1
|
Arora D, Ganapathy DM, Usman Pp AS, Ameya K, Sekar D, Kaliaperumal K. Expression analysis of nuclear factor kappa B (NF-κB) in oral squamous cell carcinoma. ORAL ONCOLOGY REPORTS 2024; 10:100481. [DOI: 10.1016/j.oor.2024.100481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
|
2
|
Rahman MT, Kaung Y, Shannon L, Androjna C, Sharifi N, Labhasetwar V. Nanoparticle-mediated synergistic drug combination for treating bone metastasis. J Control Release 2023; 357:498-510. [PMID: 37059400 PMCID: PMC10243348 DOI: 10.1016/j.jconrel.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Bone metastasis at an advanced disease stage is common in most solid tumors and is untreatable. Overexpression of receptor activator of nuclear factor κB ligand (RANKL) in tumor-bone marrow microenvironment drives a vicious cycle of tumor progression and bone resorption. Biodegradable nanoparticles (NPs), designed to localize in the tumor tissue in bone marrow, were evaluated in a prostate cancer model of bone metastasis. The combination treatment, encapsulating docetaxel, an anticancer drug (TXT-NPs), and Denosumab, a monoclonal antibody that binds to RANKL (DNmb-NPs), administered intravenously regressed the tumor completely, preventing bone resorption, without causing any mortality. With TXT-NPs alone treatment, after an initial regression, the tumor relapsed and acquired resistance, whereas DNmb-NPs alone treatment was ineffective. Only in the combination treatment, RANKL was not detected in the tumor tibia, thus negating its role in tumor progression and bone resorption. The combination treatment was determined to be safe as the vital organ tissue showed no increase in inflammatory cytokine or the liver ALT/AST levels, and animals gained weight. Overall, dual drug treatment acted synergistically to modulate the tumor-bone microenvironment with encapsulation enhancing their therapeutic potency to achieve tumor regression.
Collapse
Affiliation(s)
- Mohammed Tanjimur Rahman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youzhi Kaung
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Logan Shannon
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
3
|
Eichberger J, Weber F, Spanier G, Gerken M, Schreml S, Schulz D, Fiedler M, Ludwig N, Bauer RJ, Reichert TE, Ettl T. Loss of MMP-27 Predicts Mandibular Bone Invasion in Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14164044. [PMID: 36011038 PMCID: PMC9406335 DOI: 10.3390/cancers14164044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The growth of oral squamous cell carcinoma into the mandible poses significant challenges to head and neck surgery. The resulting need for extensive procedures has a decisive influence on subsequent esthetics and function and therefore also on the patient’s quality of life. The molecular mechanism behind this remains obscure to date. Hence, we investigated the influence of MMP-27, Osteoprotegerin and RANKL, three proteins with importance in bone remodeling. The results showed that tumors exhibited less bone-invasive behavior in the presence of MMP-27. This may be an incentive for further studies to elucidate the molecular mechanisms of mandibular bone invasion in OSCC. Abstract Invasion of the mandibular bone is frequent in oral squamous cell carcinoma (OSCC), which often results in extensive ablative and reconstructive procedures for the patient. The purpose of this single-center, retrospective study was to identify and evaluate potential biomarkers and risk factors for bone invasion in OSCC. Initially, in silico gene expression analysis was performed for different HNSCC tumor T-stages to find factors associated with invasive (T4a) tumor growth. Afterwards, the protein expression of bone-metabolizing MMP-27, TNFRSF11B (Osteoprotegerin, OPG), and TNFSF11 (RANKL) was investigated via Tissue Microarrays (TMAs) for their impact on mandibular bone invasion. TMAs were assembled from the bone–tumor interface of primary OSCCs of the floor of the mouth and gingiva from 119 patients. Sixty-four carcinomas with patho-histological jaw invasion (pT4a) were compared to 55 carcinomas growing along the mandible without invasion (pT2, pT3). Tissue samples were additionally evaluated for patterns of invasion using the WPOI grading system. Statistical analysis of in silico data revealed decreased MMP-27 mRNA expression to be strongly associated with the pT4a-stage in OSCC, indicating invasive tumor growth with infiltration of adjacent anatomical structures. Our own clinico-pathological data on OSCCs presented a significant decrease of MMP-27 in tumors invading the nearby mandible (pT4a), compared to pT2 and pT3 tumors without bone invasion. Loss of MMP27 evolved as the strongest predictor of mandibular bone invasion in binary logistic regression analysis. To our knowledge, this is the first study investigating the role of MMP-27 expression in OSCC and demonstrating the importance of the loss of MMP-27 in mandibular bone invasion.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Gerken
- Tumor Center Regensburg, Institute for Quality Assurance and Health Services Research, University of Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Fiedler
