1
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol 2023; 24:816-834. [PMID: 37491579 DOI: 10.1038/s41580-023-00631-w] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
The formation of new blood vessels, called angiogenesis, is an essential pathophysiological process in which several families of regulators have been implicated. Among these, vascular endothelial growth factor A (VEGFA; also known as VEGF) and its two tyrosine kinase receptors, VEGFR1 and VEGFR2, represent a key signalling pathway mediating physiological angiogenesis and are also major therapeutic targets. VEGFA is a member of the gene family that includes VEGFB, VEGFC, VEGFD and placental growth factor (PLGF). Three decades after its initial isolation and cloning, VEGFA is arguably the most extensively investigated signalling system in angiogenesis. Although many mediators of angiogenesis have been identified, including members of the FGF family, angiopoietins, TGFβ and sphingosine 1-phosphate, all current FDA-approved anti-angiogenic drugs target the VEGF pathway. Anti-VEGF agents are widely used in oncology and, in combination with chemotherapy or immunotherapy, are now the standard of care in multiple malignancies. Anti-VEGF drugs have also revolutionized the treatment of neovascular eye disorders such as age-related macular degeneration and ischaemic retinal disorders. In this Review, we emphasize the molecular, structural and cellular basis of VEGFA action as well as recent findings illustrating unexpected interactions with other pathways and provocative reports on the role of VEGFA in regenerative medicine. We also discuss clinical and translational aspects of VEGFA. Given the crucial role that VEGFA plays in regulating angiogenesis in health and disease, this molecule is largely the focus of this Review.
Collapse
Affiliation(s)
- Lorena Pérez-Gutiérrez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Shi S, Ding C, Zhu S, Xia F, Buscho SE, Li S, Motamedi M, Liu H, Zhang W. PERK Inhibition Suppresses Neovascularization and Protects Neurons During Ischemia-Induced Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37566408 PMCID: PMC10424802 DOI: 10.1167/iovs.64.11.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose Retinal ischemia is a common cause of a variety of eye diseases, such as retinopathy of prematurity, diabetic retinopathy, and vein occlusion. Protein kinase RNA-activated-like endoplasmic reticulum (ER) kinase (PERK), one of the main ER stress sensor proteins, has been involved in many diseases. In this study, we investigated the role of PERK in ischemia-induced retinopathy using a mouse model of oxygen-induced retinopathy (OIR). Methods OIR was induced by subjecting neonatal pups to 70% oxygen at postnatal day 7 (P7) followed by returning to room air at P12. GSK2606414, a selective PERK inhibitor, was orally administrated to pups right after they were returned to room air once daily until 1 day before sample collection. Western blot, immunostaining, and quantitative PCR were used to assess PERK phosphorylation, retinal changes, and signaling pathways in relation to PERK inhibition. Results PERK phosphorylation was prominently increased in OIR retinas, which was inhibited by GSK2606414. Concomitantly, PERK inhibition significantly reduced retinal neovascularization (NV) and retinal ganglion cell (RGC) loss, restored astrocyte network, and promoted revascularization. Furthermore, PERK inhibition downregulated the recruitment/proliferation of mononuclear phagocytes but did not affect OIR-upregulated canonical angiogenic pathways. Conclusions Our results demonstrate that PERK is involved in ischemia-induced retinopathy and its inhibition using GSK2606414 could offer an effective therapeutic intervention aimed at alleviating retinal NV while preventing neuron loss during retinal ischemia.
Collapse
Affiliation(s)
- Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Chun Ding
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shuang Zhu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Seth E. Buscho
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shengguo Li
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Departments of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|
4
|
Xiao T, Zhi Y, Tian F, Huang F, Cheng X, Wu A, Tao L, Guo Z, Shen X. Ameliorative effect of black raspberry anthocyanins on diabetes retinopathy by inhibiting axis protein tyrosine phosphatase 1B-endoplasmic reticulum stress. J Funct Foods 2023; 107:105696. [DOI: 10.1016/j.jff.2023.105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025] Open
|
5
|
Attico E, Galaverni G, Torello A, Bianchi E, Bonacorsi S, Losi L, Manfredini R, Lambiase A, Rama P, Pellegrini G. Comparison between Cultivated Oral Mucosa and Ocular Surface Epithelia for COMET Patients Follow-Up. Int J Mol Sci 2023; 24:11522. [PMID: 37511281 PMCID: PMC10380900 DOI: 10.3390/ijms241411522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Total bilateral Limbal Stem Cell Deficiency is a pathologic condition of the ocular surface due to the loss of corneal stem cells. Cultivated oral mucosa epithelial transplantation (COMET) is the only autologous successful treatment for this pathology in clinical application, although abnormal peripheric corneal vascularization often occurs. Properly characterizing the regenerated ocular surface is needed for a reliable follow-up. So far, the univocal identification of transplanted oral mucosa has been challenging. Previously proposed markers were shown to be co-expressed by different ocular surface epithelia in a homeostatic or perturbated environment. In this study, we compared the transcriptome profile of human oral mucosa, limbal and conjunctival cultured holoclones, identifying Paired Like Homeodomain 2 (PITX2) as a new marker that univocally distinguishes the transplanted oral tissue from the other epithelia. We validated PITX2 at RNA and protein levels to investigate 10-year follow-up corneal samples derived from a COMET-treated aniridic patient. Moreover, we found novel angiogenesis-related factors that were differentially expressed in the three epithelia and instrumental in explaining the neovascularization in COMET-treated patients. These results will support the follow-up analysis of patients transplanted with oral mucosa and provide new tools to understand the regeneration mechanism of transplanted corneas.
Collapse
Affiliation(s)
- Eustachio Attico
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Galaverni
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Torello
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Holostem Terapie Avanzate s.r.l., 41125 Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Susanna Bonacorsi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lorena Losi
- Unit of Pathology, Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Paolo Rama
- SC Ophathalmology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Holostem Terapie Avanzate s.r.l., 41125 Modena, Italy
| |
Collapse
|
6
|
Toragall V, Muzaffar JC, Baskaran V. Lutein loaded double-layered polymer nanocarrier modulate H 2O 2 and CoCl 2 induced oxidative and hypoxia damage and angiogenic markers in ARPE-19 cells. Int J Biol Macromol 2023; 240:124378. [PMID: 37030468 DOI: 10.1016/j.ijbiomac.2023.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Lutein plays a crucial role in the protection of retina by diminishing oxidative stress in diabetic retinopathy (DR). However, its poor aqueous solubility, chemical instability and low bioavailability edge its application. Also, beneficial effects of lutein supplementation and lower lutein levels in the serum and retina of DR patients created an interest in nanopreparation. Hence, lutein-loaded chitosan‑sodium alginate nanocarrier comprising oleic acid core (LNCs) was developed and examined its protective effect on hyperglycemia-mediated changes in oxidative stress and angiogenesis in ARPE-19 cells. Results showed that the LNCs have smaller size and a smooth spherical morphology and did not affect the ARPE-19 cell viability (up to 20 μM) and showed higher cellular uptake in both normal and H2O2-induced stress conditions. LNCs pre-treatment suppressed the H2O2-induced oxidative stress and CoCl2-induced hypoxia-mediated elevation of intracellular reactive oxygen species, protein carbonyl and malondialdehyde levels by restoring antioxidant enzymes in ARPE-19 cells. Further, LNCs protected H2O2-mediated down-regulation of Nrf2 and its downstream antioxidant enzymes. LNCs also restored the H2O2-altered angiogenic (Vascular endothelial growth factor (VEGF), X-box binding protein 1 (XBP-1) and Hypoxia-inducible factor 1-alpha (HIF-1α)), endoplasmic reticulum stress (activating transcription factor-4 (ATF4)) and tight junction (Zona occludens 1 (ZO-1)) markers. To conclude, we could successfully develop biodegradable LNCs to improve the cellular uptake of lutein to treat DR by curtailing oxidative stress in retina.
