1
|
Elzubeir A, High J, Hammond M, Shepstone L, Pond M, Walmsley M, Trivedi P, Culver E, Aithal G, Dyson J, Thorburn D, Alexandre L, Rushbrook S. Assessing brodalumab in the treatment of primary sclerosing cholangitis (SABR-PSC pilot study): protocol for a single-arm, multicentre, pilot study. BMJ Open Gastroenterol 2025; 12:e001596. [PMID: 40032516 PMCID: PMC11877274 DOI: 10.1136/bmjgast-2024-001596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a rare immune-mediated hepatobiliary disease, characterised by progressive biliary fibrosis, cirrhosis, and end-stage liver disease. As yet, no licensed pharmacological therapy exists. While significant advancements have been made in our understanding of the pathophysiology, the exact aetiology remains poorly defined. Compelling evidence from basic science and translational studies implicates the role of T helper 17 cells (Th17) and the interleukin 17 (IL-17) pro-inflammatory signalling pathway in the pathogenesis of PSC. However, exploration of the safety and efficacy of inhibiting the IL-17 pathway in PSC is lacking. METHODS AND ANALYSIS This is a phase 2a, open-label, multicentre pilot study, testing the safety of brodalumab, a recombinant human monoclonal antibody that binds with high affinity to interleukin-17RA, in adults with PSC. This study will enrol 20 PSC patients across five large National Health Service tertiary centres in the UK. The primary outcome of the study relates to determining the safety and feasibility of administering brodalumab in early, non-cirrhotic PSC patients. Secondary efficacy outcomes include non-invasive assessment of liver fibrosis, changes in alkaline phosphatase values and other liver biochemical readouts, assessment of biliary metrics through quantitative MR cholangiography+, and quality of life evaluation on completion of follow-up (using the 5D-itch tool, the PSC-patient-reported outcome and PSC-specific Chronic Liver Disease Questionnaire). ETHICS AND DISSEMINATION Ethical approval for this study has been obtained from the London Bridge Research Ethics Committee (REC23/LO/0718). Written informed consent will be obtained from all trial participants prior to undertaking any trial-specific examinations or investigations. On completion of the study, results will be submitted for publication in peer-reviewed journals and presented at national and international hepatology meetings. A summary of the findings will also be shared with participants and PSC communities. TRIAL REGISTRATION NUMBER ISRCTN15271834.
Collapse
MESH Headings
- Humans
- Cholangitis, Sclerosing/drug therapy
- Cholangitis, Sclerosing/immunology
- Pilot Projects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Multicenter Studies as Topic
- Treatment Outcome
- Adult
- Clinical Trials, Phase II as Topic
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/administration & dosage
- Quality of Life
- United Kingdom
- Male
- Female
- Th17 Cells/immunology
- Th17 Cells/drug effects
- Receptors, Interleukin-17/antagonists & inhibitors
Collapse
Affiliation(s)
- Amera Elzubeir
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Juliet High
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Matthew Hammond
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Lee Shepstone
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Martin Pond
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | | | - Palak Trivedi
- NIHR Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Emma Culver
- Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Guruprasad Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jessica Dyson
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Douglas Thorburn
- University College London institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Leo Alexandre
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Simon Rushbrook
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| |
Collapse
|
2
|
Li Z, Deng L, Cheng M, Ye X, Yang N, Fan Z, Sun L. Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). Int J Oncol 2025; 66:24. [PMID: 39981904 PMCID: PMC11844338 DOI: 10.3892/ijo.2025.5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Liver metastasis is the leading cause of colorectal cancer (CRC)‑related mortality. Microbiota dysbiosis serves a role in the pathogenesis of colorectal liver metastases. Bile acids (BAs), cholesterol metabolites synthesized by intestinal bacteria, contribute to the metastatic cascade of CRC, encompassing colorectal invasion, migration, angiogenesis, anoikis resistance and the establishment of a hepatic pre‑metastatic niche. BAs impact inflammation and modulate the immune landscape within the tumor microenvironment by activating signaling pathways, which are used by tumor cells to facilitate metastasis. Given the widespread distribution of BA‑activated receptors in both tumor and immune cells, strategies aimed at restoring BA homeostasis and blocking metastasis‑associated signaling are of importance in cancer therapy. The present study summarizes the specific role of BAs in each step of colorectal liver metastasis, elucidating the association between BA and CRC progression to highlight the potential of BAs as predictive biomarkers for colorectal liver metastasis and their therapeutic potential in developing novel treatment strategies.