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Torsten Eugen Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
4
|
Novel animal model of soft tissue tumor due to aberrant hedgehog signaling activation in pericyte lineage. Cell Tissue Res 2022; 388:63-73. [DOI: 10.1007/s00441-022-03578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
|
5
|
Pink R, Michalek J, Kral D, Mozola M, Benes P, Lenka S, Dvorak Z. Importance of evaluation of bone invasion type in squamous cell carcinomas of the oral cavity and oropharynx. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021. [PMID: 34782797 DOI: 10.5507/bp.2021.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIMS The objective of this study was to compare bone invasion type with histopathological, clinical and immunohistochemical prognostic factors. METHODS The study included 49 patients who were treated for oral squamous cell carcinoma. Of which, 30 patients, with presence of bone invasion on histopathology, were divided according to the type of bone invasion (erosive, infiltrative, mixed). Each invasion type was compared to microvascular density using the CD34 marker. RESULTS The bone invasion was observed in 30 out of 49 patients (61.22%). On McNemar's test, statistically significant association was observed between bone invasion types and histopathological grade. In contrast, no significant correlation was observed between bone invasion type, and tumour volume or nodal metastases. In tumours with bone invasion of the infiltrative type, higher frequency of locoregional relapses was observed. The 5-year survival, since diagnosis, was approximately 60% in the erosive group, 40% in the mixed group, and merely 15% in the infiltrative group. CONCLUSION Peritumoural microvascular density was not significantly related to bone invasion types. Whereas, a significantly higher intratumoural microvascular density was observed in infiltrative type of the bone invasion, when compared to the erosive and mixed type.
Collapse
Affiliation(s)
- Richard Pink
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jaroslav Michalek
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, Czech Republic
| | - David Kral
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Michal Mozola
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Pavel Benes
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Saskova Lenka
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Zdenek Dvorak
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Department of Plastic and Aesthetic Surgery, St. Anne's Faculty Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Liu W, Li CJ, Li LJ. [Advances in molecular mechanisms of bone invasion by oral cancer]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:221-226. [PMID: 33834679 DOI: 10.7518/hxkq.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone invasion by oral cancer is a common clinical problem, which affects the choice of treatment and predicts a poor prognosis. Unfortunately, the molecular mechanism of this phenomenon has not been fully elucidated. Current studies have revealed that oral cancer cells modulate the formation and function of osteoclasts through the expression of a series of signal molecules. Many signal pathways are involved in this process, of which receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factor-κB/osteoprotegerin signaling pathway attracted much attention. In this review, we introduce recent progress in molecular mechanisms of bone invasion by oral cancer.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Long-Jiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Mechanical suppression of breast cancer cell invasion and paracrine signaling to osteoclasts requires nucleo-cytoskeletal connectivity. Bone Res 2020; 8:40. [PMID: 33298883 PMCID: PMC7673025 DOI: 10.1038/s41413-020-00111-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023] Open
Abstract
Exercise benefits the musculoskeletal system and reduces the effects of cancer. The effects of exercise are multifactorial, where metabolic changes and tissue adaptation influence outcomes. Mechanical signals, a principal component of exercise, are anabolic to the musculoskeletal system and restrict cancer progression. We examined the mechanisms through which cancer cells sense and respond to low-magnitude mechanical signals introduced in the form of vibration. Low-magnitude, high-frequency vibration was applied to human breast cancer cells in the form of low-intensity vibration (LIV). LIV decreased matrix invasion and impaired secretion of osteolytic factors PTHLH, IL-11, and RANKL. Furthermore, paracrine signals from mechanically stimulated cancer cells, reduced osteoclast differentiation and resorptive capacity. Disconnecting the nucleus by knockdown of SUN1 and SUN2 impaired LIV-mediated suppression of invasion and osteolytic factor secretion. LIV increased cell stiffness; an effect dependent on the LINC complex. These data show that mechanical vibration reduces the metastatic potential of human breast cancer cells, where the nucleus serves as a mechanosensory apparatus to alter cell structure and intercellular signaling.
