1
|
Helm J, Mereiter S, Oliveira T, Gattinger A, Markovitz DM, Penninger JM, Altmann F, Stadlmann J. Non-targeted N-glycome profiling reveals multiple layers of organ-specific diversity in mice. Nat Commun 2024; 15:9725. [PMID: 39521793 PMCID: PMC11550822 DOI: 10.1038/s41467-024-54134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging. Here we make publicly available a consistent N-glycome dataset of 20 different mouse tissues and demonstrate a multimodal data analysis workflow that allows for unprecedented depth and coverage of N-glycome features. This highly scalable, LC-MS/MS data-driven method integrates the automated identification of N-glycan spectra, the application of non-targeted N-glycome profiling strategies and the isomer-sensitive analysis of glycan structures. Our delineation of critical sub-structural determinants and glycan isomers across the mouse N-glycome uncovered tissue-specific glycosylation patterns, the expression of non-canonical N-glycan structures and highlights multiple layers of N-glycome complexity that derive from organ-specific regulations of glycobiological pathways.
Collapse
Affiliation(s)
- Johannes Helm
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria
| | - Stefan Mereiter
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Tiago Oliveira
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Anna Gattinger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, Hagenberg, Austria
| | - David M Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, and the Programs in Immunology, Cellular and Molecular Biology, and Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Josef M Penninger
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BC, Canada
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Friedrich Altmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria
| | - Johannes Stadlmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria.
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria.
| |
Collapse
|
2
|
Stadlmann J, Helm J, Mereiter S, Oliveira T, Gattinger A, Markovitz D, Penninger J, Altmann F. Non-targeted isomer-sensitive N-glycome analysis reveals new layers of organ-specific diversity in mice. RESEARCH SQUARE 2024:rs.3.rs-4130712. [PMID: 38659835 PMCID: PMC11042426 DOI: 10.21203/rs.3.rs-4130712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging. Here we make publicly available a consistent N-glycome dataset of 20 different mouse tissues and demonstrate a multimodal data analysis workflow that allows for unprecedented depth and coverage of N-glycome features. This highly scalable, LC-MS/MS data-driven method integrates the automated identification of N-glycan spectra, the application of non-targeted N-glycome profiling strategies and the isomer-sensitive analysis of glycan structures. Our delineation of critical sub-structural determinants and glycan isomers across the mouse N-glycome uncovered tissue-specific glycosylation patterns, the expression of non-canonical N-glycan structures and highlights multiple layers of N-glycome complexity that derive from organ-specific regulations of glycobiological pathways.
Collapse
Affiliation(s)
| | - Johannes Helm
- University of Natural Resources and Life Sciences Vienna
| | | | - Tiago Oliveira
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)
| | - Anna Gattinger
- Bioinformatics Research Group, University of Applied Sciences Upper Austria
| | | | | | | |
Collapse
|
3
|
Li N, Lee Y, Suh JH, Oh JH, Jin SP, Lee DH, Chung JH. Fucosylation deficiency enhances imiquimod-induced psoriasis-like skin inflammation by promoting CXCL1 expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166988. [PMID: 38070583 DOI: 10.1016/j.bbadis.2023.166988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Psoriasis is a multifaceted chronic inflammatory skin disease; however, its underlying molecular mechanisms remain unclear. In this study, we explored the role of fucosylation in psoriasis using an imiquimod-induced psoriasis-like mouse model. ABH antigen and fucosyltransferase 1 (Fut1) expression was reduced in the granular layer of lesional skin of patients with psoriasis. In particular, the blood group H antigen type 2 (H2 antigen)-a precursor of blood group A and B antigens-and FUT1 were highly expressed throughout the spinous layer in both patients with psoriasis and the skin of imiquimod-treated mice. Upon the application of imiquimod, Fut1-deficient mice, which lacked the H2 antigen, exhibited higher clinical scores based on erythema, induration, and scaling than those of wild-type mice. Imiquimod-treated Fut1-deficient mice displayed increased skin thickness, trans-epidermal water loss, and Gr-1+ cell infiltration compared with wild-type mice. Notably, the levels of CXCL1 protein and mRNA were significantly higher in Fut1-deficient mice than those in wild-type mice; however, there were no significant differences in other psoriasis-related markers, such as IL-1β, IL-6, IL-17A, and IL-23. Fut1-deficient primary keratinocytes treated with IL-17A also showed a significant increase in both mRNA and protein levels of CXCL1 compared with IL-17A-treated wild-type primary keratinocytes. Further mechanistic studies revealed that this increased Cxcl1 mRNA in Fut1-deficient keratinocytes was caused by enhanced Cxcl1 mRNA stabilization. In summary, our findings indicated that fucosylation, which is essential for ABH antigen synthesis in humans, plays a protective role in psoriasis-like skin inflammation and is a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Na Li
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joong Heon Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Brekke TD, Moore EC, Campbell-Staton SC, Callahan CM, Cheviron ZA, Good JM. X chromosome-dependent disruption of placental regulatory networks in hybrid dwarf hamsters. Genetics 2021; 218:6168998. [PMID: 33710276 DOI: 10.1093/genetics/iyab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/16/2021] [Indexed: 11/14/2022] Open
Abstract
Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.
