1
|
Larsen ML, Nørgaard L, Linge P, Larsen JB, Langkilde HZ, Hauge EM, Thiel S, Voss A, Bengtsson A, Troldborg A. Molecular mechanisms underlying thrombosis in systemic lupus erythematosus - A Systematic review. Semin Arthritis Rheum 2025; 72:152707. [PMID: 40086157 DOI: 10.1016/j.semarthrit.2025.152707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Patients with systemic lupus erythematosus (SLE) face an approximately 30 % risk of thrombosis post-diagnosis. However, there remains significant knowledge gaps regarding causative mechanisms, and there is a lack of specific antithrombotic guidelines. This systematic review aims to examine the existing literature regarding the mechanisms contributing to thrombosis risk in SLE, focusing on five predefined procoagulant domains: autoantibodies (including antiphospholipid antibodies (aPL)), the complement system, platelets, the endothelium, and the coagulation system. The review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statements and searched in PubMed and Embase without time restrictions. Risk of bias assessment was performed using a pre-specified evaluation tool. Out of 3,747 initially identified publications, 30 studies were included, with 28 demonstrating robust methodological quality in the risk of bias assessment. The studies were experimental, involving blood samples from cross-sectional SLE cohorts, except one animal -and one case-control study. We identified six different thrombosis mechanisms of action. Most studies concentrated on autoantibodies, predominantly aPL. Shared mechanisms between aPL and other autoantibodies may account for the increased thrombosis risk in aPL-negative SLE patients. Significant knowledge gaps remain, particularly regarding the role of the complement system in SLE-related thrombosis. Also, most research relies on cross-sectional designs, emphasizing the need for prospective cohort studies to better assess clinical factors. Finally, comprehensive studies examining the interactions between multiple procoagulant factors and their link to thrombosis are lacking. Closing these gaps in future research could improve both preventive and personalized treatment strategies for thrombosis in SLE.
Collapse
Affiliation(s)
- Mads L Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.
| | - Laura Nørgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Petrus Linge
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Julie B Larsen
- Department of Clinical Biochemistry, Regional Hospital Horsens, Horsens, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henrik Z Langkilde
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Ellen M Hauge
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Voss
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Anders Bengtsson
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Guo A, Chen Y, Liu H, Gao S, Huang X, Liu D, Zhao Q, Hong X. Predicting and validating the risk of interstitial lung disease in systemic lupus erythematosus. Int J Med Inform 2025; 197:105839. [PMID: 39986125 DOI: 10.1016/j.ijmedinf.2025.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE Our study aimed toconstruct a web-based calculator to predict high risk patients of interstitial lung disease (ILD) in systemic lupus erythematosus (SLE). METHODS This retrospective study comprised training and test cohorts, including 581 and 86 patients, respectively. Univariate, least absolute shrinkage and selection operator (LASSO), random forest (RF), eXtreme Gradient Boosting (XGBoost), and logistic regression (LR) analyses were performed. A Venn diagram was used to investigate critical features. Receiver operating characteristic (ROC) analysis and decision curve analysis were used to evaluate the model's performance. Risk stratification was performed using the best ROC cut-off value. The web-based calculator was established using Streamlit software. RESULTS Characteristics such as Raynaud's phenomenon, pulmonary artery systolic pressure, serositis, anti-U1RNP antibodies, anti-Ro52 antibodies, C-reactive protein, age, and disease course were associated with SLE complicated by ILD (SLE-ILD). LR-Venn, RF-Venn, XGBoost-Venn, LASSO-logic, RF, and XGBoost models were constructed. In training cohort, the XGBoost model demonstrated the highest area under the ROC curve (AUC, 0.890; cut-off value, 0.197; sensitivity, 0.793; specificity, 0.836) and provideda netbenefitin decision curve analysis (odds ratio [OR] for SLE-ILD [high- vs. low-risk], 19.6). The model was validated in the test cohort (AUC, 0.866; sensitivity, 0.722; specificity, 0.897; OR, 22.7). Furthermore, an XGBoost model-based web calculator was developed. CONCLUSION Our web calculator (https://st-xgboost-app-kcv9qm.streamlit.app/) greatly improved risk prediction for SLE-ILD and was implemented effectively.
Collapse
Affiliation(s)
- Aoyang Guo
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China; Department of Standardized Training of Residents, Shenzhen People's Hospital, Shenzhen, China
| | - Yanran Chen
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China
| | - Hongyang Liu
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China
| | - Shujun Gao
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China
| | - Xinyi Huang
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Dongzhou Liu
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Qianqian Zhao
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Xiaoping Hong
- The Second Clinical Medical College of Jinan University, Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, China; Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
3
|
Tan YY, Liu J, Su QP. Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights. SENSORS (BASEL, SWITZERLAND) 2025; 25:491. [PMID: 39860861 PMCID: PMC11768609 DOI: 10.3390/s25020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses. Live-cell imaging has become an invaluable tool for dissecting these complexes. Despite its benefits, live imaging of platelets presents significant technical challenges. This review addresses these challenges, identifying key areas in need of further development and proposing possible solutions. We also focus on the dynamic processes of platelet adhesion, activation, and aggregation in haemostasis and thrombosis, applying imaging capacities from the microscale to the nanoscale. By exploring various live imaging techniques, we demonstrate how these approaches offer crucial insights into platelet biology and deepen our understanding of these three core events. In conclusion, this review provides an overview of the imaging methods currently available for studying platelet dynamics, guiding researchers in selecting suitable techniques for specific studies. By advancing our knowledge of platelet behaviour, these imaging methods contribute to research on haemostasis, thrombosis, and platelet-related diseases, ultimately aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Yuping Yolanda Tan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
4
|
Rolling CC, Barrett TJ, Berger JS. Platelet-monocyte aggregates: molecular mediators of thromboinflammation. Front Cardiovasc Med 2023; 10:960398. [PMID: 37255704 PMCID: PMC10225702 DOI: 10.3389/fcvm.2023.960398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Platelets, key facilitators of primary hemostasis and thrombosis, have emerged as crucial cellular mediators of innate immunity and inflammation. Exemplified by their ability to alter the phenotype and function of monocytes, activated platelets bind to circulating monocytes to form monocyte-platelet aggregates (MPA). The platelet-monocyte axis has emerged as a key mechanism connecting thrombosis and inflammation. MPA are elevated across the spectrum of inflammatory and autoimmune disorders, including cardiovascular disease, systemic lupus erythematosus (SLE), and COVID-19, and are positively associated with disease severity. These clinical disorders are all characterized by an increased risk of thromboembolic complications. Intriguingly, monocytes in contact with platelets become proinflammatory and procoagulant, highlighting that this interaction is a central element of thromboinflammation.