Collapse
|
8
|
Søe K. Osteoclast Fusion: Physiological Regulation of Multinucleation through Heterogeneity-Potential Implications for Drug Sensitivity. Int J Mol Sci 2020; 21:E7717. [PMID: 33086479 PMCID: PMC7589811 DOI: 10.3390/ijms21207717] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Classically, osteoclast fusion consists of four basic steps: (1) attraction/migration, (2) recognition, (3) cell-cell adhesion, and (4) membrane fusion. In theory, this sounds like a straightforward simple linear process. However, it is not. Osteoclast fusion has to take place in a well-coordinated manner-something that is not simple. In vivo, the complex regulation of osteoclast formation takes place within the bone marrow-in time and space. The present review will focus on considering osteoclast fusion in the context of physiology and pathology. Special attention is given to: (1) regulation of osteoclast fusion in vivo, (2) heterogeneity of osteoclast fusion partners, (3) regulation of multi-nucleation, (4) implications for physiology and pathology, and (5) implications for drug sensitivity and side effects. The review will emphasize that more attention should be given to the human in vivo reality when interpreting the impact of in vitro and animal studies. This should be done in order to improve our understanding of human physiology and pathology, as well as to improve anti-resorptive treatment and reduce side effects.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; ; Tel.: +45-65-41-31-90
- Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
9
|
Custódio M, Biddle A, Tavassoli M. Portrait of a CAF: The story of cancer-associated fibroblasts in head and neck cancer. Oral Oncol 2020; 110:104972. [PMID: 33011636 DOI: 10.1016/j.oraloncology.2020.104972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Complex interactions take place during cancer formation and progression. In this regard, there has been increasing focus on the non-malignant cells that make up the tumour microenvironment (TME), and how they interact with malignant tumour cells. TME is highly heterogeneous and has a major influence on tumour behaviour and therapy response. Cancer-associated fibroblasts (CAFs), one of the main components of the TME, establish dangerous liaisons with cancer cells and other components of the TME to shape a tumour-supportive environment in many types of cancer. Head and neck squamous cell carcinoma (HNSCC) encompass the malignant neoplasms arising from the mucosal lining of the oral cavity, pharynx and larynx. The TME of HNSCC contributes to tumour progression and this stromal compartment may be an interesting target for treatment. There is an emerging picture of the behaviour of CAFs in HNSCC; how they affect and are affected by the TME. We aim to summarise and discuss the current understanding of CAFs in head and neck cancer, exploring CAF activation and heterogeneity, and interaction with cancer cells and other cells within the TME.
Collapse
Affiliation(s)
- Marcos Custódio
- Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
10
|
Qallandar OB, Ebrahimi F, Islam F, Wahab R, Qiao B, Reher P, Gopalan V, Lam AKY. Bone Invasive Properties of Oral Squamous Cell Carcinoma and its Interactions with Alveolar Bone Cells: An In Vitro Study. Curr Cancer Drug Targets 2020; 19:631-640. [PMID: 30387395 DOI: 10.2174/1568009618666181102144317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Co-culture of cancer cells with alveolar bone cells could modulate bone invasion and destructions. However, the mechanisms of interaction between oral squamous cell carcinoma (OSCC) and bone cells remain unclear. OBJECTIVE The aim of this study is to analyse the direct and indirect effects of OSCC cells in the stimulation of osteolytic activity and bone invasion. METHODS Direct co-culture was achieved by culturing OSCC (TCA8113) with a primary alveolar bone cell line. In the indirect co-culture, the supernatant of TCA8113 cells was collected to culture the alveolar bone cells. To assess the bone invasion properties, in vitro assays were performed. RESULTS The proliferation of co-cultured cancer cells was significantly (p<0.05) higher in comparison to the monolayer control cells. However, the proliferation rates were not significantly different between direct and indirect co-cultured cells with indirect co-cultured cells proliferated slightly more than the direct co-cultured cells. Invasion and migration capacities of co-cultured OSCC and alveolar bone cells enhanced significantly (p<0.05) when compared to that of control monolayer counterparts. Most importantly, we noted that OSCC cells directly co-cultured with alveolar bone cells stimulated pronounced bone collagen destruction. In addition, stem cells and epithelialmesenchymal transition markers have shown significant changes in their expression in co-cultured cells. CONCLUSION In conclusion, the findings of this study highlight the importance of the interaction of alveolar bone cells and OSCC cells in co-culture setting in the pathogenesis of bone invasion. This may help in the development of potential future biotherapies for bone invasion in OSCC.
