Laboratory Inc., 34 Shinanomachi, 304 Toshin Shinanomachi Ekimae Building, Shinjuku-ku, Tokyo 160-0016, Japan
| |
Collapse
|
5
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
6
|
Expression of Cre recombinase in chondrocytes causes abnormal craniofacial and skeletal development. Transgenic Res 2022; 31:399-411. [DOI: 10.1007/s11248-022-00308-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
7
|
Choi EH, Suh S, Einstein DE, Leinonen H, Dong Z, Rao SR, Fliesler SJ, Blackshaw S, Yu M, Peachey NS, Palczewski K, Kiser PD. An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease. JCI Insight 2021; 6:146604. [PMID: 33784255 PMCID: PMC8262343 DOI: 10.1172/jci.insight.146604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
The retinal pigment epithelium (RPE) provides vital metabolic support for retinal photoreceptor cells and is an important player in numerous retinal diseases. Gene manipulation in mice using the Cre-LoxP system is an invaluable tool for studying the genetic basis of these retinal diseases. However, existing RPE-targeted Cre mouse lines have critical limitations that restrict their reliability for studies of disease pathogenesis and treatment, including mosaic Cre expression, inducer-independent activity, off-target Cre expression, and intrinsic toxicity. Here, we report the generation and characterization of a knockin mouse line in which a P2A-CreERT2 coding sequence is fused with the native RPE-specific 65 kDa protein (Rpe65) gene for cotranslational expression of CreERT2. Cre+/– mice were able to recombine a stringent Cre reporter allele with more than 99% efficiency and absolute RPE specificity upon tamoxifen induction at both postnatal days (PD) 21 and 50. Tamoxifen-independent Cre activity was negligible at PD64. Moreover, tamoxifen-treated Cre+/– mice displayed no signs of structural or functional retinal pathology up to 4 months of age. Despite weak RPE65 expression from the knockin allele, visual cycle function was normal in Cre+/– mice. These data indicate that Rpe65CreERT2 mice are well suited for studies of gene function and pathophysiology in the RPE.
Collapse
Affiliation(s)
- Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA.,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Susie Suh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA.,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David E Einstein
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA.,Research Service, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Henri Leinonen
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Sciences and.,Neuroscience Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Research Service, VA Western New York Healthcare System, Buffalo, New York, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Sciences and.,Neuroscience Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Research Service, VA Western New York Healthcare System, Buffalo, New York, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA.,Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA.,Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, California, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA.,Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA.,Research Service, VA Long Beach Healthcare System, Long Beach, California, USA
| |
Collapse
|
8
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Costa KM, Schenkel D, Roeper J. Sex-dependent alterations in behavior, drug responses and dopamine transporter expression in heterozygous DAT-Cre mice. Sci Rep 2021; 11:3334. [PMID: 33558587 PMCID: PMC7870653 DOI: 10.1038/s41598-021-82600-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Heterozygous mice that express Cre-recombinase under the dopamine transporter promoter (DAT-Cre knock in mice, or KI) are widely used for targeting midbrain dopamine neurons, under the assumption that their constitutive physiology is not affected. We report here that these mice display striking sex-dependent behavioral and molecular differences in relation to wildtypes (WT). Male and female KI mice were constitutively hyperactive, and male KI mice showed attenuated hyperlocomotor responses to amphetamine. In contrast, female KIs displayed a marked reduction in locomotion ("calming" effect) in response to the same dose of amphetamine. Furthermore, male and female DAT-Cre KI mice showed opposing differences in reinforcement learning, with females showing faster conditioning and males showing slower extinction. Other behavioral variables, including working memory and novelty preference, were not changed compared to WT. These effects were paralleled by differences in striatal DAT expression that disproportionately affected female KI mice. Our findings reveal clear limitations of the DAT-Cre line that must be considered when using this model.
Collapse
Affiliation(s)
- Kauê Machado Costa
- grid.7839.50000 0004 1936 9721Institute of Neurophysiology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany ,grid.94365.3d0000 0001 2297 5165Present Address: National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Daniela Schenkel
- grid.7839.50000 0004 1936 9721Institute of Neurophysiology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Jochen Roeper
- grid.7839.50000 0004 1936 9721Institute of Neurophysiology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Göppner C, Soria AH, Hoegg-Beiler MB, Jentsch TJ. Cellular basis of ClC-2 Cl - channel-related brain and testis pathologies. J Biol Chem 2021; 296:100074. [PMID: 33187987 PMCID: PMC7949093 DOI: 10.1074/jbc.ra120.016031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell type-specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam-/- mice could not be rescued by crosses with Clcn2op/op mice in which a mutation mimics the "opening" of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process.