Collapse
Affiliation(s)
- Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One 2022; 17:e0272703. [PMID: 35943990 PMCID: PMC9362953 DOI: 10.1371/journal.pone.0272703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajan D. Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John J. Perrino
- Stanford Cell Sciences Imaging Facility (CSIF), Stanford University School of Medicine Stanford, Stanford, California, United States of America
| | - Damek V. Spacek
- Karius Incorporated, Redwood City, California, United States of America
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
6
|
Wienkamp AK, Erpenbeck L, Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis. Front Immunol 2022; 13:953129. [PMID: 35979369 PMCID: PMC9376363 DOI: 10.3389/fimmu.2022.953129] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
Platelets are well characterized for their indispensable role in primary hemostasis to control hemorrhage. Research over the past years has provided a substantial body of evidence demonstrating that platelets also participate in host innate immunity. The surface expression of pattern recognition receptors, such as TLR2 and TLR4, provides platelets with the ability to sense bacterial products in their environment. Platelet α-granules contain microbicidal proteins, chemokines and growth factors, which upon release may directly engage pathogens and/or contribute to inflammatory signaling. Additionally, platelet interactions with neutrophils enhance neutrophil activation and are often crucial to induce a sufficient immune response. In particular, platelets can activate neutrophils to form neutrophil extracellular traps (NETs). This specific neutrophil effector function is characterized by neutrophils expelling chromatin fibres decorated with histones and antimicrobial proteins into the extracellular space where they serve to trap and kill pathogens. Until now, the mechanisms and signaling pathways between platelets and neutrophils inducing NET formation are still not fully characterized. NETs were also detected in thrombotic lesions in several disease backgrounds, pointing towards a role as an interface between neutrophils, platelets and thrombosis, also known as immunothrombosis. The negatively charged DNA within NETs provides a procoagulant surface, and in particular NET-derived proteins may directly activate platelets. In light of the current COVID-19 pandemic, the topic of immunothrombosis has become more relevant than ever, as a majority of COVID-19 patients display thrombi in the lung capillaries and other vascular beds. Furthermore, NETs can be found in the lung and other tissues and are associated with an increased mortality. Here, virus infiltration may lead to a cytokine storm that potently activates neutrophils and leads to massive neutrophil infiltration into the lung and NET formation. The resulting NETs presumably activate platelets and coagulation factors, further contributing to the subsequent emergence of microthrombi in pulmonary capillaries. In this review, we will discuss the interplay between platelets and NETs and the potential of this alliance to influence the course of inflammatory diseases. A better understanding of the underlying molecular mechanisms and the identification of treatment targets is of utmost importance to increase patients’ survival and improve the clinical outcome.
Collapse
Affiliation(s)
- Ann-Katrin Wienkamp
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- *Correspondence: Jan Rossaint,
| |
Collapse
|
7
|
Chronic Immune Platelet Activation Is Followed by Platelet Refractoriness and Impaired Contractility. Int J Mol Sci 2022; 23:ijms23137336. [PMID: 35806341 PMCID: PMC9266422 DOI: 10.3390/ijms23137336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Autoimmune diseases, including systemic lupus erythematosus (SLE), have a high risk of thrombotic and hemorrhagic complications associated with altered platelet functionality. We studied platelets from the blood of SLE patients and their reactivity. The surface expression of phosphatidylserine, P-selectin, and active integrin αIIbβ3 were measured using flow cytometry before and after platelet stimulation. Soluble P-selectin was measured in plasma. The kinetics of platelet-driven clot contraction was studied, as well as scanning and transmission electron microscopy of unstimulated platelets. Elevated levels of membrane-associated phosphatidylserine and platelet-attached and soluble P-selectin correlated directly with the titers of IgG, anti-dsDNA-antibodies, and circulating immune complexes. Morphologically, platelets in SLE lost their resting discoid shape, formed membrane protrusions and aggregates, and had a rough plasma membrane. The signs of platelet activation were associated paradoxically with reduced reactivity to a physiological stimulus and impaired contractility that revealed platelet exhaustion and refractoriness. Platelet activation has multiple pro-coagulant effects, and the inability to fully contract (retract) blood clots can be either a hemorrhagic or pro-thrombotic mechanism related to altered clot permeability, sensitivity of clots to fibrinolysis, obstructiveness, and embologenicity. Therefore, chronic immune platelet activation followed by secondary platelet dysfunction comprise an understudied pathogenic mechanism that supports hemostatic disorders in autoimmune diseases, such as SLE.