Collapse
Affiliation(s)
- Omel Baneen Qallandar
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| | - Faeza Ebrahimi
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Farhadul Islam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Riajul Wahab
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Bin Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Peter Reher
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
11
|
Hai L, Szwarc MM, Lonard DM, Rajapakshe K, Perera D, Coarfa C, Ittmann M, Fernandez-Valdivia R, Lydon JP. Short-term RANKL exposure initiates a neoplastic transcriptional program in the basal epithelium of the murine salivary gland. Cytokine 2019; 123:154745. [PMID: 31226438 DOI: 10.1016/j.cyto.2019.154745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
Although salivary gland cancers comprise only ∼3-6% of head and neck cancers, treatment options for patients with advanced-stage disease are limited. Because of their rarity, salivary gland malignancies are understudied compared to other exocrine tissue cancers. The comparative lack of progress in this cancer field is particularly evident when it comes to our incomplete understanding of the key molecular signals that are causal for the development and/or progression of salivary gland cancers. Using a novel conditional transgenic mouse (K5:RANKL), we demonstrate that Receptor Activator of NFkB Ligand (RANKL) targeted to cytokeratin 5-positive basal epithelial cells of the salivary gland causes aggressive tumorigenesis within a short period of RANKL exposure. Genome-wide transcriptomic analysis reveals that RANKL markedly increases the expression levels of numerous gene families involved in cellular proliferation, migration, and intra- and extra-tumoral communication. Importantly, cross-species comparison of the K5:RANKL transcriptomic dataset with The Cancer Genome Atlas cancer signatures reveals the strongest molecular similarity with cancer subtypes of the human head and neck squamous cell carcinoma. These studies not only provide a much needed transcriptomic resource to mine for novel molecular targets for therapy and/or diagnosis but validates the K5:RANKL transgenic as a preclinical model to further investigate the in vivo oncogenic role of RANKL signaling in salivary gland tumorigenesis.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou, Henan Province, PR China
| | - Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Dimuthu Perera
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Ahmad JG, Namin AW, Jorgensen JB, Zitsch RP, Layfield LJ. Mandibular Invasion by Oral Squamous Cell Carcinoma: Clinicopathologic Features of 74 Cases. Otolaryngol Head Neck Surg 2019; 160:1034-1041. [PMID: 30598057 DOI: 10.1177/0194599818821859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES (1) For patients with oral squamous cell carcinoma (OSCC) and mandibular invasion, to determine whether prior radiation to the head and neck region (PXRTHN) affects the density of osteoblasts, osteoclasts, or fibroblasts along the tumor interface invading the mandible and whether this is significantly associated with overall survival. (2) To identify clinicopathologic features that are associated with overall survival. STUDY DESIGN Case series with chart review. SETTING University of Missouri hospital. SUBJECTS AND METHODS Retrospective review of 74 cases with pathologically confirmed mandible invasion by OSCC and surgical treatment between January 1, 2005, and December 31, 2015. A board-certified anatomic pathologist reviewed the slides from all mandibulectomy cases. RESULTS The mean density of osteoclasts was 2.0 per linear mm among the patients with PXRTHN and 7.1 among those without PXRTHN ( P < .001). Positive soft tissue frozen section margin was significantly associated with overall survival on univariate analysis ( P < .001; hazard ratio [HR], 0.34; 95% CI, 0.19-0.62) and multivariate analysis ( P = .026; HR, 0.41; 95% CI, 0.19-0.90). Maximum tumor dimension was significantly associated with overall survival on univariate analysis ( P = .021; HR, 1.19; 95% CI, 1.03-1.38) and multivariate analysis ( P = .002; HR, 1.49; 95% CI, 1.16-1.93). Osteoclast, osteoblast, and fibroblast density were not associated with overall survival. CONCLUSIONS (1) Osteoclast density along the tumor front is significantly lower among patients with PXRTHN. Stromal cell density was not associated with overall survival. (2) Positive soft tissue frozen section margin and maximum tumor dimension are significantly associated with overall survival among patients with mandibular invasion by OSCC.