Collapse
Affiliation(s)
- Zhaoyu Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, P.R. China
| | - Lingjun Deng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Mengting Cheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Zaiwen Fan
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| | - Li Sun
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| |
Collapse
|
3
|
Laschtowitz A, Lindberg EL, Liebhoff AM, Liebig LA, Casar C, Steinmann S, Guillot A, Xu J, Schwinge D, Trauner M, Lohse AW, Bonn S, Hübner N, Schramm C. Liver transcriptome analysis reveals PSC-attributed gene set associated with fibrosis progression. JHEP Rep 2025; 7:101267. [PMID: 39996122 PMCID: PMC11848773 DOI: 10.1016/j.jhepr.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 02/26/2025] Open
Abstract
Background & Aims Primary sclerosing cholangitis (PSC) is a chronic heterogenous cholangiopathy with unknown etiology where chronic inflammation of the bile ducts leads to multifocal biliary strictures and biliary fibrosis with consecutive cirrhosis development. We here aimed to identify a PSC-specific gene signature associated with biliary fibrosis development. Methods We performed RNA-sequencing of 47 liver biopsies from people with PSC (n = 16), primary biliary cholangitis (PBC, n = 15), and metabolic dysfunction-associated steatotic liver disease (MASLD, n = 16) with different fibrosis stages to identify a PSC-specific gene signature associated with biliary fibrosis progression. For validation, we compared an external transcriptome data set of liver biopsies from people with PSC (n = 73) with different fibrosis stages (baseline samples from NCT01672853). Results Differential gene expression analysis of the liver transcriptome from patients with PSC with advanced vs. early fibrosis revealed 431 genes associated with fibrosis development. Of those, 367 were identified as PSC-associated when compared with PBC or MASLD. Validation against an external data set of 73 liver biopsies from patients with PSC with different fibrosis stages led to a condensed set of 150 (out of 367) differentially expressed genes. Cell type specificity assignment of those genes by using published single-cell RNA-Seq data revealed genetic disease drivers expressed by cholangiocytes (e.g. CXCL1, SPP1), fibroblasts, innate, and adaptive immune cells while deconvolution along fibrosis progression of the PSC, PBC, and MASLD samples highlighted an early involvement of macrophage- and neutrophil-associated genes in PSC fibrosis. Conclusions We reveal a PSC-attributed gene signature associated with biliary fibrosis development that may enable the identification of potential new biomarkers and therapeutic targets in PSC-related fibrogenesis. Impact and implications Primary sclerosing cholangitis (PSC) is an inflammatory liver disease that is characterized by multifocal inflammation of bile ducts and subsequent biliary fibrosis. Herein, we identify a PSC-specific gene set of biliary fibrosis progression attributing to a uniquely complex milieu of different cell types, including innate and adaptive immune cells while neutrophils and macrophages showed an earlier involvement in fibrosis initiation in PSC in contrast to PBC and metabolic dysfunction-associated steatotic liver disease. Thus, our unbiased approach lays an important groundwork for further mechanistic studies for research into PSC-specific fibrosis.
