1
|
Chen G, Xie H, Rao X, Liu X, Otikovs M, Frydman L, Sun P, Zhang Z, Pan F, Yang L, Zhou X, Liu M, Bao Q, Liu C. MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1907-1921. [PMID: 40030768 DOI: 10.1109/tmi.2024.3523949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based on multi-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method's performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.
Collapse
|
2
|
Bonlawar J, Setia A, Challa RR, Vallamkonda B, Mehata AK, Vaishali, Viswanadh MK, Muthu MS. Targeted Nanotheransotics: Integration of Preclinical MRI and CT in the Molecular Imaging and Therapy of Advanced Diseases. Nanotheranostics 2024; 8:401-426. [PMID: 38751937 PMCID: PMC11093717 DOI: 10.7150/ntno.95791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
The integration of preclinical magnetic resonance imaging (MRI) and computed tomography (CT) methods has significantly enhanced the area of therapy and imaging of targeted nanomedicine. Nanotheranostics, which make use of nanoparticles, are a significant advancement in MRI and CT imaging. In addition to giving high-resolution anatomical features and functional information simultaneously, these multifunctional agents improve contrast when used. In addition to enabling early disease detection, precise localization, and personalised therapy monitoring, they also enable early disease detection. Fusion of MRI and CT enables precise in vivo tracking of drug-loaded nanoparticles. MRI, which provides real-time monitoring of nanoparticle distribution, accumulation, and release at the cellular and tissue levels, can be used to assess the efficacy of drug delivery systems. The precise localization of nanoparticles within the body is achievable through the use of CT imaging. This technique enhances the capabilities of MRI by providing high-resolution anatomical information. CT also allows for quantitative measurements of nanoparticle concentration, which is essential for evaluating the pharmacokinetics and biodistribution of nanomedicine. In this article, we emphasize the integration of preclinical MRI and CT into molecular imaging and therapy for advanced diseases.
Collapse
Affiliation(s)
- Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Vaishali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram 522302, AP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
3
|
Rosko LM, Gentile T, Smith VN, Manavi Z, Melchor GS, Hu J, Shults NV, Albanese C, Lee Y, Rodriguez O, Huang JK. Cerebral Creatine Deficiency Affects the Timing of Oligodendrocyte Myelination. J Neurosci 2023; 43:1143-1153. [PMID: 36732069 PMCID: PMC9962777 DOI: 10.1523/jneurosci.2120-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cerebral creatine deficiency syndrome (CCDS) is an inborn error of metabolism characterized by intellectual delays, seizures, and autistic-like behavior. However, the role of endogenously synthesized creatine on CNS development and function remains poorly understood. Here, magnetic resonance spectroscopy of adult mouse brains from both sexes revealed creatine synthesis is dependent on the expression of the enzyme, guanidinoacetate methyltransferase (GAMT). To identify Gamt-expressed cells, and how Gamt affects postnatal CNS development, we generated a mouse line by knocking-in a GFP, which is expressed on excision of Gamt We found that Gamt is expressed in mature oligodendrocytes during active myelination in the developing postnatal CNS. Homozygous deletion of Gamt resulted in significantly reduced mature oligodendrocytes and delayed myelination in the corpus callosum. Moreover, the absence of endogenous creatine resulted in altered AMPK signaling in the brain, reduced brain creatine kinase expression in cortical neurons, and signs of axonal damage. Experimental demyelination in mice after tamoxifen-induced conditional deletion of Gamt in oligodendrocyte lineage cells resulted in delayed maturation of oligodendrocytes and myelin coverage in lesions. Moreover, creatine and cyclocreatine supplementation can enhance remyelination after demyelination. Our results suggest endogenously synthesized creatine controls the bioenergetic demand required for the timely maturation of oligodendrocytes during postnatal CNS development, and that delayed myelination and altered CNS energetics through the disruption of creatine synthesis might contribute to conditions, such as CCDS.SIGNIFICANCE STATEMENT Cerebral creatine deficiency syndrome is a rare disease of inborn errors in metabolism, which is characterized by intellectual delays, seizures, and autism-like behavior. We found that oligodendrocytes are the main source of endogenously synthesized creatine in the adult CNS, and the loss of endogenous creatine synthesis led to delayed myelination. Our study suggests impaired cerebral creatine synthesis affects the timing of myelination and may impact brain bioenergetics.