Collapse
Affiliation(s)
- Veeresh Toragall
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - J C Muzaffar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - Vallikanan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Askari S, Azizi F, Javadpour P, Karimi N, Ghasemi R. Endoplasmic reticulum stress as an underlying factor in leading causes of blindness and potential therapeutic effects of 4-phenylbutyric acid: from bench to bedside. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2145945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sahar Askari
- Neuroscience Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Karimi
- Eye and Skull Base Research Centers, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran5Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
9
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
10
|
Wu K, Zhou K, Zhao M, Xiang L, Mei T, Xu W, Shang B, Liu X, Lai Y, Lin M, Luo J, Zhao L. TCF7L2 promotes ER stress signaling in diabetic retinopathy. Exp Eye Res 2022; 221:109142. [PMID: 35691375 DOI: 10.1016/j.exer.2022.109142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common blindness in working-age adults. Transcription factor 7 like 2 (TCF7L2) is a susceptibility gene of DR, however, its roles in the pathogenesis of DR are still largely unknown. In this study, we found that TCF7L2 was mainly located in the cell nucleus of retinal ganglion cell layer (GCL) and inner nuclear layer (INL), while it was not expressed in the cell nucleus of retinal outer nuclear layer (ONL). Expression of TCF7L2 was significantly elevated in the retinas of db/db diabetic mice and oxygen-induced retinopathy (OIR) mice. Also, in Ad-hTCF7L2 treated hiPSCs-derived retinal progenitor cells (RPCs), activating transcription factor 6 (ATF6)-related endoplasmic reticulum (ER) stress signaling was remarkably activated. Moreover, knockdown of TCF7L2 significantly inhibited ATF6-related ER stress signaling. Furthermore, the data of endothelial permeability assay showed that RPCs pretreated with Ad-hTCF7L2 lead to enhanced monolayer permeability of human umbilical vein endothelial cells (HUVECs), and knockdown of TCF7L2 or ATF6 in RPCs could alleviate the monolayer permeability of HUVECs. Thus, our results showed that TCF7L2 could trigger ATF6-related ER stress signaling and promote vein endothelial cell permeability, which will provide important insight into the role of TCF7L2 in the pathogenesis of DR and contribute to designing potential therapies.
Collapse
Affiliation(s)
- Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kesi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lijun Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
11
|
Wadgaonkar P, Bi Z, Wan J, Fu Y, Zhang Q, Almutairy B, Zhang W, Qiu Y, Thakur C, Hüttemann M, Chen F. Arsenic Activates the ER Stress-Associated Unfolded Protein Response via the Activating Transcription Factor 6 in Human Bronchial Epithelial Cells. Biomedicines 2022; 10:967. [PMID: 35625704 PMCID: PMC9139116 DOI: 10.3390/biomedicines10050967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Arsenic is a well-known human carcinogen associated with a number of cancers, including lung cancers. We have previously shown that long-term exposure to an environmentally relevant concentration of inorganic arsenic (As3+) leads to the malignant transformation of the BEAS2B cells, and some of the transformed cells show cancer stem-like features (CSCs) with a significant upregulation of glycolysis and downregulation of mitochondrial oxidative phosphorylation. In the present report, we investigate the short-term effect of As3+ on the endoplasmic reticulum (ER) stress response-the "unfolded protein response (UPR)" and metabolism in human bronchial epithelial cell line BEAS-2B cells. Treatment of the cells with inorganic As3+ upregulated both glycolysis and mitochondrial respiration. Analysis of ER UPR signaling pathway using a real-time human UPR array revealed that As3+ induced a significant up-regulation of some UPR genes, including ATF6, CEBPB, MAPK10, Hsp70, and UBE2G2. Additional tests confirmed that the induction of ATF6, ATF6B and UBE2G2 mRNAs and/or proteins by As3+ is dose dependent. Chromosome immunoprecipitation and global sequencing indicated a critical role of Nrf2 in mediating As3+-induced expression of these UPR genes. In summary, our data suggest that As3+ is able to regulate the ER stress response, possibly through activating the ATF6 signaling.
Collapse
Affiliation(s)
- Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (Q.Z.); (B.A.)
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 E. Canfield Avenue, Detroit, MI 48201, USA; (J.W.); (M.H.)
| | - Yao Fu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (Q.Z.); (B.A.)
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (Q.Z.); (B.A.)
- College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Riyadh P.O. Box 11961, Saudi Arabia
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 E. Canfield Avenue, Detroit, MI 48201, USA; (J.W.); (M.H.)
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (Q.Z.); (B.A.)
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101, Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
12
|
Lee EJ, Chan P, Chea L, Kim K, Kaufman RJ, Lin JH. ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model. Sci Rep 2021; 11:16356. [PMID: 34381136 PMCID: PMC8357971 DOI: 10.1038/s41598-021-95895-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Retinitis Pigmentosa (RP) is a blinding disease that arises from loss of rods and subsequently cones. The P23H rhodopsin knock-in (P23H-KI) mouse develops retinal degeneration that mirrors RP phenotype in patients carrying the orthologous variant. Previously, we found that the P23H rhodopsin protein was degraded in P23H-KI retinas, and the Unfolded Protein Response (UPR) promoted P23H rhodopsin degradation in heterologous cells in vitro. Here, we investigated the role of a UPR regulator gene, activating transcription factor 6 (Atf6), in rhodopsin protein homeostasis in heterozygous P23H rhodopsin (Rho+/P23H) mice. Significantly increased rhodopsin protein levels were found in Atf6-/-Rho+/P23H retinas compared to Atf6+/-Rho+/P23H retinas at early ages (~ P12), while rhodopsin mRNA levels were not different. The IRE1 pathway of the UPR was hyper-activated in young Atf6-/-Rho+/P23H retinas, and photoreceptor layer thickness was unchanged at this early age in Rho+/P23H mice lacking Atf6. By contrast, older Atf6-/-Rho+/P23H mice developed significantly increased retinal degeneration in comparison to Atf6+/-Rho+/P23H mice in all retinal layers, accompanied by reduced rhodopsin protein levels. Our findings demonstrate that Atf6 is required for efficient clearance of rhodopsin protein in rod photoreceptors expressing P23H rhodopsin, and that loss of Atf6 ultimately accelerates retinal degeneration in P23H-KI mice.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA.,Department of Pathology, Stanford University, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA.,USC ROSKI Eye Institute and Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Priscilla Chan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Leon Chea
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA.,Department of Pathology, Stanford University, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Kyle Kim
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA.,Department of Pathology, Stanford University, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jonathan H Lin
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA. .,Department of Pathology, Stanford University, Palo Alto, CA, USA. .,VA Palo Alto Healthcare System, Palo Alto, CA, USA. .,School of Medicine, Stanford University, 300 Pasteur Dr. L235, Palo Alto, CA, 94305, USA.
| |
Collapse
|
13
|
Wang Y, Gao S, Gao S, Li N, Xie B, Shen X. Blocking the interaction between interleukin-17A and endoplasmic reticulum stress in macrophage attenuates retinal neovascularization in oxygen-induced retinopathy. Cell Biosci 2021; 11:82. [PMID: 33933165 PMCID: PMC8088655 DOI: 10.1186/s13578-021-00593-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neovascularization is a leading cause of visual loss typically associated with diabetic retinopathy (DR) and retinopathy of prematurity (ROP). Interleukin-17A (IL-17A) and endoplasmic reticulum (ER) stress both have been demonstrated to play a proangiogenic role in ischemic retinopathies. However, the relationship between IL-17A and ER stress in retinal neovascularization (RNV) under hypoxic conditions and its underlying mechanisms remain unclear. METHODS In this study, oxygen-induced retinopathy (OIR) mice model was established and intravitreal injections were conducted. Changes of IL-17A and ER stress markers in retinas and cultured primary bone marrow derived macrophage (BMDM) under normoxic or hypoxic conditions were detected. Western blotting, Real-Time RT-PCR, Immunofluorescence assays were conducted to explore the roles and relationship of IL-17A and ER stress in RNV, as well as its underlying mechanisms. RESULTS Compared to that in normal controls, IL-17A and ER stress markers were all remarkably increased under hypoxic conditions both in vivo and in vitro. Neutralization or knock out of IL-17A decreased ER stress. ER stress inhibitor 4-phenylbutyrate (4-PBA), attenuated the production of IL-17A, suggesting a positive feedback loop between IL-17A and ER stress. Inhibition of IL-17A or ER stress decreased areas of nonperfusion and neovascularization in OIR retinas. As TXNIP/NLRP3 pathway activation has been demonstrated to be involved in increased retinal vascular permeability of ischemic retinopathy, we observed that TXNIP/NLRP3 pathway mediated in the interaction between IL-17A and ER stress under hypoxic conditions. CONCLUSION The interplay between IL-17A and ER stress contributes to RNV in macrophages via modulation of TXNIP/NLRP3 signaling pathway under hypoxic conditions. The feedback loops may become an innovative and multiple pharmacological therapeutic target for ischemic retinopathy.