Collapse
Affiliation(s)
- Corinna Göppner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Audrey H Soria
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Maja B Hoegg-Beiler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
11
|
Rezai Amin S, Gruszczynski C, Guiard BP, Callebert J, Launay JM, Louis F, Betancur C, Vialou V, Gautron S. Viral vector-mediated Cre recombinase expression in substantia nigra induces lesions of the nigrostriatal pathway associated with perturbations of dopamine-related behaviors and hallmarks of programmed cell death. J Neurochem 2019; 150:330-340. [PMID: 30748001 DOI: 10.1111/jnc.14684] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 02/03/2023]
Abstract
Cre/loxP recombination is a widely used approach to study gene function in vivo, using mice models expressing the Cre recombinase under the control of specific promoters or through viral delivery of Cre-expressing constructs. A profuse literature on transgenic mouse lines points out the deleterious effects of Cre expression in various cell types and tissues, presumably by acting on illegitimate loxP-like sites present in the genome. However, most studies reporting the consequences of Cre-lox gene invalidation often omit adequate controls to exclude the potential toxic effects of Cre, compromising the interpretation of data. In this study, we report the anatomical, neurochemical, and behavioral consequences in mice of adeno-associated virus (AAV)-mediated Cre expression in the dopaminergic nuclei substantia nigra, at commonly used viral titers (3 × 109 genome copies/0.3 μL or 2 × 109 genome copies/0.6 μL). We found that injecting AAV-eGFP-Cre into the SN engendered drastic and reproducible modifications of behavior, with increased basal locomotor activity as well as impaired locomotor response to cocaine compared to AAV-eGFP-injected controls. Cre expression in the SN induced a massive decrease in neuronal populations of both pars compacta and pars reticulata and dopamine depletion in the nigrostriatal pathway. This anatomical injury was associated with typical features of programmed cell death, including an increase in DNA break markers, evidence of apoptosis, and disrupted macroautophagy. These observations underscore the need for careful control of Cre toxicity in the brain and the reassessment of previous studies. In addition, our findings suggest that Cre-mediated ablation may constitute an efficient tool to explore the function of specific cell populations and areas in the brain, and the impact of neurodegeneration in these populations.
Collapse
Affiliation(s)
- Sara Rezai Amin
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Carole Gruszczynski
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Bruno P Guiard
- Université de Toulouse, CNRS, Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Toulouse, France
| | - Jacques Callebert
- INSERM U942, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- INSERM U942, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
12
|
Storti F, Klee K, Todorova V, Steiner R, Othman A, van der Velde-Visser S, Samardzija M, Meneau I, Barben M, Karademir D, Pauzuolyte V, Boye SL, Blaser F, Ullmer C, Dunaief JL, Hornemann T, Rohrer L, den Hollander A, von Eckardstein A, Fingerle J, Maugeais C, Grimm C. Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration. eLife 2019; 8:45100. [PMID: 30864945 PMCID: PMC6435327 DOI: 10.7554/elife.45100] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/12/2019] [Indexed: 01/04/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive disease of the retinal pigment epithelium (RPE) and the retina leading to loss of central vision. Polymorphisms in genes involved in lipid metabolism, including the ATP-binding cassette transporter A1 (ABCA1), have been associated with AMD risk. However, the significance of retinal lipid handling for AMD pathogenesis remains elusive. Here, we study the contribution of lipid efflux in the RPE by generating a mouse model lacking ABCA1 and its partner ABCG1 specifically in this layer. Mutant mice show lipid accumulation in the RPE, reduced RPE and retinal function, retinal inflammation and RPE/photoreceptor degeneration. Data from human cell lines indicate that the ABCA1 AMD risk-conferring allele decreases ABCA1 expression, identifying the potential molecular cause that underlies the genetic risk for AMD. Our results highlight the essential homeostatic role for lipid efflux in the RPE and suggest a pathogenic contribution of reduced ABCA1 function to AMD.
Collapse
Affiliation(s)
- Federica Storti
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Katrin Klee
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Vyara Todorova
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
| | - Alaa Othman
- Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
| | | | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Isabelle Meneau
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Maya Barben
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Duygu Karademir
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Valda Pauzuolyte
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, United States
| | - Frank Blaser
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joshua L Dunaief
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, United States
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich, Schlieren, Switzerland
| | - Anneke den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jürgen Fingerle
- Natural and Medical Sciences Institute, University of Tübingen, Tübingen, Germany
| | - Cyrille Maugeais
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Balkawade RS, Chen C, Crowley MR, Crossman DK, Clapp WL, Verlander JW, Marshall CB. Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening. Am J Physiol Renal Physiol 2019; 316:F1026-F1040. [PMID: 30810063 DOI: 10.1152/ajprenal.00359.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conditional gene targeting using Cre recombinase has offered a powerful tool to modify gene function precisely in defined cells/tissues and at specific times. However, in mammalian cells, Cre recombinase can be genotoxic. The importance of including Cre-expressing control mice to avoid misinterpretation and to maximize the validity of the experimental results has been increasingly recognized. While studying the role of podocytes in the pathogenesis of glomerular basement membrane (GBM) thickening, we used Cre recombinase driven by the podocyte-specific podocin promoter (NPHS2-Cre) to generate a conditional knockout. By conventional structural and functional measures (histology by periodic acid-Schiff staining, albuminuria, and plasma creatinine), we did not detect significant differences between NPHS2-Cre transgenic and wild-type control mice. However, surprisingly, the group that expressed Cre transgene alone developed signs of podocyte toxicity, including marked GBM thickening, loss of normal foot process morphology, and reduced Wilms tumor 1 expression. GBM thickening was characterized by altered expression of core structural protein laminin isoform α5β2γ1. RNA sequencing analysis of extracted glomeruli identified 230 genes that were significant and differentially expressed (applying a q < 0.05-fold change ≥ ±2 cutoff) in NPHS2-Cre mice compared with wild-type control mice. Many biological processes were reflected in the RNA sequencing data, including regulation of the extracellular matrix and pathways related to apoptosis and cell death. This study highlights the importance of including the appropriate controls for potential Cre-mediated toxicity in conditional gene-targeting experiments. Indeed, omitting the Cre transgene control can result in critical errors during interpretation of experimental data.