Collapse
Affiliation(s)
- Alena Laschtowitz
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cardiovascular and Metabolic Sciences, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- European Reference Network for Hepatological Diseases (ERN-RARE LIVER), Hamburg, Germany
| | - Eric L. Lindberg
- Cardiovascular and Metabolic Sciences, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Anna-Maria Liebhoff
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Anne Liebig
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Cardiovascular and Metabolic Sciences, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Christian Casar
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Reference Network for Hepatological Diseases (ERN-RARE LIVER), Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - Silja Steinmann
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Reference Network for Hepatological Diseases (ERN-RARE LIVER), Hamburg, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jun Xu
- Department of Biomarker Sciences, Gilead Sciences Inc., San Mateo, California, United States of America
| | - Dorothee Schwinge
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Reference Network for Hepatological Diseases (ERN-RARE LIVER), Hamburg, Germany
| | - Michael Trauner
- European Reference Network for Hepatological Diseases (ERN-RARE LIVER), Hamburg, Germany
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ansgar Wilhelm Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Reference Network for Hepatological Diseases (ERN-RARE LIVER), Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Reference Network for Hepatological Diseases (ERN-RARE LIVER), Hamburg, Germany
- Martin-Zeitz-Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| |
Collapse
|
4
|
Fuchs CD, Simbrunner B, Baumgartner M, Campbell C, Reiberger T, Trauner M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025; 82:134-153. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) serve as signalling molecules, efficiently regulating their own metabolism and transport, as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolised by microbiota. Disruption of BA transport, metabolism and physiological signalling functions contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and MASLD (metabolic dysfunction-associated steatotic liver disease), as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signalling may also affect the intestine and kidney, thereby contributing to failure of gut integrity and driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. In this review, we will summarise recent advances in the understanding of BA signalling, metabolism and transport, focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campbell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Sakaguchi T, Nagahama Y, Hamada N, Singh SK, Mikami H, Maeda K, Akira S. Novel Choline-Deficient and 0.1%-Methionine-Added High-Fat Diet Induces Burned-Out Metabolic-Dysfunction-Associated Steatohepatitis with Inflammation by Rapid Immune Cell Infiltration on Male Mice. Nutrients 2024; 16:4151. [PMID: 39683544 DOI: 10.3390/nu16234151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder that possesses metabolic dysfunction and shows steatohepatitis. Although the number of patients is globally increasing and many clinical studies have developed medicine for MASLD, most of the studies have failed due to low efficacy. One reason for this failure is the lack of appropriate animal disease models that reflect human MASLD to evaluate the potency of candidate drugs. Methods: We developed a novel choline-deficient and 0.11%-methionine-added high-fat diet (CDAHFD)-based (MASH) diet that can induce murine metabolic-dysfunction-associated steatohepatitis (MASH) without severe body weight loss. We performed kinetic analyses post-feeding and proposed an appropriate timing of MASH pathogenesis by quantitatively analyzing steatosis, inflammation, and fibrosis. Results: This MASH diet induced liver fibrosis earlier than the conventional CDAHFD model. In brief, lipid accumulation, inflammation, and fibrosis started after 1 week from feeding. Lipid accumulation increased until 8 weeks and declined thereafter; on the other hand, liver fibrosis showed continuous progression. Additionally, immune cells, especially myeloid cells, specifically accumulated and induced inflammation in the initiation stage of MASH. Conclusions: The novel MASH diet promotes the dynamics of lipid deposition and fibrosis in the liver, similar to human MASH pathophysiology. Furthermore, immune-cell-derived inflammation possibly contributes to the initiation of MASH pathogenesis. We propose this model can be the new pre-clinical MASH model to discover the drugs against human MASH by evaluating the interaction between parenchymal and non-parenchymal cells.
Collapse
Affiliation(s)
- Takatoshi Sakaguchi
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Yasuharu Nagahama
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Host Defense Laboratory, Immunology Unit, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh 562-0029, Japan
| | - Nanako Hamada
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | | | - Kazuhiko Maeda
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System (CAMaD), Osaka University, Suita 565-0871, Japan
| |
Collapse
|
6
|
Li X, Ruan T, Wang S, Sun X, Liu C, Peng Y, Tao Y. Mitochondria at the Crossroads of Cholestatic Liver Injury: Targeting Novel Therapeutic Avenues. J Clin Transl Hepatol 2024; 12:792-801. [PMID: 39280065 PMCID: PMC11393838 DOI: 10.14218/jcth.2024.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 09/18/2024] Open
Abstract
Bile acids are byproducts of cholesterol metabolism in the liver and constitute the primary components of bile. Disruption of bile flow leads to cholestasis, characterized by the accumulation of hydrophobic bile acids in the liver and bloodstream. Such accumulation can exacerbate liver impairment. This review discussed recent developments in understanding how bile acids contribute to liver damage, including disturbances in mitochondrial function, endoplasmic reticulum stress, inflammation, and autophagy dysfunction. Mitochondria play a pivotal role in cholestatic liver injury by influencing hepatocyte apoptosis and inflammation. Recent findings linking bile acids to liver damage highlight new potential treatment targets for cholestatic liver injury.