Collapse
Affiliation(s)
- Ya'nuo Wang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Bing Xie
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Department of Ophthalmology, Ruijin Hospital, Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
14
|
Astaxanthin mediated regulation of VEGF through HIF1α and XBP1 signaling pathway: An insight from ARPE-19 cell and streptozotocin mediated diabetic rat model. Exp Eye Res 2021; 206:108555. [PMID: 33789142 DOI: 10.1016/j.exer.2021.108555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022]
Abstract
Breakdown of outer blood-retina barrier (BRB) has been associated with the pathogenesis of diabetic retinopathy (DR) and diabetic macular edema (DME). Vascular endothelial growth factor (VEGF) might play a detrimental role in the pathogenesis of DME, a major clinical manifestation of DR. In the present study, we investigated the inhibitory mechanism of astaxanthin on VEGF and its upstream signaling pathways under in vitro and in vivo conditions. Astaxanthin has been observed to downregulate VEGF expression under hyperglycemic (HG) and CoCl2 induced hypoxic conditions in ARPE-19 cells. There were compelling pieces of evidence for the involvement of transcription factors like HIF1α and XBP1 in the upregulation of VEGF under HG and hypoxic conditions. Thus, we investigated the role of astaxanthin in the expression and nuclear translocation of HIF1α and XBP1. The activation and translocation of HIF1α and XBP1 induced by HG or CoCl2 conditions were hindered by astaxanthin. Additionally, treatment with HIF1α siRNA and IRE1 inhibitor STF-083010 also inhibited the expression of VEGF induced by HG and CoCl2 conditions. These results indicated that the anti-VEGF property of astaxanthin might be associated with the downregulation of HIF1α and XBP1. Furthermore, astaxanthin mitigated the enhanced migration of retinal pigment epithelial (RPE) cells under DR conditions. As well, astaxanthin protected disorganization of zona occludin-1 (ZO-1) tight junction protein in RPE and reduced HG or hypoxic induced permeability of RPE cells. In streptozotocin-induced diabetic rat model, astaxanthin reduced the expression of HIF1α, XBP1, and VEGF as well as protected the abnormalities in the retinal layers induced by diabetes condition. Thus, astaxanthin may be used as a potential nutraceutical to prevent or treat retinal dysfunction in diabetic patients.
Collapse
|
15
|
Alam K, Akhter Y. The Impacts of Unfolded Protein Response in the Retinal Cells During Diabetes: Possible Implications on Diabetic Retinopathy Development. Front Cell Neurosci 2021; 14:615125. [PMID: 33613197 PMCID: PMC7886690 DOI: 10.3389/fncel.2020.615125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
Diabetic retinopathy (DR) is a vision-threatening, chronic, and challenging eye disease in the diabetic population. Despite recent advancements in the clinical management of diabetes, DR remains the major cause of blindness in working-age adults. A better understanding of the molecular and cellular basis of DR development will aid in identifying therapeutic targets. Emerging pieces of evidence from recent research in the field of ER stress have demonstrated a close association between unfolded protein response (UPR)-associated cellular activities and DR development. In this minireview article, we shall provide an emerging understating of how UPR influences DR pathogenesis at the cellular level.
Collapse
Affiliation(s)
- Kaiser Alam
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
16
|
Sheibani N, Zaitoun IS, Wang S, Darjatmoko SR, Suscha A, Song YS, Sorenson CM, Shifrin V, Albert DM, Melgar-Asensio I, Kandela I, Henkin J. Inhibition of retinal neovascularization by a PEDF-derived nonapeptide in newborn mice subjected to oxygen-induced ischemic retinopathy. Exp Eye Res 2020; 195:108030. [PMID: 32272114 DOI: 10.1016/j.exer.2020.108030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/24/2023]
Abstract
Retinopathy of prematurity (ROP) is a growing cause of lifelong blindness and visual defects as improved neonatal care worldwide increases survival in very-low-birthweight preterm newborns. Advancing ROP is managed by laser surgery or a single intravitreal injection of anti-VEGF, typically at 33-36 weeks gestational age. While newer methods of scanning and telemedicine improve monitoring ROP, the above interventions are more difficult to deliver in developing countries. There is also concern as to laser-induced detachment and adverse developmental effects in newborns of anti-VEGF treatment, spurring a search for alternative means of mitigating ROP. Pigment epithelium-derived factor (PEDF), a potent angiogenesis inhibitor appears late in gestation, is undetected in 25-28 week vitreous, but present at full term. Its absence may contribute to ROP upon transition from high-to-ambient oxygen environment or with intermittent hypoxia. We recently described antiangiogenic PEDF-derived small peptides which inhibit choroidal neovascularization, and suggested that their target may be laminin receptor, 67LR. The latter has been implicated in oxygen-induced ischemic retinopathy (OIR). Here we examined the effect of a nonapeptide, PEDF 336, in a newborn mouse OIR model. Neovascularization was significantly decreased in a dose-responsive manner by single intravitreal (IVT) injections of 1.25-7.5 μg/eye (1.0-6.0 nmol/eye). By contrast, anti-mouse VEGFA164 was only effective at 25 ng/eye, with limited dose-response. Combination of anti-VEGFA164 with PEDF 336 gave only the poorer anti-VEGF response while abrogating the robust inhibition seen with peptide-alone, suggesting a need for VEGF in sensitizing the endothelium to the peptide. VEGF stimulated 67LR presentation on endothelial cells, which was decreased in the presence of PEDF 336. Mouse and rabbit eyes showed no histopathology or inflammation after IVT peptide injection. Thus, PEDF 336 is a potential ROP therapeutic, but is not expected to be beneficial in combination with anti-VEGF.
Collapse
Affiliation(s)
- Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ismail S Zaitoun
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shoujian Wang
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Soesiawati R Darjatmoko
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Andrew Suscha
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yong-Seok Song
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Daniel M Albert
- Department of Ophthalmology, Casey Eye Institute, Oregon Health Sciences University, Portland, USA
| | | | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
17
|
Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett 2020; 25:18. [PMID: 32190062 PMCID: PMC7071609 DOI: 10.1186/s11658-020-00212-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
18
|
Development of Oxytolerant Salmonella typhimurium Using Radiation Mutation Technology (RMT) for Cancer Therapy. Sci Rep 2020; 10:3764. [PMID: 32111878 PMCID: PMC7048768 DOI: 10.1038/s41598-020-60396-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/05/2020] [Indexed: 02/02/2023] Open
Abstract
A critical limitation of Salmonella typhimurium (S. typhimurium) as an anti-cancer agent is the loss of their invasive or replicative activities, which results in no or less delivery of anti-cancer agents inside cancer cells in cancer therapy. Here we developed an oxytolerant attenuated Salmonella strain (KST0650) from the parental KST0649 (ΔptsIΔcrr) strain using radiation mutation technology (RMT). The oxytolerant KST0650 strain possessed 20-times higher replication activity in CT26 cancer cells and was less virulent than KST0649. Furthermore, KST0650 migrated effectively into tumor tissues in mice. KST0650 was further equipped with a plasmid harboring a spliced form of the intracellular pro-apoptotic protein sATF6, and the expression of sATF6 was controlled by the radiation-inducible recN promoter. The new strain was named as KST0652, in which sATF6 protein expression was induced in response to radiation in a dose-dependent manner. This strain was effectively delivered inside cancer cells and tumor tissues via the Salmonella type III secretion system (T3SS). In addition, combination treatment with KST0652 and radiation showed a synergistic anti-tumor effect in murine tumor model with complete inhibition of tumor growth and protection against death. In conclusion, we showed that RMT can be used to effectively develop an anti-tumor Salmonella strain for delivering anti-cancer agents inside tumors.