Collapse
Affiliation(s)
- Thomas D Brekke
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Emily C Moore
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Shane C Campbell-Staton
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,Department of Ecology and Evolutionary Biology; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Colin M Callahan
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
5
|
Xiao J, Wang R, Cai X, Ye Z. Coupling of Co-expression Network Analysis and Machine Learning Validation Unearthed Potential Key Genes Involved in Rheumatoid Arthritis. Front Genet 2021; 12:604714. [PMID: 33643380 PMCID: PMC7905311 DOI: 10.3389/fgene.2021.604714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an incurable disease that afflicts 0.5-1.0% of the global population though it is less threatening at its early stage. Therefore, improved diagnostic efficiency and prognostic outcome are critical for confronting RA. Although machine learning is considered a promising technique in clinical research, its potential in verifying the biological significance of gene was not fully exploited. The performance of a machine learning model depends greatly on the features used for model training; therefore, the effectiveness of prediction might reflect the quality of input features. In the present study, we used weighted gene co-expression network analysis (WGCNA) in conjunction with differentially expressed gene (DEG) analysis to select the key genes that were highly associated with RA phenotypes based on multiple microarray datasets of RA blood samples, after which they were used as features in machine learning model validation. A total of six machine learning models were used to validate the biological significance of the key genes based on gene expression, among which five models achieved good performances [area under curve (AUC) >0.85], suggesting that our currently identified key genes are biologically significant and highly representative of genes involved in RA. Combined with other biological interpretations including Gene Ontology (GO) analysis, protein-protein interaction (PPI) network analysis, as well as inference of immune cell composition, our current study might shed a light on the in-depth study of RA diagnosis and prognosis.
Collapse
Affiliation(s)
- Jianwei Xiao
- Department of Rheumatology and Immunology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Rongsheng Wang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Xu Cai
- Department of Rheumatology and Immunology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Department of Rheumatology and Immunology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
6
|
Liu SQ, Grantham A, Landry C, Granda B, Chopra R, Chakravarthy S, Deutsch S, Vogel M, Russo K, Seiss K, Tschantz WR, Rejtar T, Ruddy DA, Hu T, Aardalen K, Wagner JP, Dranoff G, D'Alessio JA. A CRISPR Screen Reveals Resistance Mechanisms to CD3-Bispecific Antibody Therapy. Cancer Immunol Res 2020; 9:34-49. [PMID: 33177106 DOI: 10.1158/2326-6066.cir-20-0080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
CD3-bispecific antibodies represent an important therapeutic strategy in oncology. These molecules work by redirecting cytotoxic T cells to antigen-bearing tumor cells. Although CD3-bispecific antibodies have been developed for several clinical indications, cases of cancer-derived resistance are an emerging limitation to the more generalized application of these molecules. Here, we devised whole-genome CRISPR screens to identify cancer resistance mechanisms to CD3-bispecific antibodies across multiple targets and cancer types. By validating the screen hits, we found that deficiency in IFNγ signaling has a prominent role in cancer resistance. IFNγ functioned by stimulating the expression of T-cell killing-related molecules in a cell type-specific manner. By assessing resistance to the clinical CD3-bispecific antibody flotetuzumab, we identified core fucosylation as a critical pathway to regulate flotetuzumab binding to the CD123 antigen. Disruption of this pathway resulted in significant resistance to flotetuzumab treatment. Proper fucosylation of CD123 was required for its normal biological functions. In order to treat the resistance associated with fucosylation loss, flotetuzumab in combination with an alternative targeting CD3-bispecific antibody demonstrated superior efficacy. Together, our study reveals multiple mechanisms that can be targeted to enhance the clinical potential of current and future T-cell-engaging CD3-bispecific antibody therapies.
Collapse
Affiliation(s)
- Si-Qi Liu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Alyssa Grantham
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Casey Landry
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Brian Granda
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Rajiv Chopra
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Sabine Deutsch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Vogel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Katie Russo
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Katherine Seiss
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Tomas Rejtar
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - David A Ruddy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Tiancen Hu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Kimberly Aardalen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Joel P Wagner
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | |
Collapse
|
7
|
Zhou W, Ma H, Deng G, Tang L, Lu J, Chen X. Clinical significance and biological function of fucosyltransferase 2 in lung adenocarcinoma. Oncotarget 2017; 8:97246-97259. [PMID: 29228607 PMCID: PMC5722559 DOI: 10.18632/oncotarget.21896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Fucosylation, which is catalyzed by fucosyltransferases (FUTs), is one of the most important glycosylation events involved in cancer. Studies have shown that fucosyltransferase 8 (FUT8) is overexpressed in NSCLC and promotes lung cancer progression. However, there are no reports about the pathological role of fucosyltransferase 2 (FUT2) in lung cancer. To identify FUT2 associated with lung cancer, the expression and clinical significance of FUT2 in lung cancer was investigated by Real-Time PCR, Immunohistochemistry and Western Blot. In addition, we investigated the effect of knockdown FUT2 in lung adenocarcinoma cells. The results showed that the expression of FUT2 in lung adenocarcinoma is higher than that in adjacent noncancerous tissues. Knocking down FUT2 in A549 and H1299 cells decreased cell proliferation, migration and invasion, and increased cell apoptosis compared to corresponding control cells. Furthermore, Western Blot showed that knockdown FUT2 can impact the expression of migration-associated and apoptosis-associated proteins in A549 cells. Our results suggest that FUT2 may be associated with lung adenocarcinoma development and thus is a potential biomarker or/and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijun Ma
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Laboratory, Women and Children's Hospital of Qingdao, Qingdao, China
| | - Guoqing Deng
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lili Tang
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianxin Lu
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|