Collapse
Affiliation(s)
- Lauren M Rosko
- Department of Biology, Georgetown University, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057
| | - Tyler Gentile
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Victoria N Smith
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Zeeba Manavi
- Department of Biology, Georgetown University, Washington, DC 20057
| | - George S Melchor
- Department of Biology, Georgetown University, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057
| | - Jingwen Hu
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057
| |
Collapse
|
4
|
The effect of magnetic guiding BMSCs on hypoxic-ischemic brain damage via magnetic resonance imaging evaluation. Magn Reson Imaging 2021; 79:59-65. [PMID: 33727146 DOI: 10.1016/j.mri.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/16/2020] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a critical disease in pediatric neurosurgery with high mortality rate and frequently leads to neurological sequelae. The role of bone marrow mesenchymal stem cells (BMSCs) in neuroprotection has been recognized. However, using the imaging methods to dynamically assess the neuroprotective effects of BMSCs is rarely reported. In this study, BMSCs were isolated, cultured and identified. Flow cytometry assay had shown the specific surface molecular markers of BMSCs, which indicated that the cultivated cells were purified BMSCs. The results demonstrated that CD29 and CD90 were highly expressed, whilst CD45 and CD11b were negatively expressed. Further, BMSCs were transplanted into Sprague Dawley (SD) rats established HIBD via three ways, including lateral ventricle (LV) injection, tail vein (TV) injection, and LV injection with magnetic guiding. Magnetic resonance imaging (MRI) was used to monitor and assess the treatment effect of super paramagnetic iron oxide (SPIO)-labeled BMSCs. The mean kurtosis (MK) values from diffusion kurtosis imaging (DKI) exhibited the significant differences. It was found that the MK value of HIBD group increased compared with that in Sham. At the meantime, the MK values of LV + HIBD, TV + HIBD and Magnetic+LV + HIBD groups decreased compared with that in HIBD group. Among these, the MK value reduced most significantly in Magnetic+LV + HIBD group. MRI illustrated that the treatment effect of Magnetic+LV + HIBD group was best. In addition, HE staining and TUNEL assay measured the pathological changes and apoptosis of brain tissues, which further verified the MRI results. All data suggest that magnetic guiding BMSCs, a targeted delivery way, is a new strategic theory for HIBD treatment. The DKI technology of MRI can dynamically evaluate the neuroprotective effects of transplanted BMSCs in HIBD.
Collapse
|
5
|
Kitz J, Goodale D, Postenka C, Lowes LE, Allan AL. EMT-independent detection of circulating tumor cells in human blood samples and pre-clinical mouse models of metastasis. Clin Exp Metastasis 2021; 38:97-108. [PMID: 33415568 PMCID: PMC7882592 DOI: 10.1007/s10585-020-10070-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/25/2020] [Indexed: 01/31/2023]
Abstract
Circulating tumor cells (CTCs) present an opportunity to detect/monitor metastasis throughout disease progression. The CellSearch® is currently the only FDA-approved technology for CTC detection in patients. The main limitation of this system is its reliance on epithelial markers for CTC isolation/enumeration, which reduces its ability to detect more aggressive mesenchymal CTCs that are generated during metastasis via epithelial-to-mesenchymal transition (EMT). This Technical Note describes and validates two EMT-independent CTC analysis protocols; one for human samples using Parsortix® and one for mouse samples using VyCap. Parsortix® identifies significantly more mesenchymal human CTCs compared to the clinical CellSearch® test, and VyCap identifies significantly more CTCs compared to our mouse CellSearch® protocol regardless of EMT status. Recovery and downstream molecular characterization of CTCs is highly feasible using both Parsortix® and VyCap. The described CTC protocols can be used by investigators to study CTC generation, EMT and metastasis in both pre-clinical models and clinical samples.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
- Department of Anatomy & Cell Biology, Western University, London, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
| | - Carl Postenka
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
| | - Lori E Lowes
- Flow Cytometry, London Health Sciences Centre, London, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, Canada.