Collapse
|
8
|
Duan R, Goldmann L, Li Y, Weber C, Siess W, von Hundelshausen P. Spontaneous Platelet Aggregation in Blood Is Mediated by FcγRIIA Stimulation of Bruton’s Tyrosine Kinase. Int J Mol Sci 2021; 23:ijms23010076. [PMID: 35008508 PMCID: PMC8744796 DOI: 10.3390/ijms23010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
High platelet reactivity leading to spontaneous platelet aggregation (SPA) is a hallmark of cardiovascular diseases; however, the mechanism underlying SPA remains obscure. Platelet aggregation in stirred hirudin-anticoagulated blood was measured by multiple electrode aggregometry (MEA) for 10 min. SPA started after a delay of 2–3 min. In our cohort of healthy blood donors (n = 118), nine donors (8%) with high SPA (>250 AU*min) were detected. Pre-incubation of blood with two different antibodies against the platelet Fc-receptor (anti-FcγRIIA, CD32a) significantly reduced high SPA by 86%. High but not normal SPA was dose-dependently and significantly reduced by blocking Fc of human IgG with a specific antibody. SPA was completely abrogated by blood pre-incubation with the reversible Btk-inhibitor (BTKi) fenebrutinib (50 nM), and 3 h after intake of the irreversible BTKi ibrutinib (280 mg) by healthy volunteers. Increased SPA was associated with higher platelet GPVI reactivity. Anti-platelet factor 4 (PF4)/polyanion IgG complexes were excluded as activators of the platelet Fc-receptor. Our results indicate that high SPA in blood is due to platelet FcγRIIA stimulation by unidentified IgG complexes and mediated by Btk activation. The relevance of our findings for SPA as possible risk factor of cardiovascular diseases and pathogenic factor contributing to certain autoimmune diseases is discussed.
Collapse
Affiliation(s)
- Rundan Duan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
| | - Luise Goldmann
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
| | - Ya Li
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-54351
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
9
|
Sun S, Urbanus RT, ten Cate H, de Groot PG, de Laat B, Heemskerk JWM, Roest M. Platelet Activation Mechanisms and Consequences of Immune Thrombocytopenia. Cells 2021; 10:cells10123386. [PMID: 34943895 PMCID: PMC8699996 DOI: 10.3390/cells10123386] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Autoimmune disorders are often associated with low platelet count or thrombocytopenia. In immune-induced thrombocytopenia (IIT), a common mechanism is increased platelet activity, which can have an increased risk of thrombosis. In addition, or alternatively, auto-antibodies suppress platelet formation or augment platelet clearance. Effects of the auto-antibodies are linked to the unique structural and functional characteristics of platelets. Conversely, prior platelet activation may contribute to the innate and adaptive immune responses. Extensive interplay between platelets, coagulation and complement activation processes may aggravate the pathology. Here, we present an overview of the reported molecular causes and consequences of IIT in the most common forms of autoimmune disorders. These include idiopathic thrombocytopenic purpura (ITP), systemic lupus erythematosus (SLE), antiphospholipid syndrome (APS), drug-induced thrombocytopenia (DITP), heparin-induced thrombocytopenia (HIT), COVID-19 vaccine-induced thrombosis with thrombocytopenia (VITT), thrombotic thrombocytopenia purpura (TTP), and hemolysis, the elevated liver enzymes and low platelet (HELLP) syndrome. We focus on the platelet receptors that bind auto-antibodies, the immune complexes, damage-associated molecular patterns (DAMPs) and complement factors. In addition, we review how circulating platelets serve as a reservoir of immunomodulatory molecules. By this update on the molecular mechanisms and the roles of platelets in the pathogenesis of autoimmune diseases, we highlight platelet-based pathways that can predispose for thrombocytopenia and are linked thrombotic or bleeding events.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.S.); (H.t.C.)
- Synapse Research Institute, 6217 KD Maastricht, The Netherlands; (P.G.d.G.); (B.d.L.)
| | - Rolf T. Urbanus
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.S.); (H.t.C.)
- Maastricht University Medical Center, Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Philip G. de Groot
- Synapse Research Institute, 6217 KD Maastricht, The Netherlands; (P.G.d.G.); (B.d.L.)
| | - Bas de Laat
- Synapse Research Institute, 6217 KD Maastricht, The Netherlands; (P.G.d.G.); (B.d.L.)
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.S.); (H.t.C.)
- Synapse Research Institute, 6217 KD Maastricht, The Netherlands; (P.G.d.G.); (B.d.L.)
- Correspondence: (J.W.M.H.); (M.R.); Tel.: +31-68-1032534 (J.W.M.H. & M.R.)
| | - Mark Roest
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.S.); (H.t.C.)
- Synapse Research Institute, 6217 KD Maastricht, The Netherlands; (P.G.d.G.); (B.d.L.)
- Correspondence: (J.W.M.H.); (M.R.); Tel.: +31-68-1032534 (J.W.M.H. & M.R.)
| |
Collapse
|
10
|
Thibault G, Paintaud G, Sung HC, Lajoie L, Louis E, Desvignes C, Watier H, Gouilleux-Gruart V, Ternant D. Association of IgG1 Antibody Clearance with FcγRIIA Polymorphism and Platelet Count in Infliximab-Treated Patients. Int J Mol Sci 2021; 22:ijms22116051. [PMID: 34205175 PMCID: PMC8199937 DOI: 10.3390/ijms22116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
The FcγRIIA/CD32A is mainly expressed on platelets, myeloid and several endothelial cells. Its affinity is considered insufficient for allowing significant binding of monomeric IgG, while its H131R polymorphism (histidine > arginine at position 131) influences affinity for multimeric IgG2. Platelet FcγRIIA has been reported to contribute to IgG-containing immune-complexe clearance. Given our finding that platelet FcγRIIA actually binds monomeric IgG, we investigated the role of platelets and FcγRIIA in IgG antibody elimination. We used pharmacokinetics analysis of infliximab (IgG1) in individuals with controlled Crohn’s disease. The influence of platelet count and FcγRIIA polymorphism was quantified by multivariate linear modelling. The infliximab half-life increased with R allele number (13.2, 14.4 and 15.6 days for HH, HR and RR patients, respectively). It decreased with increasing platelet count in R carriers: from ≈20 days (RR) and ≈17 days (HR) at 150 × 109/L, respectively, to ≈13 days (both HR and RR) at 350 × 109/L. Moreover, a flow cytometry assay showed that infliximab and monomeric IgG1 bound efficiently to platelet FcγRIIA H and R allotypes, whereas panitumumab and IgG2 bound poorly to the latter. We propose that infliximab (and presumably any IgG1 antibody) elimination is partly due to an unappreciated mechanism dependent on binding to platelet FcγRIIA, which is probably tuned by its affinity for IgG2.
