1
|
Zong R, Zheng Y, Yan Y, Sun W, Kong L, Huang Y, Liu Y, Jiang C, Ping J, Li C. Mesenchymal stem cells-derived exosomes alleviate liver fibrosis by targeting Hedgehog/SMO signaling. Hepatol Int 2024; 18:1781-1791. [PMID: 39138757 DOI: 10.1007/s12072-024-10717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND & AIMS Despite increasing knowledge regarding the cellular and molecular mechanisms of liver fibrogenesis, there is currently no approved drug for the treatment of liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for tissue damage and inflammation. This study was designed to determine the protective effect and underlying mechanism of human umbilical cord-derived MSCs (UC-MSCs) on thioacetamide-induced liver fibrosis. METHODS Liver fibrosis was induced in mice by intraperitoneal injection of thioacetamide (TAA). Some mice were then given injection of UC-MSCs or UC-MSCs-derived exosomes (UC-MSCs-Exo) via the tail vein. Liver tissues were collected for histologic analysis. RESULTS We found that administration of UC-MSCs significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels, and attenuated hepatic inflammation and fibrosis. Moreover, the therapeutic effect of UC-MSCs-derived exosomes was similar to that of UC-MSCs. Intriguingly, UC-MSCs-Exo treatment downregulated the expression of smoothened (SMO), a fundamental component of Hedgehog signaling which plays a critical role in fibrogenesis, and subsequently inhibited the activation of hepatic stellate cells, a central driver of fibrosis in experimental and human liver injury. Furthermore, the anti-inflammatory and anti-fibrotic effects of UCMSCs- Exo was reversed by the SMO agonist SAG treatment in mice. CONCLUSION Our findings suggest that UC-MSCs-Exo exert therapeutic effects on liver fibrosis, at least in part, through inhibiting the Hedgehog/SMO signaling pathway.
Collapse
Affiliation(s)
- Ruobin Zong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Yan Zheng
- Department of Pharmacy, Hubei Aerospace Hospital, Xiaogan, Hubei, China
| | - Yufei Yan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Wenao Sun
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Liangyi Kong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Yating Huang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Yujie Liu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China
| | - Chaochen Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Ping
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 115 Donghu Road, Wuhan, 430071, China.
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China.
| |
Collapse
|
2
|
Faheem S, Hameed H, Paiva-Santos AC, Khan MA, Ghumman SA, Hameed A. The role of chondroitin sulphate as a potential biomaterial for hepatic tissue regeneration: A comprehensive review. Int J Biol Macromol 2024; 280:136332. [PMID: 39482129 DOI: 10.1016/j.ijbiomac.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Chondroitin sulphate is an anionic hetero-polysaccharide, having numerous structural affinities for building the bio-active components. In addition to biodegradable/biocompatible activities, chondroitin sulphate also possesses anti-coagulant/anti-thrombogenic, anti-inflammatory, anti-oxidant as well as anti-tumor activities. Chondroitin sulphate has an inherited affinity for glycosylation enzymes and receptors, which are overexpressed over degenerated cells and organelles. Because of this affinity, chondroitin sulphate is nominated as an active cellular/subcellular targeted biological macromolecule to assist in site-specific delivery. Chondroitin sulphate is mainly considered a promising biomaterial for drug targeting and tissue engineering due to its specific physicochemical, mechanical, bio-degradation, and biological characteristics. In this review, the fundamental applications of chondroitin sulphate in hepatic tissue engineering are discussed. Chondroitin sulphate along with mesenchymal stem cells (MSCs) based scaffold and hydrogels for biopharmaceuticals' delivery in hepatic tissue engineering are critically discussed. In addition, the manuscript also describes leading features and markers involved in hepatic damage, and the potential role of chondroitin sulphate-based delivery systems in hepatic tissue engineering.
Collapse
Affiliation(s)
- Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | | | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan.
| |
Collapse
|
3
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
4
|
Dutta RK, Jun J, Du K, Diehl AM. Hedgehog Signaling: Implications in Liver Pathophysiology. Semin Liver Dis 2023; 43:418-428. [PMID: 37802119 DOI: 10.1055/a-2187-3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The purpose of this review is to summarize current knowledge about the role of the Hedgehog signaling pathway in liver homeostasis and disease. Hedgehog is a morphogenic signaling pathway that is active in development. In most healthy tissues, pathway activity is restricted to stem and/or stromal cell compartments, where it enables stem cell self-renewal and tissue homeostasis. Aberrant over-activation of Hedgehog signaling occurs in many cancers, including hepatocellular and cholangio-carcinoma. The pathway is also activated transiently in stromal cells of injured tissues and orchestrates normal wound healing responses, including inflammation, vascular remodeling, and fibrogenesis. In liver, sustained Hedgehog signaling in stromal cells plays a major role in the pathogenesis of cirrhosis. Hedgehog signaling was thought to be silenced in healthy hepatocytes. However, recent studies show that targeted disruption of the pathway in hepatocytes dysregulates lipid, cholesterol, and bile acid metabolism, and promotes hepatic lipotoxicity, insulin resistance, and senescence. Hepatocytes that lack Hedgehog activity also produce a secretome that activates Hedgehog signaling in cholangiocytes and neighboring stromal cells to induce inflammatory and fibrogenic wound healing responses that drive progressive fibrosis. In conclusion, Hedgehog signaling must be precisely controlled in adult liver cells to maintain liver health.