- Department of Anatomy & Cell Biology, Western University, London, Canada.
- Department of Oncology, Western University, London, Canada.
- Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
6
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
7
|
Li L, Wu C, Pan L, Li X, Kuang A, Cai H, Tian R. Bombesin-functionalized superparamagnetic iron oxide nanoparticles for dual-modality MR/NIRFI in mouse models of breast cancer. Int J Nanomedicine 2019; 14:6721-6732. [PMID: 31686805 PMCID: PMC6708890 DOI: 10.2147/ijn.s211476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/06/2019] [Indexed: 02/05/2023] Open
Abstract
Background The early and accurate detection afforded by imaging techniques significantly reduces mortality in cancer patients. However, it is still a great challenge to achieve satisfactory performance in tumor diagnosis using any single-modality imaging method. Magnetic resonance imaging (MRI) has excellent soft tissue contrast and high spatial resolution, but it suffers from low sensitivity. Fluorescence imaging has high sensitivity, but it is limited by penetration depth. Thus, the combination of the two modes could result in synergistic benefits. Here, we design and characterize a novel dual-modality MR/near-infrared fluorescence imaging (MR/NIRFI) nanomicelle and test its imaging properties in mouse models of breast cancer. Methods The nanomicelles were prepared by incorporating superparamagnetic iron oxide (SPIO) nanoparticles into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] micelles to which an NIRF dye and a tumor-targeted peptide (N3-Lys-bombesin, Bom) were conjugated. The nanomicelles were characterized for particle size, zeta potential and morphology. The transverse relaxivity, targeting specificity and imaging ability of the nanomicelles for MR/NIRFI were also examined. Results The fabricated nanomicelles displayed a well-defined spherical morphology with a mean diameter of 145±56 nm and a high transverse relaxivity (493.9 mM−1·s−1, 3.0T). In MRI, the T2 signal reduction of tumors in the Bom-targeted group was 24.1±5.7% at 4 hrs postinjection, whereas only a 0.1±3.4% (P=0.003) decrease was observed in the nontargeted group. In NIRFI, the contrast increased gradually in the targeted group, and the tumor/muscle ratio increased from 3.7±0.3 at 1 hr to 4.7±0.1 at 2 hrs and to 6.4±0.2 at 4 hrs. No significant changes were observed in the nontargeted group at any time points. Conclusion Considering all our results, we conclude that these novel MR/NIRFI dual-modality nanomicelles could be promising contrast agents for cancer diagnosis.
Collapse
Affiliation(s)
- Li Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Changqiang Wu
- Sichuan Key Laboratory of Medical Imaging & School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, People's Republic of China
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Anren Kuang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
8
|
Ravoori MK, Margalit O, Singh S, Kim SH, Wei W, Menter DG, DuBois RN, Kundra V. Magnetic Resonance Imaging and Bioluminescence Imaging for Evaluating Tumor Burden in Orthotopic Colon Cancer. Sci Rep 2019; 9:6100. [PMID: 30988343 PMCID: PMC6465293 DOI: 10.1038/s41598-019-42230-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Quantifying tumor burden is important for following the natural history of orthotopic colon cancer and therapeutic efficacy. Bioluminescence imaging (BLI) is commonly used for such assessment and has both advantages and limitations. We compared BLI and magnetic resonance imaging (MRI) for quantifying orthotopic tumors in a mouse model of colon cancer. Among sequences tested, T2-based MRI imaging ranked best overall for colon cancer border delineation, contrast, and conspicuity. Longitudinal MRI detected tumor outside the colon, indistinguished by BLI. Colon tumor weights calculated from MRI in vivo correlated highly with tumor weights measured ex vivo whereas the BLI signal intensities correlated relatively poorly and this difference in correlations was highly significant. This suggests that MRI may more accurately assess tumor burden in longitudinal monitoring of orthotopic colon cancer in this model as well as in other models.