Collapse
|
19
|
Luo R, Xiao F, Wang P, Hu YX. lncRNA H19 sponging miR-93 to regulate inflammation in retinal epithelial cells under hyperglycemia via XBP1s. Inflamm Res 2020; 69:255-265. [DOI: 10.1007/s00011-019-01312-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
|
20
|
Soiberman US, Shehata AEM, Lu MX, Young T, Daoud YJ, Chakravarti S, Jun AS, Foster JW. Small Molecule Modulation of the Integrated Stress Response Governs the Keratoconic Phenotype In Vitro. Invest Ophthalmol Vis Sci 2019; 60:3422-3431. [PMID: 31390655 PMCID: PMC6686743 DOI: 10.1167/iovs.19-27151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose The degenerative corneal disease keratoconus is a leading indicator for corneal transplant with an unknown etiology. We recently identified the activation of the integrated stress response (ISR) in ex vivo human corneas and in vitro cell culture. Utilizing small molecules to modulate the ISR we sought to investigate the effects of stimulating the ISR in healthy cells to recapitulate aspects of the in vitro keratoconic phenotype and whether relieving the ISR signaling would recover the disease phenotype. Methods Corneal fibroblasts were extracted from patients undergoing corneal transplant or unaffected cadaverous donor limbal rings. Cells were exposed to the DNA damage-inducible protein (GADD34) inhibitor SAL003 to stimulate the ISR, or Trans-ISRIB to relieve ISR signaling pathway. Collagen production was assessed through hydroxyproline production, Sirius Red incorporation, or quantitative (q)PCR. Western blotting, hydroxyproline, and qPCR were used to assess components of the ISR pathway and collagen production. Results ISR stimulation through SAL003 resulted in significant decrease of hydroxyproline and COL1A1 transcription and eventual apoptosis in normal fibroblasts. Patient (KC) fibroblast production of hydroxyproline was increased in response to ISRIB, while matrix metalloproteinase (MMP)9 production was lowered. The prospective biomarker of keratoconus prolactin-inducible factor was also upregulated in KC fibroblast cultures in response to ISRIB. Inflammatory markers TNFα and IL-1β were unaffected. Conclusions Activation of the ISR is sufficient to recapitulate many key aspects of the KC phenotype in unaffected cells in vitro. Inhibition of the ISR also relieves many of the hallmarks of KC in affected cells. Therefore, targeting of the ISR through small molecules is a potential therapeutic path for small molecule treatment of keratoconus.
Collapse
Affiliation(s)
- Uri Simcha Soiberman
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | | | | | - Tempest Young
- Johns Hopkins University, Baltimore, Maryland, United States
| | - Yassine J Daoud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - James William Foster
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
21
|
Liu J, Zhang X, Li G, Xu F, Li S, Teng L, Li Y, Sun F. Anti-Angiogenic Activity Of Bevacizumab-Bearing Dexamethasone-Loaded PLGA Nanoparticles For Potential Intravitreal Applications. Int J Nanomedicine 2019; 14:8819-8834. [PMID: 31819410 PMCID: PMC6850698 DOI: 10.2147/ijn.s217038] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose Age-related macular degeneration is a multifactorial disease involving inflammation and choroidal neovascularization. Vascular endothelial growth factor (VEGF) has been regarded as a potential therapeutic target to treat choroidal neovascularization. Dexamethasone can interfere with the expression or action of VEGF while bevacizumab targets and combines with VEGF. We propose electrostatically-conjugated bevacizumab-bearing dexamethasone-loaded poly (D,L-lactide-co-glycolide)/polyethylenimine nanoparticles (eBev-DPPNs) for angiogenic combination treatment of ocular diseases. Methods We prepared a novel nanoparticle composed of poly (D, L-lactide-co-glycolide) and polyethylenimine and loaded the nanoparticles with dexamethasone. Bevacizumab was adsorbed onto the surfaces of the nanoparticles by electrostatic interactions. The eBev-DPPNs were evaluated according to their size, polydispersity index, zeta potential, morphology, drug loading, release behavior, and stability. The structural stability of bevacizumab on the surface of the nanoparticles was also analyzed. Subsequently, angiogenesis was investigated in the presence of the eBev-DPPNs using cell apoptosis, wound healing, Transwell invasion, and tube formation assays on the human umbilical vein endothelial cells (HUVECs) in vitro and chick embryo chorioallantoic membrane assay in vivo. The eBev-DPPNs intravitreal injection was applied in the laser-induced rabbit choroidal neovascularization (CNV) model to confirm the role for potential intravitreal applications. Results The eBev-DPPNs was about 200 nm in diameter, with a narrow diameter distribution, and the surface charge was neutral (0.85 ± 0.37mV), which made the eBev-DPPNs stable under physiological conditions. The apoptosis, migration, invasion, and tube formation assays showed that the eBev-DPPNs had a good anti-angiogenic effect on HUVECs. The eBev-DPPNs also provided a strong inhibitory effect on VEGF secretion from HUVECs. Moreover, in vivo chick embryo chorioallantoic membrane assay showed eBev-DPPNs greatly reduced the amount of blood vessels. The leakage area of CNV decreased in the eBev-DPPNs group on rabbit CNV model. Conclusion The eBev-DPPNs are a promising novel anti-angiogenesis therapeutic for potential intravitreal applications such as age-related macular degeneration.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Xueyan Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Ge Li
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Fei Xu
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuang Li
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
22
|
Peli1 induction impairs cardiac microvascular endothelium through Hsp90 dissociation from IRE1α. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2606-2617. [PMID: 31260751 DOI: 10.1016/j.bbadis.2019.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Ameliorating cardiac microvascular injury is the most effective means to mitigate diabetes-induced cardiovascular complications. Inositol-requiring 1α (IRE1α), a sensor of endoplasmic reticulum stress, is activated by Toll like receptors (TLRs), and then promotes cardiac microvascular injury. Peli1 is a master regulator of TLRs and activates IRE1α. This study aims to investigate whether Peli1 in endothelial cells promotes diabetes-induced cardiac microvascular injury through activating IRE1α. Here we found that Peli1 was markedly up-regulated in cardiac endothelial cells of both diabetic mice and in AGEs-treated cardiac microvascular endothelial cells (CMECs). Peli1 deficiency in endothelial cells significantly alleviated diabetes-induced cardiac microvascular permeability, promoted microvascular regeneration, and suppressed apoptosis, accompanied by the attenuation of adverse cardiac remodeling. Furthermore, Peli1 deletion in CMECs ameliorated AGEs-induced damages in vitro. We identified heat shock protein 90 (Hsp90) as a potential binding partner for Peli1, and the Ring domain of Peli1 directly bound with Hsp90 to enhance IRE1α phosphorylation. Our study suggests that blocking Peli1 in endothelial cells may protect against diabetes-induced cardiac microvascular injury by restraining ER stress.
Collapse
|
23
|
Yang J, Chen C, McLaughlin T, Wang Y, Le YZ, Wang JJ, Zhang SX. Loss of X-box binding protein 1 in Müller cells augments retinal inflammation in a mouse model of diabetes. Diabetologia 2019; 62:531-543. [PMID: 30612139 PMCID: PMC6374194 DOI: 10.1007/s00125-018-4776-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Müller glia (MG) are major sources of retinal cytokines, and their activation is closely linked to retinal inflammation and vascular leakage in diabetic retinopathy. Previously, we demonstrated that X-box binding protein 1 (XBP1), a transcription factor activated by endoplasmic reticulum (ER) stress in diabetic retinopathy, is involved in regulation of inflammation in retinal endothelial cells. Now, we have explored the role of XBP1 and ER stress in the regulation of MG-derived proinflammatory factors, and their influence on vascular permeability in diabetic retinopathy. METHODS MG-specific conditional Xbp1 knockout (Xbp1Müller-/-) mice were generated by crossing Xbp1 flox/flox mice with Müller-Cre transgenic mice. Diabetes was modelled by induction with streptozotocin, and retinal vascular permeability was measured with FITC-conjugated dextran 2 months after induction. Primary Müller cells were isolated from Xbp1Müller-/- and Xbp1Müller+/+ mice and exposed to hypoxia and high levels of glucose. Levels of ER-stress and inflammatory factors were examined by real-time PCR, western blotting or immunohistochemistry. RESULTS Xbp1Müller-/- mice exhibited normal retinal development and retinal function and expressed similar levels of ER-stress and inflammatory genes to Xbp1Müller+/+ littermates. In diabetes-inducing conditions, compared with Xbp1Müller+/+ mice, Xbp1Müller-/- mice had higher mRNA levels of retinal Vegf (also known as Vegfa) and Tnf-α (also known as Tnf) and ER-stress marker genes Grp78 (also known as Hspa5), Atf4, Chop (also known as Ddit3) and Atf6 and higher protein levels of vascular endothelial growth factor (VEGF), TNF-α, phospho-c-Jun N-terminal kinase (JNK), 78 kDa glucose-regulated protein (GRP78), phospho-eukaryotic translation initiation factor (eIF)2α and activating transcription factor (ATF)6. Retinal vascular permeability was significantly higher in diabetic Xbp1Müller-/- mice than in diabetic Xbp1Müller+/+ mice (p < 0.01). Results obtained in vitro with primary Müller cells isolated from Xbp1Müller-/- mice confirmed higher expression levels of inflammatory and ER-stress markers (but not GRP78) than in cells from Xbp1Müller+/+ mice. Moreover, XBP1-deficient Müller cells were more susceptible to high-glucose- or hypoxia-induced ER stress and inflammation than cells from Xbp1Müller+/+ mice. Inhibition of ER stress with chemical chaperones suppressed hypoxia-induced VEGF and TNF-α production in XBP1-deficient Müller cells. CONCLUSIONS/INTERPRETATION Our results have revealed an important role of XBP1 and ER stress in MG-driven retinal inflammation, and suggest that targeting ER stress may represent a promising approach for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Department of Ophthalmology, Ira G. Ross Eye Institute, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14214, USA
- SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| | - Chen Chen
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Second People's Hospital of Yunnan Province, Kunming, China
| | - Todd McLaughlin
- Department of Ophthalmology, Ira G. Ross Eye Institute, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14214, USA
- SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| | - Yaqin Wang
- Department of Ophthalmology, Ira G. Ross Eye Institute, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14214, USA
- SUNY Eye Institute, State University of New York, Buffalo, NY, USA
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yun-Zheng Le
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joshua J Wang
- Department of Ophthalmology, Ira G. Ross Eye Institute, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14214, USA
- SUNY Eye Institute, State University of New York, Buffalo, NY, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sarah X Zhang
- Department of Ophthalmology, Ira G. Ross Eye Institute, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14214, USA.