Collapse
Affiliation(s)
- Rohan S Balkawade
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chao Chen
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Michael R Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - William L Clapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Caroline B Marshall
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
14
|
3D Engineering of Ocular Tissues for Disease Modeling and Drug Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:171-193. [DOI: 10.1007/978-3-030-28471-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Sluch VM, Banks A, Li H, Crowley MA, Davis V, Xiang C, Yang J, Demirs JT, Vrouvlianis J, Leehy B, Hanks S, Hyman AM, Aranda J, Chang B, Bigelow CE, Rice DS. ADIPOR1 is essential for vision and its RPE expression is lost in the Mfrp rd6 mouse. Sci Rep 2018; 8:14339. [PMID: 30254279 PMCID: PMC6156493 DOI: 10.1038/s41598-018-32579-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
The knockout (KO) of the adiponectin receptor 1 (AdipoR1) gene causes retinal degeneration. Here we report that ADIPOR1 protein is primarily found in the eye and brain with little expression in other tissues. Further analysis of AdipoR1 KO mice revealed that these animals exhibit early visual system abnormalities and are depleted of RHODOPSIN prior to pronounced photoreceptor death. A KO of AdipoR1 post-development either in photoreceptors or the retinal pigment epithelium (RPE) resulted in decreased expression of retinal proteins, establishing a role for ADIPOR1 in supporting vision in adulthood. Subsequent analysis of the Mfrprd6 mouse retina demonstrated that these mice are lacking ADIPOR1 in their RPE layer alone, suggesting that loss of ADIPOR1 drives retinal degeneration in this model. Moreover, we found elevated levels of IRBP in both the AdipoR1 KO and the Mfrprd6 models. The spatial distribution of IRBP was also abnormal. This dysregulation of IRBP hypothesizes a role for ADIPOR1 in retinoid metabolism.
Collapse
Affiliation(s)
- Valentin M Sluch
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States.
| | - Angela Banks
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Hui Li
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Maura A Crowley
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Vanessa Davis
- Global Scientific Operations, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Chuanxi Xiang
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Junzheng Yang
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - John T Demirs
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Joanna Vrouvlianis
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Barrett Leehy
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Shawn Hanks
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Alexandra M Hyman
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Jorge Aranda
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Chad E Bigelow
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States
| | - Dennis S Rice
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States.
| |
Collapse
|
16
|
Cristante E, Liyanage SE, Sampson RD, Kalargyrou A, De Rossi G, Rizzi M, Hoke J, Ribeiro J, Maswood RN, Duran Y, Matsuki T, Aghaizu ND, Luhmann UF, Smith AJ, Ali RR, Bainbridge JWB. Late neuroprogenitors contribute to normal retinal vascular development in a Hif2a-dependent manner. Development 2018; 145:dev.157511. [PMID: 29615467 DOI: 10.1242/dev.157511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
In the adult central nervous system, endothelial and neuronal cells engage in tight cross-talk as key components of the so-called neurovascular unit. Impairment of this important relationship adversely affects tissue homeostasis, as observed in neurodegenerative conditions including Alzheimer's and Parkinson's disease. In development, the influence of neuroprogenitor cells on angiogenesis is poorly understood. Here, we show in mouse that these cells interact intimately with the growing retinal vascular network, and we identify a novel regulatory mechanism of vasculature development mediated by hypoxia-inducible factor 2a (Hif2a). By Cre-lox gene excision, we show that Hif2a in retinal neuroprogenitor cells upregulates the expression of the pro-angiogenic mediators vascular endothelial growth factor and erythropoietin, whereas it locally downregulates the angiogenesis inhibitor endostatin. Importantly, absence of Hif2a in retinal neuroprogenitor cells causes a marked reduction of proliferating endothelial cells at the angiogenic front. This results in delayed retinal vascular development, fewer major retinal vessels and reduced density of the peripheral deep retinal vascular plexus. Our findings demonstrate that retinal neuroprogenitor cells are a crucial component of the developing neurovascular unit.