Collapse
Affiliation(s)
- Xutao Li
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyin Ruan
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| |
Collapse
|
7
|
Sun D, Xie C, Zhao Y, Liao J, Li S, Zhang Y, Wang D, Hua K, Gu Y, Du J, Huang G, Huang J. The gut microbiota-bile acid axis in cholestatic liver disease. Mol Med 2024; 30:104. [PMID: 39030473 PMCID: PMC11265038 DOI: 10.1186/s10020-024-00830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024] Open
Abstract
Cholestatic liver diseases (CLD) are characterized by impaired normal bile flow, culminating in excessive accumulation of toxic bile acids. The majority of patients with CLD ultimately progress to liver cirrhosis and hepatic failure, necessitating liver transplantation due to the lack of effective treatment. Recent investigations have underscored the pivotal role of the gut microbiota-bile acid axis in the progression of hepatic fibrosis via various pathways. The obstruction of bile drainage can induce gut microbiota dysbiosis and disrupt the intestinal mucosal barrier, leading to bacteria translocation. The microbial translocation activates the immune response and promotes liver fibrosis progression. The identification of therapeutic targets for modulating the gut microbiota-bile acid axis represents a promising strategy to ameliorate or perhaps reverse liver fibrosis in CLD. This review focuses on the mechanisms in the gut microbiota-bile acids axis in CLD and highlights potential therapeutic targets, aiming to lay a foundation for innovative treatment approaches.
Collapse
Affiliation(s)
- Dayan Sun
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Chuanping Xie
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yong Zhao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Junmin Liao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Shuangshuang Li
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yanan Zhang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Dingding Wang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Kaiyun Hua
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yichao Gu
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Jingbin Du
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Guoxian Huang
- Department of Pediatric Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jinshi Huang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
8
|
Garcia Moreno AS, Guicciardi ME, Wixom AQ, Jessen E, Yang J, Ilyas SI, Bianchi JK, Pinto e Vairo F, Lazaridis KN, Gores GJ. IL-17 signaling in primary sclerosing cholangitis patient-derived organoids. Hepatol Commun 2024; 8:e0454. [PMID: 38829197 PMCID: PMC11150034 DOI: 10.1097/hc9.0000000000000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study, we aimed to investigate and characterize the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. METHODS Cholangiocytes obtained from patients with PSC and without PSC by endoscopic retrograde cholangiography were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing. RESULTS Unsupervised clustering of all integrated single-cell RNA sequencing data identified 8 cholangiocyte clusters that did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, as noted by an increased number of differentially expressed genes by transcriptomics and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, genome sequencing identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. CONCLUSIONS PSC and non-PSC patient-derived ECO respond differently to IL-17 stimulation, implicating this pathway in the pathogenesis of PSC.
Collapse
Affiliation(s)
- Ana S. Garcia Moreno
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria E. Guicciardi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Q. Wixom
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jackie K. Bianchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto e Vairo
- Center for Individualized Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Ceci L, Gaudio E, Kennedy L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol Gastroenterol Hepatol 2024; 17:553-565. [PMID: 38216052 PMCID: PMC10883986 DOI: 10.1016/j.jcmgh.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Biliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.