- SUNY Eye Institute, State University of New York, Buffalo, NY, USA.
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
24
|
Pandey VK, Mathur A, Kakkar P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci 2018; 216:246-258. [PMID: 30471281 DOI: 10.1016/j.lfs.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) is a crucial single membrane organelle that acts as a quality control system for cellular proteins as it is intricately involved in their synthesis, folding and trafficking to the respective targets. Type 2 diabetes is characterized by enhanced blood glucose level that promotes insulin resistance and hampers cellular glucose metabolism. Hyperglycemia provokes mitochondrial ROS production and glycation of proteins which exert a tremendous load on ER for conventional refolding of misfolded/unfolded and nascent proteins that perturb ER homeostasis resulting in apoptotic cell death. Impairment in ER functions is suspected to be through specific ER membrane-bound proteins known as Unfolded Protein Response (UPR) sensor proteins. Conformational changes in these proteins induce oligomerization and cross-autophosphorylation which facilitate processes required for the restoration of ER homeostatic imbalance. Multiple studies have reported the involvement of UPR mediated autophagy and apoptotic pathways in the progression of metabolic disorders including diabetes, cardiac ischemia/reperfusion injury and hypoxia-mediated cell death. In this review, the involvement of UPR pathways in the progression of diabetes associated complications have been addressed, which underscores molecular crosstalks during neuropathy, nephropathy, hepatic injury and retinopathy. A better understanding of these molecular interventions may reveal advanced therapeutic approaches for preventing diabetic comorbidities. The article also highlights the importance of phytochemicals that are emerging as novel ER stress inhibitors and are being explored for targeted interaction in preventing cell death responses during diabetes.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
25
|
McAnally D, Siddiquee K, Gomaa A, Szabo A, Vasile S, Maloney PR, Divlianska DB, Peddibhotla S, Morfa CJ, Hershberger P, Falter R, Williamson R, Terry DB, Farjo R, Pinkerton AB, Qi X, Quigley J, Boulton ME, Grant MB, Smith LH. Repurposing antimalarial aminoquinolines and related compounds for treatment of retinal neovascularization. PLoS One 2018; 13:e0202436. [PMID: 30208056 PMCID: PMC6135396 DOI: 10.1371/journal.pone.0202436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023] Open
Abstract
Neovascularization is the pathological driver of blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. The loss of vision resulting from these diseases significantly impacts the productivity and quality of life of patients, and represents a substantial burden on the health care system. Current standard of care includes biologics that target vascular endothelial growth factor (VEGF), a key mediator of neovascularization. While anti-VGEF therapies have been successful, up to 30% of patients are non-responsive. Therefore, there is a need for new therapeutic targets, and small molecule inhibitors of angiogenesis to complement existing treatments. Apelin and its receptor have recently been shown to play a key role in both developmental and pathological angiogenesis in the eye. Through a cell-based high-throughput screen, we identified 4-aminoquinoline antimalarial drugs as potent selective antagonists of APJ. The prototypical 4-aminoquinoline, amodiaquine was found to be a selective, non-competitive APJ antagonist that inhibited apelin signaling in a concentration-dependent manner. Additionally, amodiaquine suppressed both apelin-and VGEF-induced endothelial tube formation. Intravitreal amodaiquine significantly reduced choroidal neovascularization (CNV) lesion volume in the laser-induced CNV mouse model, and showed no signs of ocular toxicity at the highest doses tested. This work firmly establishes APJ as a novel, chemically tractable therapeutic target for the treatment of ocular neovascularization, and that amodiaquine is a potential candidate for repurposing and further toxicological, and pharmacokinetic evaluation in the clinic.
Collapse
Affiliation(s)
- Danielle McAnally
- Cardiovascular Pathobiology Program, Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Khandaker Siddiquee
- Cardiovascular Pathobiology Program, Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Ahmed Gomaa
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
| | - Andras Szabo
- Cardiovascular Pathobiology Program, Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Stefan Vasile
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Patrick R. Maloney
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Daniela B. Divlianska
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Camilo J. Morfa
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Rebecca Falter
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Robert Williamson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - David B. Terry
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Rafal Farjo
- EyeCRO LLC, Oklahoma City, Oklahoma, United States of America
| | - Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Xiaping Qi
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States of America
| | - Judith Quigley
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
| | - Michael E. Boulton
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States of America
| | - Maria B. Grant
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States of America
| | - Layton H. Smith
- Cardiovascular Pathobiology Program, Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| |
Collapse
|
26
|
Alasiri G, Fan LYN, Zona S, Goldsbrough IG, Ke HL, Auner HW, Lam EWF. ER stress and cancer: The FOXO forkhead transcription factor link. Mol Cell Endocrinol 2018; 462:67-81. [PMID: 28572047 DOI: 10.1016/j.mce.2017.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle with central roles in maintaining proteostasis due to its involvement in protein synthesis, folding, quality control, distribution and degradation. The accumulation of misfolded proteins in the ER lumen causes 'ER stress' and threatens overall cellular proteostasis. To restore ER homeostasis, cells evoke an evolutionarily conserved adaptive signalling and gene expression network collectively called the 'unfolded protein response (UPR)', a complex biological process which aims to restore proteostasis. When ER stress is overwhelming and beyond rectification, the normally pro-survival UPR can shift to induce cell termination. Emerging evidence from mammalian, fly and nematode worm systems reveals that the FOXO Forkhead proteins integrate upstream ER stress and UPR signals with the transcriptional machinery to decrease translation, promote cell survival/termination and increase the levels of ER-resident chaperones and of ER-associated degradation (ERAD) components to restore ER homeostasis. The high rates of protein synthesis/translation associated with cancer cell proliferation and metabolism, as well as mutations resulting in aberrant proteins, also induce ER stress and the UPR. While the pro-survival side of the UPR underlies its ability to sustain and promote cancers, its apoptotic functions can be exploited for cancer therapies by offering the chance to 'flick the proteostatic switch'. To this end, further studies are required to fully reevaluate the roles and regulation of these UPR signalling molecules, including FOXO proteins and their targets, in cancer initiation and progression as well as the effects on inhibiting their functions in cancer cells. This information will help to establish these UPR signalling molecules as possible therapeutic targets and putative biomarkers in cancers.
Collapse
Affiliation(s)
- Glowi Alasiri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | - Hui-Ling Ke
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Holger Werner Auner
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
27
|
Kroeger H, Grimsey N, Paxman R, Chiang WC, Plate L, Jones Y, Shaw PX, Trejo J, Tsang SH, Powers E, Kelly JW, Wiseman RL, Lin JH. The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Sci Signal 2018; 11:eaan5785. [PMID: 29440509 PMCID: PMC5957084 DOI: 10.1126/scisignal.aan5785] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ATF6 encodes a transcription factor that is anchored in the endoplasmic reticulum (ER) and activated during the unfolded protein response (UPR) to protect cells from ER stress. Deletion of the isoform activating transcription factor 6α (ATF6α) and its paralog ATF6β results in embryonic lethality and notochord dysgenesis in nonhuman vertebrates, and loss-of-function mutations in ATF6α are associated with malformed neuroretina and congenital vision loss in humans. These phenotypes implicate an essential role for ATF6 during vertebrate development. We investigated this hypothesis using human stem cells undergoing differentiation into multipotent germ layers, nascent tissues, and organs. We artificially activated ATF6 in stem cells with a small-molecule ATF6 agonist and, conversely, inhibited ATF6 using induced pluripotent stem cells from patients with ATF6 mutations. We found that ATF6 suppressed pluripotency, enhanced differentiation, and unexpectedly directed mesodermal cell fate. Our findings reveal a role for ATF6 during differentiation and identify a new strategy to generate mesodermal tissues through the modulation of the ATF6 arm of the UPR.