Collapse
Affiliation(s)
| | - JiHye Jun
- Department of Medicine, Duke University, Durham, North Carolina
| | - Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
5
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Wu W, Wu W, Ye Y, Li T, Wang B. mRNA and lncRNA expression profiles of liver tissues in children with biliary atresia. Exp Ther Med 2022; 24:634. [PMID: 36160912 PMCID: PMC9468840 DOI: 10.3892/etm.2022.11571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Progressive liver fibrosis is the most common phenotype in biliary atresia (BA). A number of pathways contribute to the fibrosis process so comprehensive understanding the mechanisms of liver fibrosis in BA will pave the way to improve patient's outcome after operation. In this study, the differentially expressed profiles of mRNAs and long non-coding RNAs from BA and choledochal cyst (CC) liver tissues were investigated and analyzed, which may provide potential clues to clarify hepatofibrosis mechanism in BA. A total of two BA and two CC liver tissue specimens were collected, the expression level of mRNAs and lncRNAs was detected by RNA sequencing. Differentially expressed mRNAs (DEmRNAs) were functionally annotated and protein-protein interaction networks (PPI) was established to predict the biological roles and interactive relationships. Differentially expressed lncRNAs (DElncRNAs) nearby targeted DEmRNA network and DElncRNA-DEmRNA co-expression network were constructed to further explore the roles of DElncRNAs in BA pathogenesis. The expression profiles of significant DEmRNAs were validated in Gene Expression Omnibus database. A total of 2,086 DEmRNAs and 184 DElncRNAs between BA and CC liver tissues were obtained. DEmRNAs were enriched in 521 Gene Ontology terms and 71 Kyoto Encyclopedia of Genes and Genomes terms which were mainly biological processes and metabolic pathways related to immune response and inflammatory response. A total of five hub proteins (TYRO protein tyrosine kinase binding protein, C-X-C motif chemokine ligand 8, pleckstrin, Toll-like receptor 8 and C-C motif chemokine receptor 5) were found in the PPI networks. A total of 31 DElncRNA-nearby-targeted DEmRNA pairs and 2,337 DElncRNA-DEmRNA co-expression pairs were obtained. The expression of DEmRNAs obtained from RNA sequencing were verified in GSE46960 dataset, generally. The present study identified key genes and lncRNAs participated in BA associated liver fibrosis, which may present a new avenue for understanding the patho-mechanism for hepatic fibrosis in BA.
Collapse
Affiliation(s)
- Wenyan Wu
- Medical Laboratory, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Weifang Wu
- Medical College, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
| | - Yongqin Ye
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, P.R. China
| | - Tao Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
- Correspondence to: Professor Bin Wang, Department of General Surgery, Shenzhen Children's Hospital, 7019 Yitian Road, Futian, Shenzhen, Guangdong 518026, P.R. China
| |
Collapse
|
7
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
8
|
Huang W, Han N, Du L, Wang M, Chen L, Tang H. A narrative review of liver regeneration-from models to molecular basis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1705. [PMID: 34988214 PMCID: PMC8667151 DOI: 10.21037/atm-21-5234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Objective To elucidate the characteristics of different liver regeneration animal models, understand the activation signals and mechanisms related to liver regeneration, and obtain a more comprehensive conception of the entire liver regeneration process. Background Liver regeneration is one of the most enigmatic and fascinating phenomena of the human organism. Despite suffering significant injuries, the liver still can continue to perform its complex functions through the regeneration system. Although advanced topics on liver regeneration have been proposed; unfortunately, complete regeneration of the liver has not been achieved until now. Therefore, increasing understanding of the liver regenerative process can help improve our treatment of liver failure. It will provide a new sight for the treatment of patients with liver injury in the clinic. Methods Literatures on liver regeneration animal models and involved basic research on molecular mechanisms were retrieved to analyze the characteristics of different models and those related to molecular basis. Conclusions The process of liver regeneration is complex and intricate, consisting of various and interactive pathways. There is sufficient evidence to demonstrate that liver regeneration is similar between humans and rodents. At the same time, many of the same cytokines, growth factors, and signaling pathways are relevant. There are many gaps in our current knowledge. Understanding of this knowledge will provide more supportive clinical treatment strategies, including small-scale liver transplantation and high-quality regenerative process after surgical resection, and offer possible targets to treat the dysregulation of regeneration that occurs in chronic hepatic diseases and tumors. Current research work, such as the use of animal models as in vivo vectors for high-quality human hepatocytes, represents a unique and significant cutting edge in the field of liver regeneration.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Han
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Li X, Ma G, Guo W, Mu N, Wang Y, Liu X, Su L. Hhex inhibits cell migration via regulating RHOA/CDC42-CFL1 axis in human lung cancer cells. Cell Commun Signal 2021; 19:80. [PMID: 34321041 PMCID: PMC8320060 DOI: 10.1186/s12964-021-00763-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 06/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background Hhex(human hematopoietically expressed homeobox), also known as PRH, is originally considered as a transcription factor to regulate gene expression due to its homebox domain. Increasing studies show that Hhex plays a significant role in development, including anterior–posterior axis formation, vascular development and HSCs self-renewal etc. Hhex is linked to many diseases such as cancers, leukemia, and type-2 diabetes. Although Hhex is reported to inhibit cell migration and invasion of breast and prostate epithelial cells by upregulating Endoglin expression, the effect and molecular mechanism for lung cancer cell motility regulation remains elusive. Methods Human non-small cell lung cancer cells and HEK293FT cells were used to investigate the molecular mechanism of Hhex regulating lung cancer cell migration by using Western blot, immunoprecipitation, wound-healing scratch assay, laser confocal. Results Our data indicated that Hhex could inhibit cell migration and cell protrusion formation in lung cancer cells. In addition, Hhex inhibited CFL1 phosphorylation to keep its F-actin-severing activity. RHOGDIA was involved in Hhex-induced CFL1 phosphorylation regulation. Hhex enhanced RHOGDIA interaction with RHOA/CDC42, thus maintaining RHOA/CDC42 at an inactive form. Conclusion Collectively, these data indicate that Hhex inhibited the activation of RHOA/CDC42 by enhancing interaction of RHOGDIA with RHOA/CDC42, and then RHOA/ CDC42-p-CFL1 signaling pathway was blocked. Consequently, the formation of Filopodium and Lamellipodium on the cell surface was suppressed, and thus the ability of lung cancer cells to migrate was decreased accordingly. Our findings show Hhex plays an important role in regulating migration of lung cancer cells and may provide a potential target for lung cancer therapy. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00763-6.