Collapse
Affiliation(s)
- Gilles Thibault
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
- Correspondence: ; Tel.: +332-3437-9699
| | - Gilles Paintaud
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hsueh Cheng Sung
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Laurie Lajoie
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Edouard Louis
- Department of Gastroenterology, University Hospital, CHU of Liège, 4000 Liège, Belgium;
| | | | - Celine Desvignes
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hervé Watier
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - Valérie Gouilleux-Gruart
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| |
Collapse
|
11
|
Gartshteyn Y, Mor A, Shimbo D, Khalili L, Kapoor T, Geraldino-Pardilla L, Alexander RV, Conklin J, Dervieux T, Askanase AD. Platelet bound complement split product (PC4d) is a marker of platelet activation and arterial vascular events in Systemic Lupus Erythematosus. Clin Immunol 2021; 228:108755. [PMID: 33984497 DOI: 10.1016/j.clim.2021.108755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
Platelet-bound complement activation products (PC4d) are associated with thrombosis in Systemic Lupus Erythematosus (SLE). This study investigated the effect of PC4d on platelet function, as a mechanistic link to arterial thrombosis. In a cohort of 150 SLE patients, 13 events had occurred within five years of enrollment. Patients with arterial events had higher PC4d levels (13.6 [4.4-24.0] vs. 4.0 [2.5-8.3] net MFI), with PC4d 10 being the optimal cutoff for event detection. The association of arterial events with PC4d remained significant after adjusting for antiphospholipid status, smoking, and prednisone use (p = 0.045). PC4d levels correlated with lower platelet counts (r = -0.26, p = 0.002), larger platelet volumes (r = 0.22, p = 0.009) and increased platelet aggregation: the adenosine diphosphate (ADP) concentration to achieve 50% maximal aggregation (EC50) was lower in patients with PC4d 10 compared with PC4d < 10 (1.6 vs. 3.7, p = 0.038, respectively). These results suggest that PC4d may be a mechanistic marker for vascular disease in SLE.
Collapse
Affiliation(s)
- Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States of America.
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Daichi Shimbo
- Center for Behavioral Cardiovascular Health, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Leila Khalili
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Teja Kapoor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Laura Geraldino-Pardilla
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States of America
| | | | - John Conklin
- Exagen Diagnostics Inc, Vista, CA, United States of America
| | | | - Anca D Askanase
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States of America
| |
Collapse
|
12
|
Patel P, Michael JV, Naik UP, McKenzie SE. Platelet FcγRIIA in immunity and thrombosis: Adaptive immunothrombosis. J Thromb Haemost 2021; 19:1149-1160. [PMID: 33587783 DOI: 10.1111/jth.15265] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Sepsis and autoimmune diseases remain major causes of morbidity and mortality. The last decade has seen a new appreciation of platelets in host defense, in both immunity and thrombosis. Platelets are first responders in the blood to microbes or non-microbial antigens. The role of platelets in physiologic immunity is counterbalanced by their role in pathology, for example, microvascular thrombosis. Platelets encounter microbes and antigens via both innate and adaptive immune processes; platelets also help to shape the subsequent adaptive response. FcγRIIA is a receptor for immune complexes opsonized by IgG or pentraxins, and expressed in humans by platelets, granulocytes, monocytes and macrophages. With consideration of the roles of IgG and Fc receptors, the host response to microbes and autoantigens can be called adaptive immunothrombosis. Here we review newer developments involving platelet FcγRIIA in humans and humanized mice in immunity and thrombosis, with special attention to heparin-induced thrombocytopenia, systemic lupus erythematosus, and bacterial sepsis. Human genetic diversity in platelet receptors and the utility of humanized mouse models are highlighted.
Collapse
Affiliation(s)
- Pravin Patel
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James V Michael
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ulhas P Naik
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven E McKenzie
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Gautam I, Storad Z, Filipiak L, Huss C, Meikle CK, Worth RG, Wuescher LM. From Classical to Unconventional: The Immune Receptors Facilitating Platelet Responses to Infection and Inflammation. BIOLOGY 2020; 9:E343. [PMID: 33092021 PMCID: PMC7589078 DOI: 10.3390/biology9100343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Platelets have long been recognized for their role in maintaining the balance between hemostasis and thrombosis. While their contributions to blood clotting have been well established, it has been increasingly evident that their roles extend to both innate and adaptive immune functions during infection and inflammation. In this comprehensive review, we describe the various ways in which platelets interact with different microbes and elicit immune responses either directly, or through modulation of leukocyte behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (I.G.); (Z.S.); (L.F.); (C.H.); (C.K.M.); (R.G.W.)