Collapse
Affiliation(s)
- Heike Kroeger
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil Grimsey
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan Paxman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wei-Chieh Chiang
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Plate
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
- Departments of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ying Jones
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter X Shaw
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA 92093, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology and Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, Columbia University, New York, NY 10032, USA
| | - Evan Powers
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan H Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA.
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
28
|
Interplay between P-Glycoprotein Expression and Resistance to Endoplasmic Reticulum Stressors. Molecules 2018; 23:molecules23020337. [PMID: 29415493 PMCID: PMC6017601 DOI: 10.3390/molecules23020337] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies.
Collapse
|
29
|
Kelly K, Wang JJ, Zhang SX. The unfolded protein response signaling and retinal Müller cell metabolism. Neural Regen Res 2018; 13:1861-1870. [PMID: 30233053 PMCID: PMC6183030 DOI: 10.4103/1673-5374.239431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5'-triphosphate (ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response (UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.
Collapse
Affiliation(s)
- Kristen Kelly
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo; SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo; SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| |
Collapse
|
30
|
A Critical Analysis of the Available In Vitro and Ex Vivo Methods to Study Retinal Angiogenesis. J Ophthalmol 2017; 2017:3034953. [PMID: 28848677 PMCID: PMC5564124 DOI: 10.1155/2017/3034953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a biological process with a central role in retinal diseases. The choice of the ideal method to study angiogenesis, particularly in the retina, remains a problem. Angiogenesis can be assessed through in vitro and in vivo studies. In spite of inherent limitations, in vitro studies are faster, easier to perform and quantify, and typically less expensive and allow the study of isolated angiogenesis steps. We performed a systematic review of PubMed searching for original articles that applied in vitro or ex vivo angiogenic retinal assays until May 2017, presenting the available assays and discussing their applicability, advantages, and disadvantages. Most of the studies evaluated migration, proliferation, and tube formation of endothelial cells in response to inhibitory or stimulatory compounds. Other aspects of angiogenesis were studied by assessing cell permeability, adhesion, or apoptosis, as well as by implementing organotypic models of the retina. Emphasis is placed on how the methods are applied and how they can contribute to retinal angiogenesis comprehension. We also discuss how to choose the best cell culture to implement these methods. When applied together, in vitro and ex vivo studies constitute a powerful tool to improve retinal angiogenesis knowledge. This review provides support for researchers to better select the most suitable protocols in this field.
Collapse
|
31
|
Gene Co-Expression Network Analysis Unraveling Transcriptional Regulation of High-Altitude Adaptation of Tibetan Pig. PLoS One 2016; 11:e0168161. [PMID: 27936142 PMCID: PMC5148111 DOI: 10.1371/journal.pone.0168161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/27/2016] [Indexed: 02/08/2023] Open
Abstract
Tibetan pigs have survived at high altitude for millennia and they have a suite of adaptive features to tolerate the hypoxic environment. However, the molecular mechanisms underlying the regulation of hypoxia-adaptive phenotypes have not been completely elucidated. In this study, we analyzed differentially expressed genes (DEGs), biological pathways and constructed co-expression regulation networks using whole-transcriptome microarrays from lung tissues of Tibetan and Duroc pigs both at high and low altitude. A total of 3,066 DEGs were identified and this list was over-represented for the ontology terms including metabolic process, catalytic activity, and KEGG pathway including metabolic pathway and PI3K-Akt signaling pathway. The regulatory (RIF) and phenotypic (PIF) impact factor analysis identified several known and several potentially novel regulators of hypoxia adaption, including: IKBKG, KLF6 and RBPJ (RIF1), SF3B1, EFEMP1, HOXB6 and ATF6 (RIF2). These findings provide new details of the regulatory architecture of hypoxia-adaptive genes and also insight into which genes may undergo epigenetic modification for further study in the high-altitude adaptation.
Collapse
|
32
|
Targeting the angio-proteostasis network: Combining the forces against cancer. Pharmacol Ther 2016; 167:1-12. [DOI: 10.1016/j.pharmthera.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/14/2016] [Indexed: 01/24/2023]
|
33
|
Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao KH, Wang G, Cockerill G, Hu Y, Xu Q, Li T, Zeng L. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep 2016; 6:28627. [PMID: 27338006 PMCID: PMC4919660 DOI: 10.1038/srep28627] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
The interaction between endothelial cells (ECs) and smooth muscle cells (SMCs) plays a critical role in the maintenance of vessel wall homeostasis. The X-box binding protein 1 (XBP1) plays an important role in EC and SMC cellular functions. However, whether XBP1 is involved in EC-SMC interaction remains unclear. In this study, In vivo experiments with hindlimb ischemia models revealed that XBP1 deficiency in SMCs significantly attenuated angiogenesis in ischemic tissues, therefore retarded the foot blood perfusion recovery. In vitro studies indicated that either overexpression of the spliced XBP1 or treatment with platelet derived growth factor-BB up-regulated miR-150 expression and secretion via extracellular vesicles (EVs). The XBP1 splicing-mediated up-regulation of miR-150 might be due to increased stability. The SMC-derived EVs could trigger EC migration, which was abolished by miR-150 knockdown in SMCs, suggesting miR-150 is responsible for SMC-stimulated EC migration. The SMC-derived miR-150-containing EVs or premiR-150 transfection increased vascular endothelial growth factor (VEGF)-A mRNA and secretion in ECs. Both inhibitors SU5416 and LY294002 attenuated EVs-induced EC migration. This study demonstrates that XBP1 splicing in SMCs can control EC migration via SMC derived EVs-mediated miR-150 transfer and miR-150-driven VEGF-A/VEGFR/PI3K/Akt pathway activation, thereby modulating the maintenance of vessel wall homeostasis.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Heart Centre, Tianjin Third Central Hospital, Tianjin 300170, China
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Yi Li
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Peiyi Luo
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Yingtang Gao
- Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Junyao Yang
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Ka-Hou Lao
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Gang Wang
- Department of Emergency Medicine, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | | | - Yanhua Hu
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Tong Li
- Department of Heart Centre, Tianjin Third Central Hospital, Tianjin 300170, China
- Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Lingfang Zeng
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| |
Collapse
|
34
|
Takahashi N, Harada M, Hirota Y, Zhao L, Yoshino O, Urata Y, Izumi G, Takamura M, Hirata T, Koga K, Wada-Hiraike O, Fujii T, Osuga Y. A potential role of endoplasmic reticulum stress in development of ovarian hyperstimulation syndrome. Mol Cell Endocrinol 2016; 428:161-9. [PMID: 27032713 DOI: 10.1016/j.mce.2016.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/12/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) is crucial for ovarian angiogenesis, but its excess production induces ovarian hyperstimulation syndrome (OHSS). The aim of this study was to determine whether endoplasmic reticulum (ER) stress regulates VEGFA expression in granulosa cells, and whether its activation is involved in OHSS development. The expression of the spliced form of X-box-binding protein 1 [XBP1(S)], induced by ER stress, in cumulus cells from OHSS patients was higher than that in cumulus cells from non-OHSS patients. The ER stress inducer tunicamycin increased human chorionic gonadotropin-induced VEGFA production in human granulosa cells through the induction of XBP1(S), and pretreatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) abrogated the effect of tunicamycin. In OHSS model rats, TUDCA administration prevented the OHSS development, reducing ovarian VEGFA production. Our findings suggest ER stress upregulates hCG-induced VEGFA production in granulosa cells, indicating that ER stress might be involved in OHSS development.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan.