Collapse
Affiliation(s)
- Xiaopeng Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-110, 72 Binhai Road, Qingdao, 266237, China
| | - Guilin Ma
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-110, 72 Binhai Road, Qingdao, 266237, China
| | - Wenjie Guo
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-110, 72 Binhai Road, Qingdao, 266237, China
| | - Ning Mu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-110, 72 Binhai Road, Qingdao, 266237, China
| | - Yingying Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-110, 72 Binhai Road, Qingdao, 266237, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-110, 72 Binhai Road, Qingdao, 266237, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Room N8-110, 72 Binhai Road, Qingdao, 266237, China. .,Shandong Provincial Collaborative Innovation Center of Cell Biology, School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
10
|
Reungoat E, Grigorov B, Zoulim F, Pécheur EI. Molecular Crosstalk between the Hepatitis C Virus and the Extracellular Matrix in Liver Fibrogenesis and Early Carcinogenesis. Cancers (Basel) 2021; 13:cancers13092270. [PMID: 34065048 PMCID: PMC8125929 DOI: 10.3390/cancers13092270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In the era of direct-acting antivirals against the hepatitis C virus (HCV), curing chronic hepatitis C has become a reality. However, while replicating chronically, HCV creates a peculiar state of inflammation and oxidative stress in the infected liver, which fuels DNA damage at the onset of HCV-induced hepatocellular carcinoma (HCC). This cancer, the second leading cause of death by cancer, remains of bad prognosis when diagnosed. This review aims to decipher how HCV durably alters elements of the extracellular matrix that compose the liver microenvironment, directly through its viral proteins or indirectly through the induction of cytokine secretion, thereby leading to liver fibrosis, cirrhosis, and, ultimately, HCC. Abstract Chronic infection by the hepatitis C virus (HCV) is a major cause of liver diseases, predisposing to fibrosis and hepatocellular carcinoma. Liver fibrosis is characterized by an overly abundant accumulation of components of the hepatic extracellular matrix, such as collagen and elastin, with consequences on the properties of this microenvironment and cancer initiation and growth. This review will provide an update on mechanistic concepts of HCV-related liver fibrosis/cirrhosis and early stages of carcinogenesis, with a dissection of the molecular details of the crosstalk during disease progression between hepatocytes, the extracellular matrix, and hepatic stellate cells.
Collapse
|
11
|
de Haan LR, Verheij J, van Golen RF, Horneffer-van der Sluis V, Lewis MR, Beuers UHW, van Gulik TM, Olde Damink SWM, Schaap FG, Heger M, Olthof PB. Unaltered Liver Regeneration in Post-Cholestatic Rats Treated with the FXR Agonist Obeticholic Acid. Biomolecules 2021; 11:biom11020260. [PMID: 33578971 PMCID: PMC7916678 DOI: 10.3390/biom11020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
In a previous study, obeticholic acid (OCA) increased liver growth before partial hepatectomy (PHx) in rats through the bile acid receptor farnesoid X-receptor (FXR). In that model, OCA was administered during obstructive cholestasis. However, patients normally undergo PHx several days after biliary drainage. The effects of OCA on liver regeneration were therefore studied in post-cholestatic Wistar rats. Rats underwent sham surgery or reversible bile duct ligation (rBDL), which was relieved after 7 days. PHx was performed one day after restoration of bile flow. Rats received 10 mg/kg OCA per day or were fed vehicle from restoration of bile flow until sacrifice 5 days after PHx. Liver regeneration was comparable between cholestatic and non-cholestatic livers in PHx-subjected rats, which paralleled liver regeneration a human validation cohort. OCA treatment induced ileal Fgf15 mRNA expression but did not enhance post-PHx hepatocyte proliferation through FXR/SHP signaling. OCA treatment neither increased mitosis rates nor recovery of liver weight after PHx but accelerated liver regrowth in rats that had not been subjected to rBDL. OCA did not increase biliary injury. Conclusively, OCA does not induce liver regeneration in post-cholestatic rats and does not exacerbate biliary damage that results from cholestasis. This study challenges the previously reported beneficial effects of OCA in liver regeneration in cholestatic rats.