Collapse
Affiliation(s)
- Jumah G Ahmad
- 1 School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Arya W Namin
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jeffrey B Jorgensen
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Robert P Zitsch
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Lester J Layfield
- 3 Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
13
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
14
|
Tazaki Y, Sugitani K, Ogai K, Kobayashi I, Kawasaki H, Aoyama T, Suzuki N, Tabuchi Y, Hattori A, Kitamura KI. RANKL, Ephrin-Eph and Wnt10b are key intercellular communication molecules regulating bone remodeling in autologous transplanted goldfish scales. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:46-58. [PMID: 29886255 DOI: 10.1016/j.cbpa.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the precise data of gene expression, functions, and chronological relationships amongst communication molecules involved in the bone remodeling process with an in vivo model using autologous transplanted scales of goldfish. Autotransplantation of methanol-fixed cell-free scales triggers scale resorption and regeneration, as well as helps elucidate the process of bone remodeling. We investigated osteoclastic markers, osteoblastic markers, and gene expressions of communicating molecules (RANKL, ephrinB2, EphB4, EphA4, Wnt10b) by qPCR, in situ hybridization for Wnt10b, and immunohistochemistry for EphrinB2 and EphA4 proteins to elucidate the bone remodeling process. Furthermore, functional inhibition experiments for the signaling of ephrinB2/Eph, ephrin/EphA4, and Wnt10b using specific antibodies, revealed that these proteins are involved in key signaling pathways promoting normal bone remodeling. Our data suggests that the remodeling process comprises of two successive phases. In the first absorption phase, differentiation of osteoclast progenitors by RANKL is followed by the bone absorption by mature, active osteoclasts, with the simultaneous induction of osteoblast progenitors by multinucleated osteoclast-derived Wnt10b, and proliferation of osteoblast precursors by ehprinB2/EphB4 signaling. Subsequently, during the second formation phase, termination of bone resorption by synergistic cooperation occurs, with downregulation of RANKL expression in activated osteoblasts and Ephrin/EphA4-mediated mutual inhibition between neighboring multinucleated osteoclasts, along with simultaneous activation of osteoblasts via forward and reverse EphrinB2/EphB4 signaling between neighboring osteoblasts. In addition, the present study shows that autologous transplantation of methanol-fixed cell-free scale is an ideal in vivo model to study bone remodeling.
Collapse
Affiliation(s)
- Yuya Tazaki
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan; Clinical Laboratory, Kanazawa University Hospital, Takara-machi Kanazawa Ishikawa, 920-8641, Japan
| | - Kayo Sugitani
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Kazuhiro Ogai
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Haruki Kawasaki
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Takafumi Aoyama
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Atsuhiko Hattori
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
15
|
Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma. Oncotarget 2018; 8:9079-9092. [PMID: 28030842 PMCID: PMC5354716 DOI: 10.18632/oncotarget.14071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
High recurrence and lower survival rates in patients with oral squamous cell carcinoma (OSCC) are associated with its bone invasion. We identified the oncogenic role of RUNX3 during bone invasion by OSCC. Tumor growth and the generation of osteolytic lesions were significantly inhibited in mice that were subcutaneously inoculated with RUNX3-knockdown human OSCC cells. RUNX3 knockdown enhanced TGF-β-induced growth arrest and inhibited OSCC cell migration and invasion in the absence or presence of transforming growth factor-β (TGF-β), a major growth factor abundant in the bone microenvironment. RUNX3 knockdown induced cell cycle arrest at the G1 and G2 phases and promoted G2 arrest by TGF-β in Ca9.22 OSCC cells. RUNX3 knockdown also inhibited both the basal and TGF-β-induced epithelial-to-mesenchymal transition by increasing E-cadherin expression and suppressing the nuclear translocation of β-catenin. In addition, the expression and TGF-β-mediated induction of parathyroid hormone-related protein (PTHrP), one of key osteolytic factors, was blocked in RUNX3-knockdown OSCC cells. Furthermore, treating human osteoblastic cells with conditioned medium derived from RUNX3-knockdown OSCC cells reduced the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin ratio compared with treatment with conditioned medium from RUNX3-expressing cells. These findings indicate that RUNX3 expression in OSCC cells contributes to their bone invasion and the resulting osteolysis by inducing their malignant behaviors and production of osteolytic factors. RUNX3 alone or in combination with TGF-β and PTHrP may be a useful predictive biomarker and therapeutic target for bone invasion by oral cancer.