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Gentaro Izumi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Masashi Takamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| |
Collapse
|
35
|
Strand and Cell Type-specific Function of microRNA-126 in Angiogenesis. Mol Ther 2016; 24:1823-1835. [PMID: 27203443 DOI: 10.1038/mt.2016.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/11/2016] [Indexed: 01/18/2023] Open
Abstract
microRNAs or miRs have been shown to be pivotal modulators of vascular development. The strand and cell type-specific function of miR-126 in angiogenesis, especially pathological angiogenesis, remains poorly defined. We characterized the retinal vascular phenotype of miR-126-/- mice, and tested the function of miR-126 strands (miR-126-3p and -5p) using in vitro angiogenesis models and a mouse model of neovascular age-related macular degeneration. We found that miR-126 is critical for retinal vascular development but has dual function in pathological angiogenesis. miR-126-/- mice showed defective postnatal retinal vascular development and remodeling, which is partially rescued by genetic knockout of its target gene Spred-1. Surprisingly, either silencing miR-126-3p by LNA-antimiR or overexpressing miR-126-3p by miRNA mimic repressed laser-induced choroidal neovascularization. To dissect the underlying mechanism, we found in endothelial cells, silencing of miR-126-3p repressed angiogenesis, while overexpression of miR-126-5p enhanced angiogenesis. However, in retinal pigment epithelial cells, miR-126-3p repressed vascular endothelial growth factor (VEGF-A) expression via a novel mechanism of regulating αB-Crystallin promoter activity and by directly targeting VEGF-A 3'-untranslated region. These findings provide first genetic evidence that miR-126 is required for the development of different retinal vascular layers, and also uncover a strand and cell type-specific function of miR-126 in ocular pathological angiogenesis.
Collapse
|
36
|
Abstract
Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.
Collapse
Affiliation(s)
- François Binet
- Departments of Ophthalmology, Biochemistry, & Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Departments of Ophthalmology, Biochemistry, & Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada; Department of Neurology-Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
37
|
Zeng L, Li Y, Yang J, Wang G, Margariti A, Xiao Q, Zampetaki A, Yin X, Mayr M, Mori K, Wang W, Hu Y, Xu Q. XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2134-44. [PMID: 26315405 DOI: 10.1161/atvbaha.115.305420] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/16/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes. APPROACH AND RESULTS In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor β and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-β family proteins secretion via transcriptional suppression. TGF-β3 but not TGF-β1 or TGF-β2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation. CONCLUSIONS This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-β pathways, leading to neointimal formation.
Collapse
Affiliation(s)
- Lingfang Zeng
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.).
| | - Yi Li
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Juanyao Yang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Gang Wang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Andriana Margariti
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Qingzhong Xiao
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Anna Zampetaki
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Xiaoke Yin
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Manuel Mayr
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Kazutoshi Mori
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Wen Wang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Yanhua Hu
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.).
| |
Collapse
|
38
|
Cancer Microenvironment and Endoplasmic Reticulum Stress Response. Mediators Inflamm 2015; 2015:417281. [PMID: 26491226 PMCID: PMC4600498 DOI: 10.1155/2015/417281] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
Different stressful conditions such as hypoxia, nutrient deprivation, pH changes, or reduced vascularization, potentially able to act as growth-limiting factors for tumor cells, activate the unfolded protein response (UPR). UPR is therefore involved in tumor growth and adaptation to severe environments and is generally cytoprotective in cancer. The present review describes the molecular mechanisms underlying UPR and able to promote survival and proliferation in cancer. The critical role of UPR activation in tumor growth promotion is discussed in detail for a few paradigmatic tumors such as prostate cancer and melanoma.
Collapse
|
39
|
Cai X, Chen L, McGinnis JF. Correlation of ER stress and retinal degeneration in tubby mice. Exp Eye Res 2015; 140:130-138. [PMID: 26325328 DOI: 10.1016/j.exer.2015.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/09/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
Abstract
Mutation of the Tub gene results in the mislocalization of photoreceptor-specific proteins and eventually retinal degeneration. However, the exact mechanism underlying the retinal degeneration remains largely unknown. In this study, we discovered that the expression of endoplasmic reticulum (ER) stress markers, IRE1, ATF6, eIF2α, GRP78/BiP, and XBP-1, is up regulated during tubby retinal development. The dynamics of the expression of these genes are time-dependent and coincided with the time-course of photoreceptor death. Our data also demonstrated that ER stress triggers apoptosis via down-regulation of Bcl2, up-regulation of CHOP and the activation of NF-кB signaling.
Collapse
Affiliation(s)
- Xue Cai
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| | - Lijuan Chen
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - James F McGinnis
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
40
|
Sulaiman RS, Quigley J, Qi X, O'Hare MN, Grant MB, Boulton ME, Corson TW. A Simple Optical Coherence Tomography Quantification Method for Choroidal Neovascularization. J Ocul Pharmacol Ther 2015; 31:447-54. [PMID: 26060878 DOI: 10.1089/jop.2015.0049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Therapeutic efficacy is routinely assessed by measurement of lesion size using flatmounted choroids and confocal microscopy in the laser-induced choroidal neovascularization (L-CNV) rodent model. We investigated whether optical coherence tomography (OCT) quantification, using an ellipsoid volume measurement, was comparable to standard ex vivo evaluation methods for this model and whether this approach could be used to monitor treatment-related lesion changes. METHODS Bruch's membrane was ruptured by argon laser in the dilated eyes of C57BL/6J mice, followed by intravitreal injections of anti-VEGF164 or vehicle, or no injection. In vivo OCT images were acquired using Micron III or InVivoVue systems at 7, 10, and/or 14 days post-laser and neovascular lesion volume was calculated as an ellipsoid. Subsequently, lesion volume was compared to that calculated from confocal Z-stack images of agglutinin-stained choroidal flatmounts. RESULTS Ellipsoid volume measurement of orthogonal 2-dimensional OCT images obtained from different imaging systems correlated with ex vivo lesion volumes for L-CNV (Spearman's ρ=0.82, 0.75, and 0.82 at days 7, 10, and 14, respectively). Ellipsoid volume calculation allowed temporal monitoring and evaluation of CNV lesions in response to antivascular endothelial growth factor treatment. CONCLUSIONS Ellipsoid volume measurements allow rapid, quantitative use of OCT for the assessment of CNV lesions in vivo. This novel method can be used with different OCT imaging systems with sensitivity to distinguish between treatment conditions. It may serve as a useful adjunct to the standard ex vivo confocal quantification, to assess therapeutic efficacy in preclinical models of CNV, and in models of other ocular diseases.
Collapse
Affiliation(s)
- Rania S Sulaiman
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Pharmacology and Toxicology, Indiana University School of Medicine , Indianapolis, Indiana.,4 Department of Biochemistry, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| | - Judith Quigley
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Xiaoping Qi
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael N O'Hare
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana.,5 School of Biomedical Science, University of Ulster , Coleraine, Northern Ireland, United Kingdom
| | - Maria B Grant
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael E Boulton
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Timothy W Corson
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Pharmacology and Toxicology, Indiana University School of Medicine , Indianapolis, Indiana.,6 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana.,7 Indiana University Melvin and Bren Simon Cancer Center , Indianapolis, Indiana
| |
Collapse
|
41
|
Alpha crystallins in the retinal pigment epithelium and implications for the pathogenesis and treatment of age-related macular degeneration. Biochim Biophys Acta Gen Subj 2015; 1860:258-68. [PMID: 26026469 DOI: 10.1016/j.bbagen.2015.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αA- and αB crystallins are principal members of the small heat shock protein family and elicit both a cell protective function and a chaperone function. α-Crystallins have been found to be prominent proteins in normal and pathological retina emphasizing the importance for in-depth understanding of their function and significance. SCOPE OF REVIEW Retinal pigment epithelial cells (RPE) play a vital role in the pathogenesis of age-related macular degeneration (AMD). This review addresses a number of cellular functions mediated by α-crystallins in the retina. Prominent expression of αB crystallin in mitochondria may serve to protect cells from oxidative injury. αB crystallin as secretory protein via exosomes can offer neuroprotection to adjacent RPE cells and photoreceptors. The availability of chaperone-containing minipeptides of αB crystallin could prove to be a valuable new tool for therapeutic treatment of retinal disorders. MAJOR CONCLUSIONS α-Crystallins are expressed in cytosol and mitochondria of RPE cells and are regulated during oxygen-induced retinopathy and during development. α-Crystallins protect RPE from oxidative-and ER stress-induced injury and autophagy. αB-Crystallin is a modulator of angiogenesis and vascular endothelial growth factor. αB Crystallin is secreted via exosomal pathway. Minichaperone peptides derived from αB Crystallin prevent oxidant induced cell death and have therapeutic potential. GENERAL SIGNIFICANCE Overall, this review summarizes several novel properties of α-crystallins and their relevance to maintaining normal retinal function. In particular, the use of α-crystallin derived peptides is a promising therapeutic strategy to combat retinal diseases such as AMD. This article is part of a Special Issue entitled Crystallin biochemistry in health and disease.