Collapse
Affiliation(s)
- Enrico Cristante
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK .,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Sidath E Liyanage
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Robert D Sampson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Matteo Rizzi
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Justin Hoke
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ryea N Maswood
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Yanai Duran
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Takaaki Matsuki
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Nozie D Aghaizu
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ulrich F Luhmann
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - James W B Bainbridge
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK .,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| |
Collapse
|
17
|
Gfi1 Cre mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells. Sci Rep 2017; 7:42079. [PMID: 28181545 PMCID: PMC5299610 DOI: 10.1038/srep42079] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
Studies of developmental and functional biology largely rely on conditional expression of genes in a cell type-specific manner. Therefore, the importance of specificity and lack of inherent phenotypes for Cre-driver animals cannot be overemphasized. The Gfi1Cre mouse is commonly used for conditional hair cell-specific gene deletion/reporter gene activation in the inner ear. Here, using immunofluorescence and flow cytometry, we show that the Gfi1Cre mice produce a pattern of recombination that is not strictly limited to hair cells within the inner ear. We observe a broad expression of Cre recombinase in the Gfi1Cre mouse neonatal inner ear, primarily in inner ear resident macrophages, which outnumber the hair cells. We further show that heterozygous Gfi1Cre mice exhibit an early onset progressive hearing loss as compared with their wild-type littermates. Importantly, vestibular function remains intact in heterozygotes up to 10 months, the latest time point tested. Finally, we detect minor, but statistically significant, changes in expression of hair cell-enriched transcripts in the Gfi1Cre heterozygous mice cochleae compared with their wild-type littermate controls. Given the broad use of the Gfi1Cre mice, both for gene deletion and reporter gene activation, these data are significant and necessary for proper planning and interpretation of experiments.
Collapse
|
18
|
Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Sci Rep 2017; 7:40830. [PMID: 28112274 PMCID: PMC5256030 DOI: 10.1038/srep40830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) are ubiquitously expressed transcription factors important for cell homeostasis during dynamic oxygen levels. Myeloid specific HIFs are crucial for aspects of myeloid cell function, including their ability to migrate into inflamed tissues during autoimmune disease. This contrasts with the concept that accumulation of myeloid cells at ischemic and hypoxic sites results from a lack of chemotactic responsiveness. Here we seek to address the role of HIFs in myeloid trafficking during inflammation in a mouse model of human uveitis. We show using mice with myeloid-specific Cre-deletion of HIFs that myeloid HIFs are dispensable for leukocyte migration into the inflamed eye. Myeloid-specific deletion of Hif1a, Epas1, or both together, had no impact on the number of myeloid cells migrating into the eye. Additionally, stabilization of HIF pathways via deletion of Vhl in myeloid cells had no impact on myeloid trafficking into the inflamed eye. Finally, we chemically induce hypoxemia via hemolytic anemia resulting in HIF stabilization within circulating leukocytes to demonstrate the dispensable role of HIFs in myeloid cell migration into the inflamed eye. These data suggest, contrary to previous reports, that HIF pathways in myeloid cells during inflammation and hypoxia are dispensable for myeloid cell tissue trafficking.
Collapse
|
19
|
Langouet-Astrie CJ, Yang Z, Polisetti SM, Welsbie DS, Hauswirth WW, Zack DJ, Merbs SL, Enke RA. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells. Exp Eye Res 2016; 151:61-7. [PMID: 27481653 DOI: 10.1016/j.exer.2016.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs.
Collapse
Affiliation(s)
| | - Zhiyong Yang
- Department of Surgery, University of California San Diego, 4150 Regents Park Row, La Jolla, CA, 92037, USA
| | - Sraavya M Polisetti
- Department of Biology, 951 Carrier Drive, MSC 7801, James Madison University, Harrisonburg, VA, 22807, USA
| | - Derek S Welsbie
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA; Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA; Institute de la Vision, Université Pierre et Marie Curie, 17 Rue Moreau, Paris, 75012, France
| | - Shannath L Merbs
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA
| | - Raymond A Enke
- Department of Biology, 951 Carrier Drive, MSC 7801, James Madison University, Harrisonburg, VA, 22807, USA; Center for Genome & Metagenome Studies, 951 Carrier Drive, MSC 7801, James Madison University, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
20
|
Fronk AH, Vargis E. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations. J Tissue Eng 2016; 7:2041731416650838. [PMID: 27493715 PMCID: PMC4959307 DOI: 10.1177/2041731416650838] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/23/2016] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.