Collapse
Affiliation(s)
- M K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - O Margalit
- Department of Oncology, Chaim Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-HaShomer, 52621, Israel
| | - S Singh
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - W Wei
- Department of Biostatistics, U.T.-M.D. Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - D G Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, U.T.-M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - R N DuBois
- MUSC College of Medicine, Dean's Office, 96 Jonathan Lucas Street, Suite 601, MSC 617, Charleston, SC, 29425, USA
| | - V Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA. .,Department of Radiology, U.T.-M.D. Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Moutinho-Ribeiro P, Iglesias-Garcia J, Gaspar R, Macedo G. Early pancreatic cancer - The role of endoscopic ultrasound with or without tissue acquisition in diagnosis and staging. Dig Liver Dis 2019; 51:4-9. [PMID: 30337098 DOI: 10.1016/j.dld.2018.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers with a 5-year overall survival of less than 6%. Due to its insidious clinical course and unspecific symptoms, the diagnosis is usually late, with only 15-20% patients presenting with potentially curable disease. It is, therefore, extremely important to identify patients with PC at early stages of the disease when tumors may be amenable to surgical resection. For unresectable and borderline resectable PC it is consensual to perform a biopsy to have a cyto/histological confirmation of malignancy before treatment. However, for patients presenting with promptly resectable disease, the role of biopsy is more debatable. There are, in the literature, arguments both for and against the usefulness of a preoperative biopsy. Endoscopic ultrasound (EUS) is an important technique assisting in the diagnosis and staging of PC. EUS-guided tissue acquisition is a well-established tool to demonstrate the malignant nature of a pancreatic lesion. This review focuses on the role of EUS in the diagnosis and staging of PC, and highlights the controversy related to the role of EUS-guided tissue acquisition in the preoperative assessment of patients presenting with promptly resectable tumors (early PC).
Collapse
Affiliation(s)
- Pedro Moutinho-Ribeiro
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal; Faculty of Medicine, University of Porto, Portugal.
| | - Julio Iglesias-Garcia
- Department of Gastroenterology and Hepatology, University Hospital of Santiago de Compostela, Spain
| | - Rui Gaspar
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
| | - Guilherme Macedo
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal; Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
10
|
Kitz J, Lowes LE, Goodale D, Allan AL. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis. Diagnostics (Basel) 2018; 8:E30. [PMID: 29710776 PMCID: PMC6023422 DOI: 10.3390/diagnostics8020030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023] Open
Abstract
The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch® and Parsortix™ platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada.
| | - Lori E Lowes
- Flow Cytometry and Special Hematology, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, Departments of Anatomy & Cell Biology and Oncology, Lawson Health Research Institute, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
11
|
Ghasemi M, Nabipour I, Omrani A, Alipour Z, Assadi M. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2016; 6:310-327. [PMID: 28078184 PMCID: PMC5218860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.
Collapse
Affiliation(s)
- Mojtaba Ghasemi
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical SciencesBushehr, Iran
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad UniversityBushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical SciencesBushehr, Iran
- The Future Studies Group, Iranian Academy of Medical SciencesTehran, Iran
| | - Abdolmajid Omrani
- Division of clinical studies, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical SciencesBushehr, Iran
| | - Zeinab Alipour
- Division of clinical studies, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical SciencesBushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical SciencesBushehr, Iran
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical SciencesBushehr, Iran
| |
Collapse
|
12
|
Situ JQ, Wang XJ, Zhu XL, Xu XL, Kang XQ, Hu JB, Lu CY, Ying XY, Yu RS, You J, Du YZ. Multifunctional SPIO/DOX-loaded A54 Homing Peptide Functionalized Dextran-g-PLGA Micelles for Tumor Therapy and MR Imaging. Sci Rep 2016; 6:35910. [PMID: 27775017 PMCID: PMC5075939 DOI: 10.1038/srep35910] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Specific delivery of chemotherapy drugs and magnetic resonance imaging (MRI) contrast agent into tumor cells is one of the issues to highly efficient tumor targeting therapy and magnetic resonance imaging. Here, A54 peptide-functionalized poly(lactic-co-glycolic acid)-grafted dextran (A54-Dex-PLGA) was synthesized. The synthesized A54-Dex-PLGA could self-assemble to form micelles with a low critical micelle concentration of 22.51 μg. mL−1 and diameter of about 50 nm. The synthetic A54-Dex-PLGA micelles can encapsulate doxorubicin (DOX) as a model anti-tumor drug and superparamagnetic iron oxide (SPIO) as a contrast agent for MRI. The drug-encapsulation efficiency was about 80% and the in vitro DOX release was prolonged to 72 hours. The DOX/SPIO-loaded micelles could specifically target BEL-7402 cell line. In vitro MRI results also proved the specific binding ability of A54-Dex-PLGA/DOX/SPIO micelles to hepatoma cell BEL-7402. The in vivo MR imaging experiments using a BEL-7402 orthotopic implantation model further validated the targeting effect of DOX/SPIO-loaded micelles. In vitro and in vivo anti-tumor activities results showed that A54-Dex-PLGA/DOX/SPIO micelles revealed better therapeutic effects compared with Dex-PLGA/DOX/SPIO micelles and reduced toxicity compared with commercial adriamycin injection.