Collapse
Affiliation(s)
- Lianne R. de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China;
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Rowan F. van Golen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Verena Horneffer-van der Sluis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (V.H.-v.d.S.); (M.R.L.)
| | - Matthew R. Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (V.H.-v.d.S.); (M.R.L.)
| | - Ulrich H. W. Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands;
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
| | - Steven W. M. Olde Damink
- Department of Surgery & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China;
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: or ; Tel.: +86-138-19345926 or +31-30-2533966
| | - Pim B. Olthof
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
- Department of Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
12
|
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 536] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Ma T, Zhang Y, Lao M, Chen W, Hu Q, Zhi X, Chen Z, Bai X, Dang X, Liang T. Endogenous Interleukin 18 Suppresses Liver Regeneration After Hepatectomy in Mice. Liver Transpl 2020; 26:408-418. [PMID: 31872961 DOI: 10.1002/lt.25709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/15/2019] [Indexed: 12/24/2022]
Abstract
The comprehensive role of interleukin (IL) 18 during liver regeneration is barely studied. Our aim is to evaluate the role of IL18 in liver regeneration after partial hepatectomy (PH) in mice. The expression profile of IL18 in the liver and the gut after 70% PH was measured. Liver samples after 70% and 85% PH from IL18 knockout (IL18-/- ) mice and wild type (WT) mice were collected for comparison of liver regeneration. The effect of recombinant IL18 on liver regeneration was tested in IL18-/- mice, and the utility of IL18 binding protein (BP) was also evaluated following 70% PH in WT mice. Expression levels of IL18 in the liver and the gut elevated after 70% PH. The liver weight/body weight ratios (LBWRs) after PH were significantly higher in IL18-/- mice than those in WT mice. Recombinant IL18 injection significantly decreased LBWR at 7 days after 70% PH in IL18-/- mice. The expression of cyclin D1, EdU labeling index, and Ki-67 proliferation index were much higher in IL18-/- mice than those in WT mice after 70% PH. The expression level of glypican 3 (GPC3) in WT mice significantly elevated during liver regeneration. In contrast, the expression level of GPC3 in IL18-/- mice remained roughly unchanged during liver regeneration. IL18BP injection significantly increased the LBWR at 7 days after 70% PH in WT mice. In conclusion, endogenous IL18 inhibited liver regeneration after PH in mice, possibly through up-regulating GPC3. IL18BP may be an effective agent to promote liver regeneration after PH.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yibo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Qida Hu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Zhiliang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Xiaowei Dang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| |
Collapse
|
14
|
|
15
|
Kitchen P, Lee KY, Clark D, Lau N, Lertsuwan J, Sawasdichai A, Satayavivad J, Oltean S, Afford S, Gaston K, Jayaraman PS. A Runaway PRH/HHEX-Notch3-Positive Feedback Loop Drives Cholangiocarcinoma and Determines Response to CDK4/6 Inhibition. Cancer Res 2019; 80:757-770. [PMID: 31843982 DOI: 10.1158/0008-5472.can-19-0942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/16/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Aberrant Notch and Wnt signaling are known drivers of cholangiocarcinoma (CCA), but the underlying factors that initiate and maintain these pathways are not known. Here, we show that the proline-rich homeodomain protein/hematopoietically expressed homeobox (PRH/HHEX) transcription factor forms a positive transcriptional feedback loop with Notch3 that is critical in CCA. PRH/HHEX expression is elevated in CCA, and depletion of PRH reduces CCA tumor growth in a xenograft model. Overexpression of PRH in primary human biliary epithelial cells is sufficient to increase cell proliferation and produce an invasive phenotype. Interrogation of the gene networks regulated by PRH and Notch3 reveals that unlike Notch3, PRH directly activates canonical Wnt signaling. These data indicate that hyperactivation of Notch and Wnt signaling is independent of the underlying mutational landscape and has a common origin in dysregulation of PRH. Moreover, they suggest new therapeutic options based on the dependence of specific Wnt, Notch, and CDK4/6 inhibitors on PRH activity. SIGNIFICANCE: The PRH/HHEX transcription factor is an oncogenic driver in cholangiocarcinoma that confers sensitivity to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Philip Kitchen
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ka Ying Lee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Danielle Clark
- Department of Biochemistry, Medical School, University of Bristol, Bristol, United Kingdom
| | - Nikki Lau
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jomnarong Lertsuwan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Anyaporn Sawasdichai
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Simon Afford
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Padma-Sheela Jayaraman
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
16
|