Collapse
Affiliation(s)
- Aaron H Fronk
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| |
Collapse
|
21
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
22
|
Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, Lotfi M, Davis J, Singh D, Rizzolo LJ, Miller S, Temple S, Stern JH. Human Adult Retinal Pigment Epithelial Stem Cell-Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native Tissue. Invest Ophthalmol Vis Sci 2016; 56:7085-99. [PMID: 26540654 DOI: 10.1167/iovs.14-16246] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE We tested what native features have been preserved with a new culture protocol for adult human RPE. METHODS We cultured RPE from adult human eyes. Standard protocols for immunohistochemistry, electron microscopy, electrophysiology, fluid transport, and ELISA were used. RESULTS Confluent monolayers of adult human RPE cultures exhibit characteristics of native RPE. Immunohistochemistry demonstrated polarized expression of RPE markers. Electron microscopy illustrated characteristics of native RPE. The mean transepithelial potential (TEP) was 1.19 ± 0.24 mV (mean ± SEM, n = 31), apical positive, and the mean transepithelial resistance (RT) was 178.7 ± 9.9 Ω·cm2 (mean ± SEM, n = 31). Application of 100 μM adenosine triphosphate (ATP) apically increased net fluid absorption (Jv) by 6.11 ± 0.53 μL·cm2·h-1 (mean ± SEM, n = 6) and TEP by 0.33 ± 0.048 mV (mean ± SEM, n = 25). Gene expression of cultured RPE was comparable to native adult RPE (n = 5); however, native RPE RNA was harvested between 24 and 40 hours after death and, therefore, may not accurately reflect healthy native RPE. Vascular endothelial growth factor secreted preferentially basally 2582 ± 146 pg/mL/d, compared to an apical secretion of 1548 ± 162 pg/mL/d (n = 14, P < 0.01), while PEDF preferentially secreted apically 1487 ± 280 ng/mL/d compared to a basolateral secretion of 864 ± 132 ng/mL/d (n = 14, P < 0.01). CONCLUSIONS The new culture model preserves native RPE morphology, electrophysiology, and gene and protein expression patterns, and may be a useful model to study RPE physiology, disease, and transplantation.
Collapse
Affiliation(s)
| | - Janmeet S Saini
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Arvydas Maminishkis
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Qin Wan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tina Banzon
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mostafa Lotfi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Janine Davis
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Deepti Singh
- Yale University, New Haven, Connecticut, United States
| | | | - Sheldon Miller
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey H Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| |
Collapse
|
23
|
Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Sci Rep 2016; 6:18602. [PMID: 26813606 PMCID: PMC4728690 DOI: 10.1038/srep18602] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
Abstract
Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1(+/Δex41)mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes.
Collapse
|
24
|
Le YZ, Zhu M, Anderson RE. Cre Recombinase: You Can't Live with It, and You Can't Live Without It. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:725-30. [PMID: 26427481 DOI: 10.1007/978-3-319-17121-0_96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of conditional gene targeting has greatly advanced our knowledge of human retinal diseases, but issues have arisen related to the use of some Cre-expressing mouse lines. In this article, we discuss potential problems associated with transgenic Cre expression-induced degeneration and alteration of rod photoreceptors and retinal pigment epithelium (RPE). Our strategy for circumventing RPE degeneration by induced transient Cre expression uses a single intravitreal doxycycline injection in a tetracycline-inducible RPE-specific Cre mouse line, which results in productive Cre-mediated recombination efficiently in the RPE. As constitutive expression of Cre in the RPE alters RPE biology, this inducible Cre/lox system provides an opportunity for conditional gene targeting in the RPE, a tissue that is closely related to photoreceptor degeneration, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Yun-Zheng Le
- Departments of Medicine Endocrinology and Cell Biology, and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, 941 S. L. Young Blvd., BSEB 302G, 73104, Oklahoma City, OK, USA.
| | - Meili Zhu
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA
| | - Robert E Anderson
- Departments of Cell Biology and Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA.
| |
Collapse
|
25
|
Ach T, Tolstik E, Messinger JD, Zarubina AV, Heintzmann R, Curcio CA. Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 2015; 56:3242-52. [PMID: 25758814 DOI: 10.1167/iovs.14-16274] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Lipofuscin (LF) and melanolipofuscin (MLF) of the retinal pigment epithelium (RPE) are the principal sources of autofluorescence (AF) signals in clinical fundus-AF imaging. Few details about the subcellular distribution of AF organelles in AMD are available. We describe the impact of aging and AMD on RPE morphology revealed by the distribution of AF LF/MLF granules and actin cytoskeleton in human tissues. METHODS Thirty-five RPE-Bruch's membrane flatmounts from 35 donors were prepared (postmortem: ≤4 hours). Ex vivo fundus examination at the time of accession revealed either absence of chorioretinal pathologies (10 tissues; mean age: 83.0 ± 2.6 years) or stages of AMD (25 tissues; 85.0 ± 5.8 years): early AMD, geographic atrophy, and late exudative AMD. Retinal pigment epithelium cytoskeleton was labeled with AlexaFluor647-Phalloidin. Tissues were imaged on a spinning-disk fluorescence microscope and a high-resolution structured illumination microscope. RESULTS Age-related macular degeneration impacts individual RPE cells by (1) lipofuscin redistribution by (i) degranulation (granule-by-granule loss) and/or (ii) aggregation and apparent shedding into the extracellular space; (2) enlarged RPE cell area and conversion from convex to irregular and sometimes concave polygons; and (3) cytoskeleton derangement including separations and breaks around subretinal deposits, thickening, and stress fibers. CONCLUSIONS We report an extensive and systematic en face analysis of LF/MLF-AF in AMD eyes. Redistribution and loss of AF granules are among the earliest AMD changes and could reduce fundus AF signal attributable to RPE at these locations. Data can enhance the interpretation of clinical fundus-AF and provide a basis for future quantitative studies.