Collapse
Affiliation(s)
- Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
10
|
Wang Y, Tan N, Su R, Liu Z, Hu N, Dong Q. Exploring the Potential Mechanisms of Action of Gentiana Veitchiorum Hemsl. Extract in the Treatment of Cholestasis using UPLC-MS/MS, Systematic Network Pharmacology, and Molecular Docking. Comb Chem High Throughput Screen 2024; 27:1948-1968. [PMID: 38357941 DOI: 10.2174/0113862073275657231210055250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Gentiana veitchiorum Hemsl. (GV) has a long history in Tibetan medicine for treating hepatobiliary disease cholestasis. However, the mechanisms mediating its efficacy in treating cholestasis have yet to be determined. AIM To elucidate the mechanisms of action of GV in the treatment of cholestasis, an integrated approach combining ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis with network pharmacology was established. MATERIALS AND METHODS A comprehensive analysis of the chemical composition of GV was achieved by UPLC-MS/MS. Subsequently, a network pharmacology method that integrated target prediction, a protein-protein interaction (PPI) network, gene set enrichment analysis, and a component- target-pathway network was established, and finally, molecular docking and experiments in vitro were conducted to verify the predicted results. RESULTS Twenty compounds that were extracted from GV were identified by UPLC-MS/MS analysis. Core proteins such as AKT1, TNF, and IL6 were obtained through screening in the Network pharmacology PPI network. The Kyoto Encyclopedia of the Genome (KEGG) pathway predicted that GV could treat cholestasis by acting on signaling pathways such as TNF/IL-17 / PI3K-Akt. Network pharmacology suggested that GV might exert a therapeutic effect on cholestasis by regulating the expression levels of inflammatory mediators, and the results were further confirmed by the subsequent construction of an LPS-induced RAW 264.7 cell model. CONCLUSIONS In this study, UPLC-MS/MS analysis, network pharmacology, and experiment validation were used to explore potential mechanisms of action of GV in the treatment of cholestasis.
Collapse
Affiliation(s)
- Yue Wang
- Medical College of Qinghai University, Xining, 810016, China
| | - Nixia Tan
- Medical College of Qinghai University, Xining, 810016, China
| | - Rong Su
- Medical College of Qinghai University, Xining, 810016, China
| | - Zhenhua Liu
- Medical College of Qinghai University, Xining, 810016, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| |
Collapse
|
11
|
Niu Z, Liu Y, Wang Y, Liu Y, Chai L, Wang H. Impairment of bile acid metabolism and altered composition by lead and copper in Bufo gargarizans tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165901. [PMID: 37524187 DOI: 10.1016/j.scitotenv.2023.165901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Lead (Pb) and copper (Cu) are two common heavy metal contaminants in environments, and liver is recognized as one of the main target organs for toxicity of Pb and Cu in animal organisms. Bile acids play a critical role in regulating hepatic metabolic homeostasis by activating farnesoid X receptor (Fxr). However, there were few studies on the interactions between bile acids and liver pathology caused by heavy metals. In this work, the histopathological changes, targeted metabolome and transcriptome responses in the liver of Bufo gargarizans tadpoles to Pb and/or Cu were examined. We found that exposure to Pb and/or Cu altered the hepatic bile acid profile, resulting in increased hydrophobicity and toxicity of the bile acid pool. And the expression of genes involved in bile acid metabolism and their downstream signaling pathways in the liver were significantly altered by Pb and/or Cu exposure. The alteration of bile acid profiles and the expression of genes related to bile acid metabolism might induce oxidative stress and inflammation, ultimately inducing hepatocyte injury observed in the histological sections. To our knowledge, this is the first study to provide histological, biochemical, and molecular evidence for establishing the link between Pb and Cu exposure, disturbances in hepatic bile acid metabolism, and liver injury.
Collapse
Affiliation(s)
- Ziyi Niu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yaxi Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ying Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
12
|
Garcia Moreno AS, Guicciardi ME, Wixom AQ, Jessen E, Yang J, Ilyas SI, Bianchi JK, Pinto E Vairo F, Lazaridis KN, Gores GJ. IL-17 Signaling in Primary Sclerosing Cholangitis Patient-Derived Organoids. RESEARCH SQUARE 2023:rs.3.rs-3406046. [PMID: 37886596 PMCID: PMC10602181 DOI: 10.21203/rs.3.rs-3406046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study we aimed to investigate the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. Cholangiocytes obtained from PSC and non-PSC patients by endoscopic retrograde cholangiography (ERC) were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing (GS). Unsupervised clustering of all integrated scRNA-seq data identified 8 cholangiocyte clusters which did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, noted by an increased number of differentially expressed genes (DEG) by transcriptomics, and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, GS identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. In conclusion, PSC and non-PSC patient derived ECO respond differently to IL-17 stimulation implicating this pathway in the pathogenesis of PSC.