Li N, Wei L, Liu X, Bai H, Ye Y, Li D, Li N, Baxa U, Wang Q, Lv L, Chen Y, Feng M, Lee B, Gao W, Ho M. A Frizzled-Like Cysteine-Rich Domain in Glypican-3 Mediates Wnt Binding and Regulates Hepatocellular Carcinoma Tumor Growth in Mice. Hepatology 2019; 70:1231-1245. [PMID: 30963603 PMCID: PMC6783318 DOI: 10.1002/hep.30646] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Wnt signaling is one of the key regulators of hepatocellular carcinoma (HCC) tumor progression. In addition to the classical receptor frizzled (FZD), various coreceptors including heparan sulfate proteoglycans (HSPGs) are involved in Wnt activation. Glypican-3 (GPC3) is an HSPG that is overexpressed in HCC and functions as a Wnt coreceptor that modulates HCC cell proliferation. These features make GPC3 an attractive target for liver cancer therapy. However, the precise interaction of GPC3 and Wnt and how GPC3, Wnt, and FZD cooperate with each other are poorly understood. In this study, we established a structural model of GPC3 containing a putative FZD-like cysteine-rich domain at its N-terminal lobe. We found that F41 and its surrounding residues in GPC3 formed a Wnt-binding groove that interacted with the middle region located between the lipid thumb domain and the index finger domain of Wnt3a. Mutating residues in this groove significantly inhibited Wnt3a binding, β-catenin activation, and the transcriptional activation of Wnt-dependent genes. In contrast with the heparan sulfate chains, the Wnt-binding groove that we identified in the protein core of GPC3 seemed to promote Wnt signaling in conditions when FZD was not abundant. Specifically, blocking this domain using an antibody inhibited Wnt activation. In HCC cells, mutating residue F41 on GPC3 inhibited activation of β-catenin in vitro and reduced xenograft tumor growth in nude mice compared with cells expressing wild-type GPC3. Conclusion: Our investigation demonstrates a detailed interaction of GPC3 and Wnt3a, reveals the precise mechanism of GPC3 acting as a Wnt coreceptor, and provides a potential target site on GPC3 for Wnt blocking and HCC therapy.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Liwen Wei
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Bio-medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Xiaoyu Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hongjun Bai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne Ye
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qun Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Ling Lv
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, P.R. China
| | - Yun Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Mingqian Feng
- Bio-medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Corresponding to: Dr. Wei Gao, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Room A110, Nanjing, Jiangsu, 211166, P.R. China. Tel: 86-25-86869471; Fax: 86-25-86869471, . Dr. Mitchell Ho, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5002, Bethesda, MD 20892-4264. Tel: (240)760-7848; Fax: (301)402-1344;
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Corresponding to: Dr. Wei Gao, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Room A110, Nanjing, Jiangsu, 211166, P.R. China. Tel: 86-25-86869471; Fax: 86-25-86869471, . Dr. Mitchell Ho, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5002, Bethesda, MD 20892-4264. Tel: (240)760-7848; Fax: (301)402-1344;
| |
Collapse
|
17
|
Kolluri A, Ho M. The Role of Glypican-3 in Regulating Wnt, YAP, and Hedgehog in Liver Cancer. Front Oncol 2019; 9:708. [PMID: 31428581 PMCID: PMC6688162 DOI: 10.3389/fonc.2019.00708] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
Glypican-3 (GPC3) is a cell-surface glycoprotein consisting of heparan sulfate glycosaminoglycan chains and an inner protein core. It has important functions in cellular signaling including cell growth, embryogenesis, and differentiation. GPC3 has been linked to hepatocellular carcinoma and a few other cancers, however, the mechanistic role of GPC3 in cancer development remains elusive. Recent breakthroughs including the structural modeling of GPC3 and GPC3-Wnt complexes represent important steps toward deciphering the molecular mechanism of action for GPC3 and how it may regulate cancer signaling and tumor growth. A full understanding of the molecular basis of GPC3-mediated signaling requires elucidation of the dynamics of partner receptors, transducer complexes, and downstream players. Herein, we summarize current insights into the role of GPC3 in regulating cancer development through Wnt and other signaling pathways, including YAP and hedgehog cascades. We also highlight the growing body of work which underlies deciphering how GPC3 is a key player in liver oncogenesis.
Collapse
Affiliation(s)
- Aarti Kolluri
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Tweedell RE, Tao D, Hamerly T, Robinson TM, Larsen S, Grønning AGB, Norris AM, King JG, Law HCH, Baumbach J, Bergmann-Leitner ES, Dinglasan RR. The Selection of a Hepatocyte Cell Line Susceptible to Plasmodium falciparum Sporozoite Invasion That Is Associated With Expression of Glypican-3. Front Microbiol 2019; 10:127. [PMID: 30891005 PMCID: PMC6413710 DOI: 10.3389/fmicb.2019.00127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/21/2019] [Indexed: 01/09/2023] Open
Abstract
In vitro studies of liver stage (LS) development of the human malaria parasite Plasmodium falciparum are technically challenging; therefore, fundamental questions about hepatocyte receptors for invasion that can be targeted to prevent infection remain unanswered. To identify novel receptors and to further understand human hepatocyte susceptibility to P. falciparum sporozoite invasion, we created an optimized in vitro system by mimicking in vivo liver conditions and using the subcloned HC-04.J7 cell line that supports mean infection rates of 3-5% and early development of P. falciparum exoerythrocytic forms-a 3- to 5-fold improvement on current in vitro hepatocarcinoma models for P. falciparum invasion. We juxtaposed this invasion-susceptible cell line with an invasion-resistant cell line (HepG2) and performed comparative proteomics and RNA-seq analyses to identify host cell surface molecules and pathways important for sporozoite invasion of host cells. We identified and investigated a hepatocyte cell surface heparan sulfate proteoglycan, glypican-3, as a putative mediator of sporozoite invasion. We also noted the involvement of pathways that implicate the importance of the metabolic state of the hepatocyte in supporting LS development. Our study highlights important features of hepatocyte biology, and specifically the potential role of glypican-3, in mediating P. falciparum sporozoite invasion. Additionally, it establishes a simple in vitro system to study the LS with improved invasion efficiency. This work paves the way for the greater malaria and liver biology communities to explore fundamental questions of hepatocyte-pathogen interactions and extend the system to other human malaria parasite species, like P. vivax.