| |
Collapse
|
14
|
Meikle CK, Meisler AJ, Bird CM, Jeffries JA, Azeem N, Garg P, Crawford EL, Kelly CA, Gao TZ, Wuescher LM, Willey JC, Worth RG. Platelet-T cell aggregates in lung cancer patients: Implications for thrombosis. PLoS One 2020; 15:e0236966. [PMID: 32776968 PMCID: PMC7416940 DOI: 10.1371/journal.pone.0236966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Platelet-leukocyte aggregates (PLAs) are associated with increased thrombosis risk. The influence of PLA formation is especially important for cancer patients, since thrombosis accounts for approximately 10% of cancer-associated deaths. Our objective was to characterize and quantify PLAs in whole blood samples from lung cancer patients compared to healthy volunteers with the intent to analyze PLA formation in the context of lung cancer-associated thrombosis. Consenting lung cancer patients (57) and healthy volunteers (56) were enrolled at the Dana Cancer Center at the University of Toledo Health Science Campus. Peripheral blood samples were analyzed by flow cytometry. Patient medical history was reviewed through electronic medical records. Most importantly, we found lung cancer patients to have higher percentages of platelet-T cell aggregates (PTCAs) than healthy volunteers among both CD4+ T lymphocyte and CD8+ T lymphocyte populations. Our findings demonstrate that characterization of PTCAs may have clinical utility in differentiating lung cancer patients from healthy volunteers and stratifying lung cancer patients by history of thrombosis.
Collapse
Affiliation(s)
- Claire K. Meikle
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Adam J. Meisler
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Cara M. Bird
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Joseph A. Jeffries
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Nabila Azeem
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Priyanka Garg
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Erin L. Crawford
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Clare A. Kelly
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Tess Z. Gao
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Leah M. Wuescher
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - James C. Willey
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Randall G. Worth
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| |
Collapse
|
15
|
Stepping Up to the Plate(let) against Candida albicans. Infect Immun 2020; 88:IAI.00784-19. [PMID: 31932331 DOI: 10.1128/iai.00784-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is a pervasive commensal fungus that is the most common pathogen responsible for invasive fungal infection (IFI). With incidence of IFI on the rise due to increasing susceptible populations, it is imperative that we investigate how Candida albicans interacts with blood components. When stimulating either human or mouse whole blood with thrombin, we saw a significant decrease in C. albicans survival. We then repeated Candida killing assays with thrombin-stimulated or unstimulated washed platelets and saw a similar decrease in CFU. To investigate whether killing was mediated through surface components or releasable products, platelets were pretreated with an inhibitor of actin polymerization (cytochalasin D [CytoD]). CytoD was able to abrogate C. albicans killing. Moreover, dilution of releasates from thrombin-stimulated platelets showed that the toxicity of the releasates on C. albicans is concentration dependent. We then investigated C. albicans actions on platelet activation, granule release, and aggregation. While C. albicans does not appear to affect alpha or dense granule release, C. albicans exerts a significant attenuation of platelet aggregation to multiple agonists. These results illustrate for the first time that platelets can directly kill C. albicans through release of their granular contents. Additionally, C. albicans can also exert inhibitory effects on platelet aggregation.
Collapse
|
16
|
Wuescher LM, Nishat S, Worth RG. Characterization of a transgenic mouse model of chronic conditional platelet depletion. Res Pract Thromb Haemost 2019; 3:704-712. [PMID: 31624790 PMCID: PMC6781920 DOI: 10.1002/rth2.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Platelets are widely recognized for their role in maintaining hemostasis. Recently, platelets have become appreciated for their varying roles in immunity, neuroprotection, and other physiological processes. While there are currently excellent methods to transiently deplete platelets and models of thrombocytopenia, studying the roles of platelets in chronic processes can be challenging. OBJECTIVE Phenotypic characterization of the PF4-DTR mouse model of conditional platelet depletion compared to antibody depletion. METHODS We describe the ability of the PF4-DTR mouse to maintain chronic platelet depletion, along with examining the bleeding phenotype compared to antibody-mediated platelet depletion. RESULTS Systemic administration of diphtheria toxin resulted in >99% platelet depletion that can be maintained for >2 weeks. When compared to an antibody depletion model, PF4-DTR mice showed similar phenotypes when challenged with tail bleed and saphenous vein measurements of hemostasis. Mice depleted with diphtheria toxin were also able to undergo adoptive transfer of platelets. If the frequency and amount of diphtheria toxin is reduced, mice can be maintained at >40% depletion for >28 days, showing that this model is tunable. CONCLUSIONS When compared to the gold standard of antibody-mediated depletion, PF4-DTR mice showed similar phenotypes and should be considered an important tool for examining the impact of thrombocytopenia over longer periods of time.
Collapse
Affiliation(s)
- Leah M. Wuescher
- Department of Medical Microbiology and ImmunologyUniversity of Toledo College of Medicine and Life SciencesToledoOhio
| | - Sharmeen Nishat
- Department of Medical Microbiology and ImmunologyUniversity of Toledo College of Medicine and Life SciencesToledoOhio
| | - Randall G. Worth
- Department of Medical Microbiology and ImmunologyUniversity of Toledo College of Medicine and Life SciencesToledoOhio
| |
Collapse
|
17
|
Abstract
Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.