Collapse
|
16
|
Krepela E, Busek P, Hilser M, Vanickova Z, Sedo A. Species-specific real-time RT-PCR analysis of expression of stromal cell genes in a tumor xenotransplantation model in mice. Biochem Biophys Res Commun 2017; 491:126-133. [PMID: 28711492 DOI: 10.1016/j.bbrc.2017.07.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023]
Abstract
Human tumor xenografts in mice together with the species-specific analysis of expressed genes allow to study the molecular processes driving tumor growth and progression in vivo and help to develop and evaluate anticancer therapies. In the present work, we designed and validated species-specific real-time RT-PCR assays for discrimination and quantitation of expression of human and mouse transcripts in cancer and stromal cells including dipeptidyl peptidase (DPP) 4, DPP8, DPP9, fibroblast activation protein (FAP) and CXC chemokine receptor 4 in mixed human-mouse biological samples. Using single species RNA samples and mixed human-mouse RNA samples, we formulated and characterized two-step real-time RT-PCR assays to quantitate expression of the indicated transcripts and described analytical performance of the assays. We also demonstrated the applicability of these assays for species-specific quantitation of transcriptional expression of mouse stromal cell genes including Dpp4, Dpp8, Dpp9, Fap and Cxcr4 in mixed human-mouse RNA samples from human glioma cell-derived tumor xenografts growing in mouse brain.
Collapse
Affiliation(s)
- Evzen Krepela
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Hilser
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdislava Vanickova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1348-8643(15)00038-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Tohyama R, Kayamori K, Sato K, Hamagaki M, Sakamoto K, Yasuda H, Yamaguchi A. Establishment of a xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of RANKL. J Oral Pathol Med 2015; 45:356-64. [PMID: 26859422 DOI: 10.1111/jop.12376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The molecular mechanism underlying bone invasion caused by oral squamous cell carcinoma (OSCC) is not well understood. To elucidate the molecular mechanism, the development of more suitable xenograft models mimicking human mandibular bone destruction by OSCC has been required. MATERIALS AND METHODS Human OSCC cell lines, HSC3, HSC3-C1, and HSC3-R2, were injected in the periosteal region of the mandible in athymic mice, and the bone destruction was analyzed. Receptor activators of nuclear factor κ-B ligand (RANKL) mRNA and protein expression levels were measured in the OSCC cell lines. Antibody that specifically neutralizes mouse RANKL and human RANKL, respectively, was injected into HSC3-cell-transplanted mice. RESULTS Transplantation of HSC3 cells induced mandibular bone destruction. Histological examination revealed numerous osteoclasts on the bone destruction surface. Fibroblastic cell intervention between the cancer nests and resorbing bone surface was observed in a similar fashion to those observed in human OSCC cases. The number of osteoclasts and fibroblasts was significantly correlated. Bone destruction induced by the transplantation of HSC3 cells was reduced by injection of an antibody that specifically neutralizes mouse RANKL. Transplantation of HSC3-R2 cells, which overexpresses RANKL, induced advanced bone destruction compared to that of HSC3-C1 cells, which only overexpress the empty vector. CONCLUSIONS We established a useful xenograft model for investigating the molecular mechanism underlying the bone destruction induced by OSCC in the jaw. This model will be used to investigate the precise roles of several cytokines synthesized by both cancer cells and fibroblastic cells in OSCC-associated bone destruction in the jaw.