Collapse
Affiliation(s)
- Rebecca E Tweedell
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Timothy Hamerly
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Tanisha M Robinson
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Simon Larsen
- Computational BioMedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Alexander G B Grønning
- Computational BioMedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Alessandra M Norris
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jonas G King
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Henry Chun Hin Law
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jan Baumbach
- Computational BioMedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Elke S Bergmann-Leitner
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rhoel R Dinglasan
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
19
|
Xue Y, Mars WM, Bowen W, Singhi AD, Stoops J, Michalopoulos GK. Hepatitis C Virus Mimics Effects of Glypican-3 on CD81 and Promotes Development of Hepatocellular Carcinomas via Activation of Hippo Pathway in Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1469-1477. [PMID: 29577937 PMCID: PMC5975625 DOI: 10.1016/j.ajpath.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
Glypican (GPC)-3 is overexpressed in hepatocellular carcinomas (HCCs). GPC3 binds to CD81. Forced expression of CD81 in a GPC3-expressing HCC cell line caused activation of Hippo, a decrease in ezrin phosphorylation, and a decrease in yes-associated protein (YAP). CD81 is also associated with hepatitis C virus (HCV) entry into hepatocytes. Activation of CD81 by agonistic antibody causes activation of tyrosine-protein kinase SYK (SYK) and phosphorylation of ezrin, a regulator of the Hippo pathway. In cultures of normal hepatocytes, CD81 agonistic antibody led to enhanced phosphorylation of ezrin and an increase in nuclear YAP. HCV E2 protein mimicked GPC3 and led to enhanced Hippo activity and decreased YAP in cultured normal human hepatocytes. HCC tissue microarray revealed a lack of expression of CD81 in most HCCs, rendering them insusceptible to HCV infection. Activation of CD81 by agonistic antibody suppressed the Hippo pathway and increased nuclear YAP. HCV mimicked GPC3, causing Hippo activation and a decrease in YAP. HCV is thus likely to enhance hepatic neoplasia by acting as a promoter of growth of early CD81-negative neoplastic hepatocytes, which are resistant to HCV infection, and thus have a proliferative advantage to clonally expand as they participate in compensatory regeneration for the required maintenance of 100% of liver weight (hepatostat).
Collapse
Affiliation(s)
- Yuhua Xue
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
20
|
Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68:550-562. [PMID: 29107151 PMCID: PMC5957514 DOI: 10.1016/j.jhep.2017.10.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Liver disease remains a leading cause of mortality worldwide despite recent successes in the field of viral hepatitis, because increases in alcohol consumption and obesity are fuelling an epidemic of chronic fatty liver disease for which there are currently no effective medical therapies. About 20% of individuals with chronic liver injury ultimately develop end-stage liver disease due to cirrhosis. Hence, treatments to prevent and reverse cirrhosis in individuals with ongoing liver injury are desperately needed. The development of successful treatments requires an improved understanding of the mechanisms controlling liver disease progression. The liver responds to diverse insults with a conserved wound healing response, suggesting that it might be generally beneficial to optimise pathways that are crucial for effective liver repair. The Hedgehog pathway has emerged as a potential target based on compelling preclinical and clinical data, which demonstrate that it critically regulates the liver's response to injury. Herein, we will summarise evidence of the Hedgehog pathway's role in liver disease and discuss how modulating pathway activity might be applied to improve liver disease outcomes.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Apte U, Bhushan B, Dadhania V. Hepatic Defenses Against Toxicity: Liver Regeneration and Tissue Repair. COMPREHENSIVE TOXICOLOGY 2018:368-396. [DOI: 10.1016/b978-0-12-801238-3.64918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Michalopoulos GK. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65:1384-1392. [PMID: 27997988 DOI: 10.1002/hep.28988] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
In contrast to all other organs, liver-to-body-weight ratio needs to be maintained always at 100% of what is required for body homeostasis. Adjustment of liver size to 100% of what is required for homeostasis has been called "hepatostat." Removal of a portion of any other organ is followed with local regeneration of a limited degree, but it never attempts to reach 100% of the original size. The complex mechanisms involved in this uniquely hepatic process encompass a variety of regenerative pathways that are specific to different types of injury. The most studied form of liver regeneration (LR) is that occurring after loss of hepatocytes in a single acute injury, such as rodent LR after two-thirds partial hepatectomy or administration of damaging chemicals (CCl4 , acetaminophen, etc.). Alternative regenerative pathways become activated when normal regeneration is thwarted and trigger the appearance of "progenitor" cells. Chronic loss of hepatocytes is associated with regenerative efforts characterized by continual hepatocyte proliferation and often has adverse consequences (development of cirrhosis or liver cancer). Even though a very few hepatocytes proliferate at any given time in normal liver, the mechanisms involved in the maintenance of liver weight by this slow process in the absence of liver injury are not as well understood. (Hepatology 2017;65:1384-1392).