Collapse
Affiliation(s)
- Thomas Ach
- University of Alabama at Birmingham Department of Ophthalmology, Birmingham, Alabama, United States 2University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Elen Tolstik
- Leibniz Institute of Photonic Technology, Jena, Germany 5King's College London, Randall Division of Cell & Molecular Biophysics, London, United Kingdom
| | - Jeffrey D Messinger
- University of Alabama at Birmingham Department of Ophthalmology, Birmingham, Alabama, United States
| | - Anna V Zarubina
- University of Alabama at Birmingham Department of Ophthalmology, Birmingham, Alabama, United States
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany 5King's College London, Randall Division of Cell & Molecular Biophysics, London, United Kingdom
| | - Christine A Curcio
- University of Alabama at Birmingham Department of Ophthalmology, Birmingham, Alabama, United States
| |
Collapse
|
26
|
Age- and gene-dosage-dependent cre-induced abnormalities in the retinal pigment epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1660-7. [PMID: 24854863 DOI: 10.1016/j.ajpath.2014.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 12/29/2022]
Abstract
To conditionally inactivate genes in the retinal pigment epithelium (RPE) transgenic mouse strains have been developed, in which Cre recombinase (Cre) expression is driven by an RPE-specific gene promoter. The RPE is a quiescent epithelium, and continuous expression of Cre could affect its function. Here, we tested the hypothesis that continuous postnatal Cre expression in the RPE may lead to cellular abnormalities, which may depend on both age and Cre gene dosage. We therefore examined the eyes of homozygous and heterozygous VMD2-Cre mice at various ages. In VMD2-Cre heterozygous mice variable progressive age-dependent RPE abnormalities were noticed, including attenuation of phalloidin and cytoplasmic active β-catenin staining, reduced cell size, and loss of the typical honeycomb pattern of RPE morphology in those RPE cells that stained for Cre. These morphological RPE abnormalities were not noticed in Cre-negative RPE cells in VMD2-Cre or age-matched control mice. In addition, an abnormal number and morphology of cell nuclei were noticed in a subset of Cre-expressing RPE cells in aged heterozygous VMD2-Cre mice, whereas more severe nuclear abnormalities were observed already in young homozygous VMD2-Cre mice. Thus, continuous postnatal expression of Cre causes abnormalities in the RPE in an age- and Cre gene dosage-dependent manner, which needs to be considered in the interpretation of gene targeting studies in the RPE.
Collapse
|
27
|
Dorà NJ, Collinson JM, Hill RE, West JD. Hemizygous Le-Cre transgenic mice have severe eye abnormalities on some genetic backgrounds in the absence of LoxP sites. PLoS One 2014; 9:e109193. [PMID: 25272013 PMCID: PMC4182886 DOI: 10.1371/journal.pone.0109193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
Eye phenotypes were investigated in Le-CreTg/−; Pax6fl/+ mice, which were expected to show tissue-specific reduction of Pax6 in surface ectoderm derivatives. To provide a better comparison with our previous studies of Pax6+/− eye phenotypes, hemizygous Le-CreTg/− and heterozygous Pax6fl/+mice were crossed onto the CBA/Ca genetic background. After the Le-Cre transgene had been backcrossed to CBA/Ca for seven generations, significant eye abnormalities occurred in some hemizygous Le-CreTg/−; Pax6+/+ controls (without a floxed Pax6fl allele) as well as experimental Le-CreTg/−; Pax6fl/+ mice. However, no abnormalities were seen in Le-Cre−/−; Pax6fl/+ or Le-Cre−/−; Pax6+/+ controls (without the Le-Cre transgene). The severity and frequency of the eye abnormalities in Le-CreTg/−; Pax6+/+ control mice diminished after backcrossing Le-CreTg/− mice to the original FVB/N strain for two generations, showing that the effect was reversible. This genetic background effect suggests that the eye abnormalities are a consequence of an interaction between the Le-Cre transgene and alleles of unknown modifier genes present in certain genetic backgrounds. The abnormalities were also ameliorated by introducing additional Pax6 gene copies on a CBA/Ca background, suggesting involvement of Pax6 depletion in Le-CreTg/−; Pax6+/+ mice rather than direct action of Cre recombinase on cryptic pseudo-loxP sites. One possibility is that expression of Cre recombinase from the Pax6-Le regulatory sequences in the Le-Cre transgene depletes cofactors required for endogenous Pax6 gene expression. Our observation that eye abnormalities can occur in hemizygous Le-CreTg/−; Pax6+/+ mice, in the absence of a floxed allele, demonstrates the importance of including all the relevant genetic controls in Cre-loxP experiments.