Collapse
|
42
|
The unfolded protein response in retinal vascular diseases: implications and therapeutic potential beyond protein folding. Prog Retin Eye Res 2014; 45:111-31. [PMID: 25529848 DOI: 10.1016/j.preteyeres.2014.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
Angiogenesis is a complex, step-wise process of new vessel formation that is involved in both normal embryonic development as well as postnatal pathological processes, such as cancer, cardiovascular disease, and diabetes. Aberrant blood vessel growth, also known as neovascularization, in the retina and the choroid is a major cause of vision loss in severe eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and central and branch retinal vein occlusion. Yet, retinal neovascularization is causally and dynamically associated with vasodegeneration, ischemia, and vascular remodeling in retinal tissues. Understanding the mechanisms of retinal neovascularization is an urgent unmet need for developing new treatments for these devastating diseases. Accumulating evidence suggests a vital role for the unfolded protein response (UPR) in regulation of angiogenesis, in part through coordinating the secretion of pro-angiogenic growth factors, such as VEGF, and modulating endothelial cell survival and activity. Herein, we summarize current research in the context of endoplasmic reticulum (ER) stress and UPR signaling in retinal angiogenesis and vascular remodeling, highlighting potential implications of targeting these stress response pathways in the prevention and treatment of retinal vascular diseases that result in visual deficits and blindness.
Collapse
|
43
|
Ma JH, Wang JJ, Zhang SX. The unfolded protein response and diabetic retinopathy. J Diabetes Res 2014; 2014:160140. [PMID: 25530974 PMCID: PMC4229964 DOI: 10.1155/2014/160140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/27/2014] [Accepted: 09/28/2014] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy, a common complication of diabetes, is the leading cause of blindness in adults. Diabetes chronically damages retinal blood vessels and neurons likely through multiple pathogenic pathways such as oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. To relieve ER stress, the cell activates an adaptive mechanism known as the unfolded protein response (UPR). The UPR coordinates the processes of protein synthesis, protein folding, and degradation to ensure proteostasis, which is vital for cell survival and activity. Emerging evidence suggests that diabetes can activate all three UPR branches in retinal cells, among which the PERK/ATF4 pathway is the most extensively studied in the development of diabetic retinopathy. X-box binding protein 1 (XBP1) is a major transcription factor in the core UPR pathway and also regulates a variety of genes involved in cellular metabolism, redox state, autophagy, inflammation, cell survival, and vascular function. The exact function and implication of XBP1 in the pathogenesis of diabetic retinopathy remain elusive. Focusing on this less studied pathway, we summarize recent progress in studies of the UPR pertaining to diabetic changes in retinal vasculature and neurons, highlighting the perspective of XBP1 as a potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jacey Hongjie Ma
- Departments of Ophthalmology and Biochemistry (Ira G. Ross Eye Institute), School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 308 Farber Hall, Buffalo, NY 14214, USA
- SUNY Eye Institute, Buffalo, NY 14214, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Josh J. Wang
- Departments of Ophthalmology and Biochemistry (Ira G. Ross Eye Institute), School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 308 Farber Hall, Buffalo, NY 14214, USA
- SUNY Eye Institute, Buffalo, NY 14214, USA
| | - Sarah X. Zhang
- Departments of Ophthalmology and Biochemistry (Ira G. Ross Eye Institute), School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 308 Farber Hall, Buffalo, NY 14214, USA
- SUNY Eye Institute, Buffalo, NY 14214, USA
| |
Collapse
|
44
|
Abstract
Tumors rely on the unfolded protein response (UPR) and angiogenesis to survive the metabolic stress of hypoxia. Karali et al. (2014) revealed that VEGF signaling engages UPR sensors in an unconventional manner that is independent of endoplasmic reticulum (ER) stress, mediated by mTOR signaling to promote endothelial cell survival and angiogenesis.
Collapse
Affiliation(s)
- Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Neurounion Biomedical Foundation, Santiago, Chile.
| |
Collapse
|
45
|
Slingsby C, Wistow GJ. Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:52-67. [PMID: 24582830 PMCID: PMC4104235 DOI: 10.1016/j.pbiomolbio.2014.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/18/2014] [Indexed: 12/25/2022]
Abstract
The vertebrate lens evolved to collect light and focus it onto the retina. In development, the lens grows through massive elongation of epithelial cells possibly recapitulating the evolutionary origins of the lens. The refractive index of the lens is largely dependent on high concentrations of soluble proteins called crystallins. All vertebrate lenses share a common set of crystallins from two superfamilies (although other lineage specific crystallins exist). The α-crystallins are small heat shock proteins while the β- and γ-crystallins belong to a superfamily that contains structural proteins of uncertain function. The crystallins are expressed at very high levels in lens but are also found at lower levels in other cells, particularly in retina and brain. All these proteins have plausible connections to maintenance of cytoplasmic order and chaperoning of the complex molecular machines involved in the architecture and function of cells, particularly elongated and post-mitotic cells. They may represent a suite of proteins that help maintain homeostasis in such cells that are at risk from stress or from the accumulated insults of aging.
Collapse
Affiliation(s)
- Christine Slingsby
- Department of Biological Sciences, Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK.
| | - Graeme J Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, Bg 6, Rm 106, National Institutes of Health, Bethesda, MD 20892-0608, USA
| |
Collapse
|
46
|
Paridaens A, Laukens D, Vandewynckel YP, Coulon S, Van Vlierberghe H, Geerts A, Colle I. Endoplasmic reticulum stress and angiogenesis: is there an interaction between them? Liver Int 2014; 34:e10-8. [PMID: 24393274 DOI: 10.1111/liv.12457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/28/2013] [Indexed: 12/20/2022]
Abstract
When cells are subjected to stress by changes in their extracellular environment, unfolded proteins accumulate in the endoplasmic reticulum (ER), causing ER stress. This initiates the unfolded protein response (UPR), a signal transduction cascade aiming at restoring cellular homeostasis. The UPR and angiogenesis are involved in the pathogenesis of many diseases such as cancer, pulmonary diseases and chronic liver diseases (CLDs) including alcoholic liver disease, non-alcoholic steatohepatitis and hepatitis B. This review summarizes the upcoming knowledge of the interaction between the UPR and angiogenesis in physiological angiogenesis and in different CLDs and other diseases.
Collapse
Affiliation(s)
- Annelies Paridaens
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Wang X, Wang G, Kunte M, Shinde V, Gorbatyuk M. Modulation of angiogenesis by genetic manipulation of ATF4 in mouse model of oxygen-induced retinopathy [corrected]. Invest Ophthalmol Vis Sci 2013; 54:5995-6002. [PMID: 23942974 DOI: 10.1167/iovs.13-12117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The activation of the unfolded protein response (UPR) and an increase in activating transcription factor 4 (ATF4) has been previously reported in the diabetic retina. Despite this, a direct link between ATF4 and the degree of proliferative retinopathy has not been demonstrated to date. Therefore, the objective of this study was to determine whether ATF4 deficiency could reduce neovascularization in mice with oxygen-induced retinopathy (OIR). METHODS We induced OIR in C57BL/6, ATF4(+/-), and endoplasmic reticulum stress-activated indicator (ERAI) mice and used quantitative RT-PCR and Western blot analysis to evaluate relative gene and protein expression. Histology and microscopy were used to calculate the extent of neovascularization in flat-mounted retinas. RESULTS Experimental data revealed Xbp1 splicing in the retinal ganglia cells, outer plexiform layer, inner nuclear layer, and outer nuclear layer and in pericytes of postdevelopment day 17 ERAI OIR mice, confirming the activation of IRE1 UPR signaling. In naive ATF4-deficient mice, we also observed an elevation in UPR-associated and vascular-associated gene expression (Bip, Atf6, Hif1a, Pik3/Akt, Flt1/Vegfa, and Tgfb1), which may have contributed to the alleviation of hypoxia-driven neovascularization in experimental ATF4(+/-) retinas. The OIR ATF4(+/-) retinas demonstrated reprogramming of the UPR seen at both the mRNA (Atf6 and Bip) and protein (pATF6 and peIf2α) levels, as well as a reduction in vascularization-associated gene expression (Flt1, Vegf1, Hif1, and Tgb1). These changes corresponded to the decline in the rate of neovascularization. CONCLUSIONS Our study validates ATF4 as a prospective therapeutic target to inhibit neovascularization in proliferative retinopathy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, Fort Worth, Texas, USA
| | | | | | | | | |
Collapse
|