Collapse
Affiliation(s)
- Rei Tohyama
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Sato
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miwako Hamagaki
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
19
|
Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors. PLoS One 2015; 10:e0128467. [PMID: 26061636 PMCID: PMC4464738 DOI: 10.1371/journal.pone.0128467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields) with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL)/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer), the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer.
Collapse
|
20
|
Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma. Biochem Biophys Res Commun 2015; 458:777-82. [DOI: 10.1016/j.bbrc.2015.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
|
21
|
Russmueller G, Moser D, Würger T, Wrba F, Christopoulos P, Kostakis G, Seemann R, Stadler V, Wimmer G, Kornek G, Psyrri A, Filipits M, Perisanidis C. Upregulation of osteoprotegerin expression correlates with bone invasion and predicts poor clinical outcome in oral cancer. Oral Oncol 2014; 51:247-53. [PMID: 25532817 DOI: 10.1016/j.oraloncology.2014.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVES We aimed to determine the prognostic significance of receptor activator of nuclear factor kappa-B ligand (RANKL), RANK and osteoprotegerin (OPG) in patients with oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS The protein expression of RANKL, RANK and OPG was assessed by immunohistochemistry on pretreatment biopsies of 93 patients with locally advanced OSCC who received preoperative chemoradiotherapy (CRT). The primary endpoint was cancer-specific survival. Secondary endpoints were correlation of biomarkers with bone invasion and pathological tumor response. Kaplan-Meier curves and Cox regression models were used for survival analyses. RESULTS A significantly higher OPG expression was demonstrated in patients with malignant bone invasion and non-responders to CRT as compared to patients without bone invasion and responders (p=0.032 and p=0.033, respectively). Multivariate analysis revealed that higher OPG expression was independently associated with shorter cancer-specific survival (p=0.04). The expression status of RANKL and RANK was not significantly related to clinicopathological characteristics and had no impact on survival of OSCC patients. CONCLUSION Upregulation of OPG expression is associated with bone invasion, poor pathological tumor regression to neoadjuvant CRT, and worse long-term cancer-specific survival in patients with locally advanced OSCC. Our results indicate that OPG may be a novel prognostic biomarker in oral cancer.
Collapse
Affiliation(s)
- G Russmueller
- Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Austria
| | - D Moser
- Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Austria
| | - T Würger
- Department of Clinical Pathology, Medical University of Vienna, Austria
| | - F Wrba
- Department of Clinical Pathology, Medical University of Vienna, Austria
| | - P Christopoulos
- Department of Maxillofacial and Oral Surgery, University of Athens, Greece.
| | - G Kostakis
- Department of Maxillofacial and Oral Surgery, University of Athens, Greece
| | - R Seemann
- Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Austria
| | - V Stadler
- Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Austria
| | - G Wimmer
- Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Austria
| | - G Kornek
- Department of Medicine I, Medical University of Vienna, Austria
| | - A Psyrri
- Division of Oncology, Second Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - M Filipits
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria
| | - C Perisanidis
- Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Austria
| |
Collapse
|
22
|
Abstract
Acting through its cognate receptor, receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) is an essential mediator of osteoclast function and survival. Preclinical data have now firmly established that blockade of tumor-induced osteoclastogenesis by RANKL inhibition will not only protect against bone destruction but will also inhibit the progression of established bone metastases and delay the formation of de novo bone metastases in cancer models. In patients with bone metastases, skeletal complications are driven by increased osteoclastic activity and may result in pathological fractures, spinal cord compression and the need for radiotherapy to the bone or orthopedic surgery (collectively known as skeletal-related events (SREs)). Denosumab, a fully human monoclonal antibody against RANKL, has been demonstrated to prevent or delay SREs in patients with solid tumors that have metastasized to bone. In addition to its central role in tumor-induced osteolysis, bone destruction and skeletal tumor progression, there is emerging evidence for direct pro-metastatic effects of RANKL, independent of osteoclasts. For example, RANKL also stimulates metastasis via activity on RANK-expressing cancer cells, resulting in increased invasion and migration. Pharmacological inhibition of RANKL may also reduce bone and lung metastasis through blockade of the direct action of RANKL on metastatic cells. This review describes these distinct but potentially overlapping mechanisms by which RANKL may promote metastases.
Collapse
|