Collapse
|
18
|
Liu X, Gorzelanny C, Schneider SW. Platelets in Skin Autoimmune Diseases. Front Immunol 2019; 10:1453. [PMID: 31333641 PMCID: PMC6620619 DOI: 10.3389/fimmu.2019.01453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and small vessel vasculitis are three autoimmune diseases frequently manifested in the skin. They share common pathogenic features, including production of autoantibodies, loss of tolerance to self-antigens, tissue necrosis and fibrosis, vasculopathy and activation of the coagulation system. Platelets occupy a central part within the coagulation cascade and are well-recognized for their hemostatic role. However, recent cumulative evidence implicates their additional and multifaceted immunoregulatory functions. Platelets express immune receptors and they store growth factors, cytokines, and chemokines in their granules enabling a significant contribution to inflammation. A plethora of activating triggers such as damage associated molecular patterns (DAMPs) released from damaged endothelial cells, immune complexes, or complement effector molecules can mediate platelet activation. Activated platelets further foster an inflammatory environment and the crosstalk with the endothelium and leukocytes by the release of immunoactive molecules and microparticles. Further insight into the pathogenic implications of platelet activation will pave the way for new therapeutic strategies targeting autoimmune diseases. In this review, we discuss the inflammatory functions of platelets and their mechanistic contribution to the pathophysiology of SSc, ANCA associated small vessel vasculitis and other autoimmune diseases affecting the skin.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Scherlinger M, Sisirak V, Richez C, Lazaro E, Duffau P, Blanco P. New Insights on Platelets and Platelet-Derived Microparticles in Systemic Lupus Erythematosus. Curr Rheumatol Rep 2018; 19:48. [PMID: 28718063 DOI: 10.1007/s11926-017-0678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Current knowledge on the role of platelets and platelet-derived microparticles (PMPs) on the immune system has been fast-growing. Systemic lupus erythematosus (SLE) is a systemic auto-immune disorder characterized by a loss of tolerance toward nuclear auto-antigens. Although recent studies allowed a better understanding of SLE pathogenesis, there is an urgent need for the development of new treatments and the identification of new biomarkers to assess the disease activity. We describe here the state-of-the-art knowledge linking platelets and PMPs to SLE. RECENT FINDINGS Platelet system activation is a key event in the pathogenesis of SLE. Circulating immune complexes, anti-phospholipid antibodies, and infectious agents such as virus are the main activators of platelets in SLE. Platelet activation can be monitored through different ways such as P-selectin expression, mean platelet volume, or circulating PMP levels, suggesting their potential use as biomarkers. Upon activation, platelets promote type I interferon production, NETosis, dendritic cell activation, and T and B lymphocyte activation, all essential events contributing to the development of SLE. Of interest, platelets also play a fundamental role in SLE organ disease such as the development of cardiovascular, thrombotic, and renal diseases. Finally, we review current knowledge on drugs targeting platelet activation and their potential impact on SLE pathogenesis. Platelets play a major role in SLE pathogenesis and organ disease and represent a great potential for novel biomarkers and drug development.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Estibaliz Lazaro
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France
| | - Pierre Duffau
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076, Bordeaux, France
| | - Patrick Blanco
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.
| |
Collapse
|
20
|
Scherlinger M, Guillotin V, Truchetet ME, Contin-Bordes C, Sisirak V, Duffau P, Lazaro E, Richez C, Blanco P. Systemic lupus erythematosus and systemic sclerosis: All roads lead to platelets. Autoimmun Rev 2018; 17:625-635. [PMID: 29635077 DOI: 10.1016/j.autrev.2018.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are two phenotypically distincts inflammatory systemic diseases. However, SLE and SSc share pathogenic features such as interferon signature, loss of tolerance against self-nuclear antigens and increased tissue damage such as fibrosis. Recently, platelets have emerged as a major actor in immunity including auto-immune diseases. Both SLE and SSc are characterized by strong platelet system activation, which is likely to be both the witness and culprit in their pathogenesis. Platelet activation pathways are multiple and sometimes redundant. They include immune complexes, Toll-like receptors activation, antiphospholipid antibodies and ischemia-reperfusion associated with Raynaud phenomenon. Once activated, platelet promote immune dysregulation by priming interferon production by immune cells, providing CD40L supporting B lymphocyte functions and providing a source of autoantigens. Platelets are actively implicated in SLE and SSc end-organ damage such as cardiovascular and renal disease and in the promotion of tissue fibrosis. Finally, after understanding the main pathogenic implications of platelet activation in both diseases, we discuss potential therapeutics targeting platelets.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vivien Guillotin
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Elise Truchetet
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Cécile Contin-Bordes
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pierre Duffau
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Estibaliz Lazaro
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Blanco
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
21
|
Polgár L, Soós P, Lajkó E, Láng O, Merkely B, Kőhidai L. Platelet impedance adhesiometry: A novel technique for the measurement of platelet adhesion and spreading. Int J Lab Hematol 2018. [PMID: 29512878 DOI: 10.1111/ijlh.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Thrombogenesis plays an important role in today's morbidity and mortality. Antithrombotics are among the most frequently prescribed drugs. Thorough knowledge of platelet function is needed for optimal clinical care. Platelet adhesion is a separate subprocess of platelet thrombus formation; still, no well-standardized technique for the isolated measurement of platelet adhesion exists. Impedimetry is one of the most reliable, state-of-art techniques to analyze cell adhesion, proliferation, viability, and cytotoxicity. We propose impedimetry as a feasible novel method for the isolated measurement of 2 significant platelet functions: adhesion and spreading. METHODS Laboratory reference platelet agonists (epinephrine, ADP, and collagen) were applied to characterize platelet functions by impedimetry using the xCELLigence SP system. Platelet samples were obtained from 20 healthy patients under no drug therapy. Standard laboratory parameters and clinical patient history were also analyzed. RESULTS Epinephrine and ADP increased platelet adhesion in a concentration-dependent manner, while collagen tended to have a negative effect. Serum sodium and calcium levels and age had a negative correlation with platelet adhesion induced by epinephrine and ADP, while increased immunoreactivity connected with allergic diseases was associated with increased platelet adhesion induced by epinephrine and ADP. ADP increased platelet spreading in a concentration-dependent manner. CONCLUSION Impedimetry proved to be a useful and sensitive method for the qualitative and quantitated measurement of platelet adhesion, even differentiating between subgroups of a healthy population. This novel technique is offered as an important method in the further investigation of platelet function.