Collapse
Affiliation(s)
- Natalie J. Dorà
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Martin Collinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Robert E. Hill
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - John D. West
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Giusti SA, Vercelli CA, Vogl AM, Kolarz AW, Pino NS, Deussing JM, Refojo D. Behavioral phenotyping of Nestin-Cre mice: implications for genetic mouse models of psychiatric disorders. J Psychiatr Res 2014; 55:87-95. [PMID: 24768109 DOI: 10.1016/j.jpsychires.2014.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022]
Abstract
Genetic mouse models based on the Cre-loxP system have been extensively used to explore the influence of specific gene deletions on different aspects of behavioral neurobiology. However, the interpretation of the effects attributed to the gene deletion might be obscured by potential side effects secondary to the Cre recombinase transgene insertion or Cre activity, usually neither controlled nor reported. Here, we performed a comprehensive behavioral analysis of endophenotypes of neuropsychiatric disorders in the extensively used Nestin(Cre) mouse line, commonly employed to restrict genetic modifications to the CNS. We observed no alterations in locomotion, general exploratory activity, learning and memory, sociability, startle response and sensorimotor gating. Although the overall response to stimuli triggering anxiety-like behaviors remained unaltered in Nestin(Cre) mice, a strong impairment in the acquisition of both contextual- and cued-conditioned fear was observed. These results underline the importance of adequately controlling the behavioral performance of the employed Cre-lines per-se in pre-clinical neurobehavioral research.
Collapse
Affiliation(s)
- Sebastian A Giusti
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Claudia A Vercelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Annette M Vogl
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Adam W Kolarz
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia S Pino
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Damian Refojo
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
29
|
Fu S, Zhu M, Wang C, Le YZ. Efficient induction of productive Cre-mediated recombination in retinal pigment epithelium. Mol Vis 2014; 20:480-7. [PMID: 24744608 PMCID: PMC3984040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/08/2014] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To dissect gene functions in the retinal pigment epithelium (RPE), we previously generated a tetracycline-inducible RPE-specific Cre mouse line. Although this Cre mouse line was useful for several conditional gene targeting studies that were conducted by different laboratories, its potential has not been fully exploited, presumably due to a lack of knowledge or procedure for inducing Cre expression appropriately in this mouse line. The goal of the current study is to establish a procedure that will improve the reproducibility of Cre-mediated recombination in this mouse line. METHODS Analysis of Cre expression and function was performed in double transgenic mice derived from inducible RPE-specific Cre and Cre-activatable ROSA26 lacZ reporter mice. A tetracycline derivative, doxycycline, was supplied to mice intravitreally to induce Cre expression. Cre expression and function were examined with reverse transcription-PCR, immunoblotting, immunostaining, and in situ enzymatic assay for β-galactosidase. Retinal integrity was examined with electroretinography and morphometry. RESULTS Intravitreal Dox injection elevated Cre expression significantly and resulted in productive Cre-mediated recombination in approximately 60% of the RPE cells in this mouse line with no apparent change in retinal integrity. CONCLUSIONS Our results suggest that productive Cre-mediated recombination in this mouse line can be induced efficiently with intravitreal Dox delivery, with no apparent Dox or Cre toxicity. Therefore, our inducible RPE-specific Cre mice are suitable for Cre/lox-based gene activation and inactivation in adult RPE, which is critical to the effectiveness and suitability of this Cre mouse line in long-term studies requiring conditional gene targeting.
Collapse
Affiliation(s)
- Shuhua Fu
- Department of Ophthalmology, the Second Affiliated Hospital of Nanchang University, Nanchang, China,Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Meili Zhu
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Changyun Wang
- Department of Ophthalmology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun-Zheng Le
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK,Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
30
|
Brown AD, Sager BW, Gorthi A, Tonapi SS, Brown EJ, Bishop AJR. ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair. PLoS One 2014; 9:e91222. [PMID: 24675793 PMCID: PMC3968013 DOI: 10.1371/journal.pone.0091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
DNA replication fork stalling or collapse that arises from endogenous damage poses a serious threat to genome stability, but cells invoke an intricate signaling cascade referred to as the DNA damage response (DDR) to prevent such damage. The gene product ataxia telangiectasia and Rad3-related (ATR) responds primarily to replication stress by regulating cell cycle checkpoint control, yet it’s role in DNA repair, particularly homologous recombination (HR), remains unclear. This is of particular interest since HR is one way in which replication restart can occur in the presence of a stalled or collapsed fork. Hypomorphic mutations in human ATR cause the rare autosomal-recessive disease Seckel syndrome, and complete loss of Atr in mice leads to embryonic lethality. We recently adapted the in vivo murine pink-eyed unstable (pun) assay for measuring HR frequency to be able to investigate the role of essential genes on HR using a conditional Cre/loxP system. Our system allows for the unique opportunity to test the effect of ATR loss on HR in somatic cells under physiological conditions. Using this system, we provide evidence that retinal pigment epithelium (RPE) cells lacking ATR have decreased density with abnormal morphology, a decreased frequency of HR and an increased level of chromosomal damage.