Collapse
Affiliation(s)
- Jun-Qing Situ
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiao-Juan Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiu-Liang Zhu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao-Ling Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xu-Qi Kang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing-Bo Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chen-Ying Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao-Ying Ying
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
13
|
Moores MT, Hargrave CE, Deegan T, Poulsen M, Harden F, Mengersen K. An external field prior for the hidden Potts model with application to cone-beam computed tomography. Comput Stat Data Anal 2015. [DOI: 10.1016/j.csda.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Li H, Yan K, Shang Y, Shrestha L, Liao R, Liu F, Li P, Xu H, Xu Z, Chu PK. Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging. Acta Biomater 2015; 15:117-26. [PMID: 25595473 DOI: 10.1016/j.actbio.2015.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/28/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023]
Abstract
Polymeric micelles functionalized with folate conjugated bovine serum albumin (FA-BSA) and loaded with superparamagnetic iron oxide nanoparticles (SPIONs) are investigated as a specific contrast agent for tumor targeting and magnetic resonance imaging (MRI) in vitro and in vivo. The SPIONs-loaded polymeric micelles are produced by self-assembly of amphiphilic poly(HFMA-co-MOTAC)-g-PEGMA copolymers and oleic acid modified Fe3O4 nanoparticles and functionalized with FA-BSA by electrostatic interaction. The FA-BSA modified magnetic micelles have a hydrodynamic diameter of 196.1 nm, saturation magnetization of 5.5 emu/g, and transverse relaxivity of 167.0 mM(-1) S(-1). In vitro MR imaging, Prussian blue staining, and intracellular iron determination studies demonstrate that the folate-functionalized magnetic micelles have larger cellular uptake against the folate-receptor positive hepatoma cells Bel-7402 than the unmodified magnetic micelles. In vivo MR imaging conducted on nude mice bearing the Bel-7402 xenografts after bolus intravenous administration reveals excellent tumor targeting and MR imaging capabilities, especially at 24h post-injection. These findings suggest the potential of FA-BSA modified magnetic micelles as targeting MRI probe in tumor detection.
Collapse
Affiliation(s)
- Huan Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Kai Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Yalei Shang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Lochan Shrestha
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Rufang Liao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fang Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Penghui Li
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Haibo Xu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, Hubei 430062, China; Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Paul K Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
15
|
Imaging technologies and basic considerations for welfare of laboratory rodents. Lab Anim (NY) 2015; 44:97-105. [DOI: 10.1038/laban.665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/11/2014] [Indexed: 02/06/2023]
|
16
|
Zöllner FG, Kalayciyan R, Chacón-Caldera J, Zimmer F, Schad LR. Pre-clinical functional Magnetic Resonance Imaging part I: The kidney. Z Med Phys 2014; 24:286-306. [DOI: 10.1016/j.zemedi.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 01/10/2023]
|
17
|
Tian Y, Wang SS, Zhang Z, Rodriguez OC, Petricoin E, Shih IM, Chan D, Avantaggiati M, Yu G, Ye S, Clarke R, Wang C, Zhang B, Wang Y, Albanese C. Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:1009-19. [PMID: 25750594 PMCID: PMC4348060 DOI: 10.1109/tcbb.2014.2338304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.