Collapse
Affiliation(s)
- L Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - P Soós
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - E Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - O Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - B Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - L Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
de Groot PG, de Laat B. Mechanisms of thrombosis in systemic lupus erythematosus and antiphospholipid syndrome. Best Pract Res Clin Rheumatol 2017; 31:334-341. [PMID: 29224675 DOI: 10.1016/j.berh.2017.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 12/16/2022]
Abstract
The presence of antiphospholipid antibodies is one of the most common acquired risk factors for thrombosis. Antiphospholipid antibodies is a collective term for a set of autoantibodies with closely related but different specificity. Experiments in which isolated patient antibodies were injected into mice have shown that a specific subset of autoantibodies, those directed against the first domain of plasma protein β2-glycoprotein I, can explain the increased risk of thrombosis. Experiments performed with these mice have shown that autoantibodies against β2-glycoprotein I bind to and activate cells such as endothelial cells, monocytes, and platelets. Activation of these cells, all involved in the regulation of hemostasis, results in a shift towards a prothrombotic state. How this process is regulated, whether this is the only mechanism involved, and whether this is the only subpopulation responsible for the increased thrombotic risk is unknown. In this review, we will critically discuss what is known and what is debatable on the pathophysiology of antiphospholipid syndrome.
Collapse
Affiliation(s)
| | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
23
|
Meikle CKS, Kelly CA, Garg P, Wuescher LM, Ali RA, Worth RG. Cancer and Thrombosis: The Platelet Perspective. Front Cell Dev Biol 2017; 4:147. [PMID: 28105409 PMCID: PMC5214375 DOI: 10.3389/fcell.2016.00147] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
Platelets are critical to hemostatic and immunological function, and are key players in cancer progression, metastasis, and cancer-related thrombosis. Platelets interact with immune cells to stimulate anti-tumor responses and can be activated by immune cells and tumor cells. Platelet activation can lead to complex interactions between platelets and tumor cells. Platelets facilitate cancer progression and metastasis by: (1) forming aggregates with tumor cells; (2) inducing tumor growth, epithelial-mesenchymal transition, and invasion; (3) shielding circulating tumor cells from immune surveillance and killing; (4) facilitating tethering and arrest of circulating tumor cells; and (5) promoting angiogenesis and tumor cell establishment at distant sites. Tumor cell-activated platelets also predispose cancer patients to thrombotic events. Tumor cells and tumor-derived microparticles lead to thrombosis by secreting procoagulant factors, resulting in platelet activation and clotting. Platelets play a critical role in cancer progression and thrombosis, and markers of platelet-tumor cell interaction are candidates as biomarkers for cancer progression and thrombosis risk.
Collapse
Affiliation(s)
- Claire K S Meikle
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Clare A Kelly
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Priyanka Garg
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Leah M Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Ramadan A Ali
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Randall G Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
24
|
Habets KLL, Trouw LA, Levarht EWN, Korporaal SJA, Habets PAM, de Groot P, Huizinga TWJ, Toes REM. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res Ther 2015; 17:209. [PMID: 26268317 PMCID: PMC4548712 DOI: 10.1186/s13075-015-0665-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction Although the role of platelets in rheumatoid arthritis (RA) is relatively unexplored, recent studies point towards a contribution of platelets in arthritis. We set out to determine platelet phenotype in RA and studied whether this could be influenced by the presence of anti-citrullinated protein antibodies (ACPA). Methods Platelets from healthy controls were incubated in the presence of plasma of patients with RA or age- and sex-matched healthy controls and plasma from ACPAneg or ACPApos patients or in the presence of plate-bound ACPA. Characteristics of platelets isolated from patients with RA were correlated to disease activity. Results Platelets isolated from healthy controls displayed markers of platelet activation in the presence of plasma derived from RA patients, as determined by P-selectin expression, formation of aggregates and secretion of soluble CD40 ligand (sCD40L). Furthermore, levels of P-selectin expression and sCD40L release correlated with high ACPA titres. In accordance with these findings, enhanced platelet activation was observed after incubation with ACPApos plasma versus ACPAneg plasma. Pre-incubation of platelets with blocking antibodies directed against low-affinity immunoglobulin G receptor (FcγRIIa) completely inhibited the ACPA-mediated activation. In addition, expression of P-selectin measured as number of platelets correlated with Disease Activity Score in 44 joints, C-reactive protein level, ACPA status and ACPA level. Conclusions We show for the first time that ACPA can mediate an FcγRIIa-dependent activation of platelets. As ACPA can be detected several years before RA disease onset and activated platelets contribute to vascular permeability, these data implicate a possible role for ACPA-mediated activation of platelets in arthritis onset. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0665-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim L L Habets
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| | - E W Nivine Levarht
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| | - Suzanne J A Korporaal
- Department of Clinical Chemistry and Haematology, University Medical Centre, Utrecht, the Netherlands. .,Division of Biopharmaceutics, Leiden Amsterdam Centre for Drug Research, University of Leiden, Leiden, the Netherlands.
| | - Petra A M Habets
- Knowledge Centre Forensic Psychiatric Care, Rekem Psychiatric Hospital, Rekem, Belgium.
| | - Philip de Groot
- Department of Clinical Chemistry and Haematology, University Medical Centre, Utrecht, the Netherlands.