Collapse
Affiliation(s)
- Adam D. Brown
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Brian W. Sager
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Aparna Gorthi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Sonal S. Tonapi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eric J. Brown
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexander J. R. Bishop
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Janbandhu VC, Moik D, Fässler R. Cre recombinase induces DNA damage and tetraploidy in the absence of loxP sites. Cell Cycle 2013; 13:462-70. [PMID: 24280829 DOI: 10.4161/cc.27271] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The spatiotemporal manipulations of gene expression by the Cre recombinase (Cre) of bacteriophage P1 has become an essential asset to understanding mammalian genetics. Accumulating evidence suggests that Cre activity can, in addition to excising targeted loxP sites, induce cytotoxic effects, including abnormal cell cycle progression, genomic instability, and apoptosis, which can accelerate cancer progression. It is speculated that these defects are caused by Cre-induced DNA damage at off-target sites. Here we report the formation of tetraploid keratinocytes in the epidermis of keratin 5 and/or keratin 14 promoter-driven Cre (KRT5- and KRT14-Cre) expressing mouse skin. Biochemical analyses and flow cytometry demonstrated that Cre expression also induces DNA damage, genomic instability, and tetraploidy in HCT116 cells, and live-cell imaging revealed an extension of the G 2 cell cycle phase followed by defective or skipping of mitosis as cause for the tetraploidy. Since tetraploidy eventually leads to aneuploidy, a hallmark of cancer, our findings highlight the importance of distinguishing non-specific cytopathic effects from specific Cre/loxP-driven genetic manipulations when using Cre-mediated gene deletions.
Collapse
Affiliation(s)
- Vaibhao C Janbandhu
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| | - Daniel Moik
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| | - Reinhard Fässler
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| |
Collapse
|
32
|
Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 2013; 37:114-40. [PMID: 23994436 DOI: 10.1016/j.preteyeres.2013.08.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 02/08/2023]
Abstract
Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss.
Collapse
Affiliation(s)
- Yusuke Murakami
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Notch2 regulates BMP signaling and epithelial morphogenesis in the ciliary body of the mouse eye. Proc Natl Acad Sci U S A 2013; 110:8966-71. [PMID: 23676271 DOI: 10.1073/pnas.1218145110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ciliary body (CB) of the mammalian eye is responsible for secreting aqueous humor to maintain intraocular pressure, which is elevated in the eyes of glaucoma patients. It contains a folded two-layered epithelial structure comprising the nonpigmented inner ciliary epithelium (ICE), the pigmented outer ciliary epithelium (OCE), and the underlying stroma. Although the CB has an important function in the eye, its morphogenesis remains poorly studied. In this study, we show that conditional inactivation of the Jagged 1 (Jag1)-Notch2 signaling pathway in the developing CB abolishes its morphogenesis. Notch2 is expressed in the OCE of the CB, whereas Jag1 is expressed in the ICE. Conditional inactivation of Jag1 in the ICE or Notch2 in the OCE disrupts CB morphogenesis, but neither affects the specification of the CB region. Notch2 signaling in the OCE is required for promoting cell proliferation and maintaining bone morphogenetic protein (BMP) signaling, both of which have been suggested to be important for CB morphogenesis. Although Notch and BMP signaling pathways are known to cross-talk via the interaction between their downstream transcriptional factors, this study suggests that Notch2 maintains BMP signaling in the OCE possibly by repressing expression of secreted BMP inhibitors. Based on our findings, we propose that Jag1-Notch2 signaling controls CB morphogenesis at least in part by regulating cell proliferation and BMP signaling.
Collapse
|
34
|
Shi J, Petrie HT. Activation kinetics and off-target effects of thymus-initiated cre transgenes. PLoS One 2012; 7:e46590. [PMID: 23049709 PMCID: PMC3462198 DOI: 10.1371/journal.pone.0046590] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/05/2012] [Indexed: 12/04/2022] Open
Abstract
The bacteriophage enzyme Cre is a site-specific recombinase widely used to delete loxP-flanked DNA sequences in lineage-specific fashion. Several mouse lines that direct Cre expression to lymphoid progenitors in the thymus have been established, but a side-by-side comparison of when they first become active, and/or their relative efficiency at various developmental stages, has been lacking. In this study, we evaluated these in four common Cre transgenic strains with thymus-initiated promoters (Lck, Cd2, or Cd4). We found that while all of them eventually labeled nearly all thymocytes, their kinetics were dramatically different, and other than Cd4[Cre], did not faithfully recapitulate the expression pattern of the corresponding endogenous gene. Perhaps even more importantly, while thymuses from some strains compared favorably to thymuses from control (Cre-negative) mice, we found that Cre expression could also result in off-target effects, including moderate to severe decreases in thymic cellularity. These effects occurred in the absence of loxP-flanked DNA target genes, and were dose and copy number dependent. Loss of cellularity was attributable to a specific decrease in CD4+8+ immature cells, and corresponds to an increased rate of programmed cell death. In addition to a comprehensive analysis of activation kinetics in thymus-initiated Cre transgenes, our data show that Cre is toxic to CD4+8+ cells in a dose-dependent fashion, and emphasize that the choice of thymus-initiated Cre strain is critically important for minimizing off-target effects of Cre.
Collapse
Affiliation(s)
- Jianjun Shi
- The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Howard T. Petrie
- The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|