Collapse
|
23
|
Langiewicz M, Schlegel A, Saponara E, Linecker M, Borger P, Graf R, Humar B, Clavien PA. Hedgehog pathway mediates early acceleration of liver regeneration induced by a novel two-staged hepatectomy in mice. J Hepatol 2017; 66:560-570. [PMID: 27771454 DOI: 10.1016/j.jhep.2016.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS ALPPS, a novel two-staged approach for the surgical removal of large/multiple liver tumors, combines portal vein ligation (PVL) with parenchymal transection. This causes acceleration of compensatory liver growth, enabling faster and more extensive tumor removal. We sought to identify the plasma factors thought to mediate the regenerative acceleration following ALPPS. METHODS We compared a mouse model of ALPPS against PVL and additional control surgeries (n=6 per group). RNA deep sequencing was performed to identify candidate molecules unique to ALPPS liver (n=3 per group). Recombinant protein and a neutralizing antibody combined with appropriate surgeries were used to explore candidate functions in ALPPS (n=6 per group). Indian hedgehog (IHH/Ihh) levels were assessed in human ALPPS patient plasma (n=6). RESULTS ALPPS in mouse confirmed significant acceleration of liver regeneration relative to PVL (p<0.001). Ihh mRNA, coding for a secreted ligand inducing hedgehog signaling, was uniquely upregulated in ALPPS liver (p<0.001). Ihh plasma levels rose 4h after surgery (p<0.01), along with hedgehog pathway activation and subsequent cyclin D1 induction in the liver. When combined with PVL, Ihh alone was sufficient to induce ALPPS-like acceleration of liver growth. Conversely, blocking Ihh markedly inhibited the accelerating effects of ALPPS. In the small cohort of ALPPS patients, IHH tended to be elevated early after surgery. CONCLUSIONS Ihh and hedgehog pathway activation provide the first mechanistic insight into the acceleration of liver regeneration triggered by ALPPS surgery. The accelerating potency of recombinant Ihh, and its potential effect in human ALPPS may lead to a clinical role for this protein. LAY SUMMARY ALPPS, a novel two-staged hepatectomy, accelerates liver regeneration, thereby helping to treat patients with otherwise unresectable liver tumors. The molecular mechanisms behind this accelerated regeneration are unknown. Here, we elucidate that Indian hedgehog, a secreted ligand important for fetal development, is a crucial mediator of the regenerative acceleration triggered by ALPPS surgery.
Collapse
Affiliation(s)
- Magda Langiewicz
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, Raemistrasse 100, Zürich CH-8091, Switzerland
| | - Andrea Schlegel
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, Raemistrasse 100, Zürich CH-8091, Switzerland
| | - Enrica Saponara
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, Raemistrasse 100, Zürich CH-8091, Switzerland
| | - Michael Linecker
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, Raemistrasse 100, Zürich CH-8091, Switzerland
| | - Pieter Borger
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, Raemistrasse 100, Zürich CH-8091, Switzerland
| | - Rolf Graf
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, Raemistrasse 100, Zürich CH-8091, Switzerland
| | - Bostjan Humar
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, Raemistrasse 100, Zürich CH-8091, Switzerland
| | - Pierre A Clavien
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, Raemistrasse 100, Zürich CH-8091, Switzerland.
| |
Collapse
|
24
|
Montalbano M, Georgiadis J, Masterson AL, McGuire JT, Prajapati J, Shirafkan A, Rastellini C, Cicalese L. Biology and function of glypican-3 as a candidate for early cancerous transformation of hepatocytes in hepatocellular carcinoma (Review). Oncol Rep 2017; 37:1291-1300. [PMID: 28098909 DOI: 10.3892/or.2017.5387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Glypican-3 (GPC-3), a transmembrane heparan sulfate proteoglycan (HSPG), has recently been investigated as a player in tissue-dependent cellular signaling, specifically as a regulator of growth. Noteworthy, the regulatory protein has been implicated in both stimulatory and inhibitory pathways involving cell growth. Initially, GPC-3 was thought to act as a cell cycle regulator, as a loss-of-function mutation in the gene caused a hyper-proliferative state known as Simpson-Golabi-Behmel (SGB) overgrowth syndrome. Additionally, certain cancer types have displayed a downregulation of GPC-3 expression. More recently, the protein has been evaluated as a useful marker for hepatocellular carcinoma (HCC) due to its increased expression in the liver during times of growth. In contrast, the GPC-3 marker is not detectable in normal adult liver. Immunotherapy that targets GPC-3 and its affiliated proteins is under investigation as these new biomarkers may hold potential for the detection and treatment of HCC and other diseases in which GPC-3 may be overexpressed. Studies have reported that an overexpression of GPC-3 in HCC predicts a poorer prognosis. This prognostic value further pushes the question regarding GPC-3's role in the regulation and progression of HCC. This review will summarize the current knowledge regarding the clinical aspects of GPC-3, while also synthesizing the current literature with the aim to better understand this molecule's biological interactions at a molecular level, not only in the liver, but in the rest of the body as well. Due to the existing gap in the literature surrounding GPC-3, we believe further investigation of function, structure and domains, cellular localization, and other subfields is warranted to evaluate the protein as a whole, as well as its part in the study of HCC.