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| |
Collapse
|
25
|
Arman M, Krauel K. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J Thromb Haemost 2015; 13:893-908. [PMID: 25900780 DOI: 10.1111/jth.12905] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/10/2015] [Indexed: 01/23/2023]
Abstract
Beyond their prominent role in hemostasis and thrombosis, platelets are increasingly recognized as having immunologic functions. Supporting this, human platelets express FcγRIIA (CD32a), a low-affinity Fc receptor (FcR) for the constant region of IgG that recognizes immune complexes (ICs) and IgG-opsonized cells with high avidity. In leukocytes, FcγRIIA engagement initiates strong effector functions that are key for immune and inflammatory responses, including cytokine release, antibody-dependent cell-mediated killing of pathogens, and internalization of ICs. However, the physiologic relevance of platelet-expressed FcγRIIA has received little attention in previous reviews on FcRs. This article summarizes and discusses the available information on human platelet FcγRIIA. The importance of this receptor in heparin-induced thrombocytopenia, a prothrombotic adverse drug effect, is well documented. However, studies demonstrating platelet activation by IgG-opsonized bacteria point to the physiologic relevance of platelet FcγRIIA in immunity. In this context, platelet activation and secretion may facilitate both a direct antimicrobial function of platelets and crosstalk with other immune cells. Additionally, a role for platelet FcγRIIA in IgG-independent hemostasis and physiologic thrombosis, by means of amplifying integrin αII b β3 outside-in signaling, has also been proposed. Nonetheless, the thrombotic complications found in some infective and autoimmune diseases may result from unbalanced FcγRIIA-mediated platelet aggregation. Moreover, FcγRIIA is not expressed in mice, and thrombocytopenia and/or thrombotic events found after drug administration can only be recapitulated by the use of human FcγRIIA-transgenic mice. Altogether, the available data support a functional role for platelet FcγRIIA in health and disease, and emphasize the need for further investigation of this receptor.
Collapse
Affiliation(s)
- M Arman
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - K Krauel
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Wuescher LM, Takashima A, Worth RG. A novel conditional platelet depletion mouse model reveals the importance of platelets in protection against Staphylococcus aureus bacteremia. J Thromb Haemost 2015; 13:303-13. [PMID: 25418277 PMCID: PMC4320667 DOI: 10.1111/jth.12795] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/16/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Platelets are critical cells for maintaining vascular hemostasis, but their activities in other processes are becoming apparent. Specifically, the ability of platelets to recognize and respond to infectious agents is an important area of investigation. To understand the physiologic roles of platelets in vivo, most researchers have used antibody-mediated platelet depletion, which has certain limitations. OBJECTIVE To develop an optimal system with which to study the contribution of platelets to protection against S. aureus blood infection. METHODS Here, we describe a novel experimental model of conditional platelet depletion based on the Cre-recombinase cell ablation system. With this technology, the simian diphtheria toxin receptor was expressed in platelet factor 4-positive cells (megakaryocytes and platelets). RESULTS Systemic administration of diphtheria toxin every 48 h resulted in reduced platelet numbers that became undetectable after 6 days. Although platelets were depleted, no other blood cells were affected. With this newly developed model, the functional contributions of platelets to protection against Staphylococcus aureus bacteremia was examined. Platelet-depleted mice succumbed to infection more rapidly than wild-type mice, and had a significantly higher bacterial burden in kidneys, elevated levels of serum markers of kidney damage, and increased levels of cytokines indicative of septic shock. CONCLUSIONS Here, we illustrate a new mouse model for conditional platelet depletion, and implicate platelets as important participants in the immune response to bacterial blood infections.
Collapse
Affiliation(s)
- Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, 43614, USA
| | - Akira Takashima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, 43614, USA
| | - Randall G. Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, 43614, USA
| |
Collapse
|
27
|
Bontadi A, Ruffatti A, Falcinelli E, Giannini S, Marturano A, Tonello M, Hoxha A, Pengo V, Punzi L, Momi S, Gresele P. Platelet and endothelial activation in catastrophic and quiescent antiphospholipid syndrome. Thromb Haemost 2013; 109:901-8. [PMID: 23572134 DOI: 10.1160/th12-03-0212] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 02/17/2013] [Indexed: 11/05/2022]
Abstract
Antiphospholipid antibodies (aPL) seem to induce a prothrombotic state by activating endothelium and platelets, but no studies have evaluated systematically the effects of aPL from patients with the antiphospholipid syndrome (APS) in quiescent versus catastrophic phase. Our aims were to evaluate the in vitro effects on platelet activation of anti-β2 glycoprotein I (anti-β2GPI) antibodiesisolated from APS patientin either quiescent or catastrophic phase and to investigate ex vivo platelet and endothelial activation in patients with quiescent or catastrophic APS. Anti-β2GPI antibodies were isolated from plasma of a pregnant woman in two different stages of APS (quiescent and catastrophic, respectively). They were co-incubated with washed platelets from healthy controls that were then challenged with TRAP-6 (thrombin receptor activating peptide 6) and the expression of P- selectin (P-sel) on platelets was assessed by flow cytometry. Moreover, plasma samples from six patients with quiescent, four with catastrophic APS and 10 controls were assessed for several markers of platelet and endothelial activation. The results showed that purified anti-β2GPI antibodies co-incubated with platelets enhanced TRAP-6- induced platelet P-sel expression. Notably, anti-β2GPI antibodies isolated during the catastrophic phase enhanced platelet P-sel expression more than antibodies isolated from the same patient in the quiescent stage of disease. Moreover, APS patients had significantly higher plasma levels of soluble (s) Psel, sCD40 ligand, soluble vascular cell adhesion molecule 1 and monocyte chemoattractant protein 1 than control subjects. In addition, sP-sel and von Willebrand factor activity were significantly higher during catastrophic than in quiescent phase.
Collapse
Affiliation(s)
- A Bontadi
- Reumatologia, Policlinico Universitario, Via Giustiniani 2, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|