Collapse
Affiliation(s)
- Ye Tian
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203
| | - Sean S. Wang
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | - Olga C. Rodriguez
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 22030
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | - Daniel Chan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | - Maria Avantaggiati
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203
| | - Shaozhen Ye
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, P. R. China
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Chao Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Bai Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203
| | - Chris Albanese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
18
|
Gerling M, Zhao Y, Nania S, Norberg KJ, Verbeke CS, Englert B, Kuiper RV, Bergström Å, Hassan M, Neesse A, Löhr JM, Heuchel RL. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound. Theranostics 2014; 4:604-613. [PMID: 24723982 PMCID: PMC3982131 DOI: 10.7150/thno.7996] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/04/2014] [Indexed: 11/29/2022] Open
Abstract
PURPOSE In preclinical cancer studies, non-invasive functional imaging has become an important tool to assess tumor development and therapeutic effects. Tumor hypoxia is closely associated with tumor aggressiveness and is therefore a key parameter to be monitored. Recently, photoacoustic (PA) imaging with inherently co-registered high-frequency ultrasound (US) has reached preclinical applicability, allowing parallel collection of anatomical and functional information. Dual-wavelength PA imaging can be used to quantify tissue oxygen saturation based on the absorbance spectrum differences between hemoglobin and deoxyhemoglobin. EXPERIMENTAL DESIGN A new bi-modal PA/US system for small animal imaging was employed to test feasibility and reliability of dual-wavelength PA for measuring relative tissue oxygenation. Murine models of pancreatic and colon cancer were imaged, and differences in tissue oxygenation were compared to immunohistochemistry for hypoxia in the corresponding tissue regions. RESULTS Functional studies proved feasibility and reliability of oxygenation detection in murine tissue in vivo. Tumor models exhibited different levels of hypoxia in localized regions, which positively correlated with immunohistochemical staining for hypoxia. Contrast-enhanced imaging yielded complementary information on tissue perfusion using the same system. CONCLUSION Bimodal PA/US imaging can be utilized to reliably detect hypoxic tumor regions in murine tumor models, thus providing the possibility to collect anatomical and functional information on tumor growth and treatment response live in longitudinal preclinical studies.
Collapse
Affiliation(s)
- Marco Gerling
- 1. Center of Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ying Zhao
- 2. StratCan Preclinical Cancer Test Facility, Karolinska Institutet, Stockholm, Sweden
- 3. Pancreas Research Laboratory, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Salvatore Nania
- 3. Pancreas Research Laboratory, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - K. Jessica Norberg
- 3. Pancreas Research Laboratory, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | | | - Benjamin Englert
- 1. Center of Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Raoul V. Kuiper
- 6. Core Facility for Morphologic Phenotype Analysis, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Bergström
- 1. Center of Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Moustapha Hassan
- 5. Clinical Research Centre, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Albrecht Neesse
- 7. Department of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - J. Matthias Löhr
- 1. Center of Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- 3. Pancreas Research Laboratory, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Rainer L. Heuchel
- 1. Center of Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- 3. Pancreas Research Laboratory, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Affiliation(s)
- Herbert B. Tanowitz
- Departments of Pathology and Medicine; Albert Einstein College of Medicine; Bronx NY USA
| | - Fabiana S. Machado
- Institute of Biological Sciences; Department of Biochemistry and Immunology and Faculty of Medicine; Federal University of Minas Gerais; Belo Horizonte, Brazil
| | - Maria Laura Avantaggiati
- Department of Oncology and Lombardi Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Chris Albanese
- Department of Oncology and Lombardi Cancer Center; Georgetown University Medical Center; Washington, DC USA
- Center for Cellular Reprogramming; Department of Pathology; Georgetown University Medical Center; Washington, DC USA
- Correspondence to: Chris Albanese,
| |
Collapse
|