Collapse
Affiliation(s)
- Mauro Montalbano
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jeremias Georgiadis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashlyn L Masterson
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joshua T McGuire
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janika Prajapati
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ali Shirafkan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cristiana Rastellini
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luca Cicalese
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
25
|
Gaston K, Tsitsilianos MA, Wadey K, Jayaraman PS. Misregulation of the proline rich homeodomain (PRH/HHEX) protein in cancer cells and its consequences for tumour growth and invasion. Cell Biosci 2016; 6:12. [PMID: 26877867 PMCID: PMC4752775 DOI: 10.1186/s13578-016-0077-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
The proline rich homeodomain protein (PRH), also known as haematopoietically expressed homeobox (HHEX), is an essential transcription factor in embryonic development and in the adult. The PRH protein forms oligomeric complexes that bind to tandemly repeated PRH recognition sequences within or at a distance from PRH-target genes and recruit a variety of PRH-interacting proteins. PRH can also bind to other transcription factors and co-regulate specific target genes either directly through DNA binding, or indirectly through effects on the activity of its partner proteins. In addition, like some other homeodomain proteins, PRH can regulate the translation of specific mRNAs. Altered PRH expression and altered PRH intracellular localisation, are associated with breast cancer, liver cancer and thyroid cancer and some subtypes of leukaemia. This is consistent with the involvement of multiple PRH-interacting proteins, including the oncoprotein c-Myc, translation initiation factor 4E (eIF4E), and the promyelocytic leukaemia protein (PML), in the control of cell proliferation and cell survival. Similarly, multiple PRH target genes, including the genes encoding vascular endothelial growth factor (VEGF), VEGF receptors, Endoglin, and Goosecoid, are known to be important in the control of cell proliferation and cell survival and/or the regulation of cell migration and invasion. In this review, we summarise the evidence that implicates PRH in tumourigenesis and we review the data that suggests PRH levels could be useful in cancer prognosis and in the choice of treatment options.
Collapse
Affiliation(s)
- Kevin Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | | | - Kerry Wadey
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | - Padma-Sheela Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
26
|
Thiede-Stan NK, Tews B, Albrecht D, Ristic Z, Ewers H, Schwab ME. Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex. J Cell Sci 2015; 128:3583-96. [DOI: 10.1242/jcs.167981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
To ensure precision and specificity of ligand – receptor induced signaling, co-receptors and modulatory factors play important roles. The membrane bound ligand Nogo-A induces inhibition of neurite outgrowth, cell spreading, adhesion and migration via multi-subunit receptor complexes. Here, we identified the 4-transmembrane-spanning protein tetraspanin-3 (TSPAN3) as a new modulatory co-receptor for the Nogo-A inhibitory domain Nogo-A-Δ20. Single-molecule-tracking showed that TSPAN3 molecules in the cell membrane reacted with elevated mobility to Nogo-A binding, followed by association with the signal transducing Nogo-A receptor sphingosine-1-phosphate receptor 2 (S1PR2). Subsequently, TSPAN3 was co-internalized as part of the Nogo-A ligand – receptor complex into early endosomes, where it subsequently separated from Nogo-A and S1PR2 to be recycled to the cell surface. The functional importance of the Nogo-A – TSPAN3 interaction is shown by the fact that knockdown of TSPAN3 strongly reduced the Nogo-A-induced S1PR2 clustering, RhoA activation and cell spreading and neurite outgrowth inhibition. In addition to the modulatory functions of TSPAN3 on Nogo-A-S1PR2 signaling, these results illustrate the very dynamic spatiotemporal reorganizations of membrane proteins during ligand-induced receptor complex organizations.
Collapse
Affiliation(s)
- Nina K. Thiede-Stan
- Brain Research Institute, University of Zurich and Dept. of Health Sciences & Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Björn Tews
- Brain Research Institute, University of Zurich and Dept. of Health Sciences & Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - David Albrecht
- Institute of Biochemistry and Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Zorica Ristic
- Brain Research Institute, University of Zurich and Dept. of Health Sciences & Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Helge Ewers
- Institute of Biochemistry and Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich and Dept. of Health Sciences & Technology, ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
27
|
Abstract
Liver regeneration after partial hepatectomy is the only example of a regenerative process in mammals in which the organ/body weight ratio returns to 100% of the original when the process is complete. The adjustment of liver weight to the needs of the body suggests a complicated set of control points, a 'hepatostat'. There has been much progress in elucidation of mechanisms involved in initiation of liver regeneration. More recent studies have focused on termination pathways, because these may be the underlying controls of the hepatostat and their elimination may be relevant to hepatic neoplasia. When the standard regenerative process is thwarted due to failure of either hepatocytes or biliary epithelial cells to proliferate, each of the two epithelial compartments can function as a source of facultative stem cells for the other.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Bioscience Tower South, Pittsburgh, PA 15261, USA
| |
Collapse
|
28
|
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| |
Collapse
|
29
|
Yang JJ, Tao H, Li J. Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets 2014; 18:1011-21. [PMID: 24935558 DOI: 10.1517/14728222.2014.927443] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the hedgehog signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the hedgehog signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of hedgehog signaling pathway research. Moreover, we will discuss the different interactions with hedgehog signaling pathway-regulated liver fibrosis. EXPERT OPINION The hedgehog pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the hedgehog pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of hedgehog signaling pathway activation in liver fibrosis and HSC fate, including DNA methylation, methyl CpG binding protein 2, microRNA, irradiation and metabolism that influence hedgehog signaling pathway transduction. These findings identify the hedgehog pathway as a potentially important for biomarker development and therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective hedgehog-based drugs.
Collapse
Affiliation(s)
- Jing-Jing Yang
- The Second Hospital of Anhui Medical University, Department of Pharmacology , Hefei 230601 , China
| | | | | |
Collapse
|