Collapse
|
13
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Zhao Y, Wei S, Chen L, Zhou X, Ma X. Primary biliary cholangitis: molecular pathogenesis perspectives and therapeutic potential of natural products. Front Immunol 2023; 14:1164202. [PMID: 37457696 PMCID: PMC10349375 DOI: 10.3389/fimmu.2023.1164202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is a chronic cholestatic immune liver disease characterized by persistent cholestasis, interlobular bile duct damage, portal inflammation, liver fibrosis, eventual cirrhosis, and death. Existing clinical and animal studies have made a good progress in bile acid metabolism, intestinal flora disorder inflammatory response, bile duct cell damage, and autoimmune response mechanisms. However, the pathogenesis of PBC has not been clearly elucidated. We focus on the pathological mechanism and new drug research and development of PBC in clinical and laboratory in the recent 20 years, to discuss the latest understanding of the pathological mechanism, treatment options, and drug discovery of PBC. Current clinical treatment mode and symptomatic drug support obviously cannot meet the urgent demand of patients with PBC, especially for the patients who do not respond to the current treatment drugs. New treatment methods are urgently needed. Drug candidates targeting reported targets or signals of PBC are emerging, albeit with some success and some failure. Single-target drugs cannot achieve ideal clinical efficacy. Multitarget drugs are the trend of future research and development of PBC drugs.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Pharmacy, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lisheng Chen
- Department of Pharmacy, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Zhang L, Pan Q, Zhang L, Xia H, Liao J, Zhang X, Zhao N, Xie Q, Liao M, Tan Y, Li Q, Zhu J, Li L, Fan S, Li J, Zhang C, Cai SY, Boyer JL, Chai J. Runt-related transcription factor-1 ameliorates bile acid-induced hepatic inflammation in cholestasis through JAK/STAT3 signaling. Hepatology 2023; 77:1866-1881. [PMID: 36647589 PMCID: PMC10921919 DOI: 10.1097/hep.0000000000000041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Bile acids trigger a hepatic inflammatory response, causing cholestatic liver injury. Runt-related transcription factor-1 (RUNX1), primarily known as a master modulator in hematopoiesis, plays a pivotal role in mediating inflammatory responses. However, RUNX1 in hepatocytes is poorly characterized, and its role in cholestasis is unclear. Herein, we aimed to investigate the role of hepatic RUNX1 and its underlying mechanisms in cholestasis. APPROACH AND RESULTS Hepatic expression of RUNX1 was examined in cholestatic patients and mouse models. Mice with liver-specific ablation of Runx1 were generated. Bile duct ligation and 1% cholic acid diet were used to induce cholestasis in mice. Primary mouse hepatocytes and the human hepatoma PLC/RPF/5- ASBT cell line were used for mechanistic studies. Hepatic RUNX1 mRNA and protein levels were markedly increased in cholestatic patients and mice. Liver-specific deletion of Runx1 aggravated inflammation and liver injury in cholestatic mice induced by bile duct ligation or 1% cholic acid feeding. Mechanistic studies indicated that elevated bile acids stimulated RUNX1 expression by activating the RUNX1 -P2 promoter through JAK/STAT3 signaling. Increased RUNX1 is directly bound to the promotor region of inflammatory chemokines, including CCL2 and CXCL2 , and transcriptionally repressed their expression in hepatocytes, leading to attenuation of liver inflammatory response. Blocking the JAK signaling or STAT3 phosphorylation completely abolished RUNX1 repression of bile acid-induced CCL2 and CXCL2 in hepatocytes. CONCLUSIONS This study has gained initial evidence establishing the functional role of hepatocyte RUNX1 in alleviating liver inflammation during cholestasis through JAK/STAT3 signaling. Modulating hepatic RUNX1 activity could be a new therapeutic target for cholestasis.
Collapse
Affiliation(s)
- Liangjun Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haihan Xia
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Liao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Central South University School of Life Sciences, Changsha, Hunan Province, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiaoling Xie
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Min Liao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ya Tan
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiao Li
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jinfei Zhu
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ling Li
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianwei Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengcheng Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
16
|
Nimphy J, Ibrahim S, Dayoub R, Kubitza M, Melter M, Weiss TS. Interleukin-1ß Attenuates Expression of Augmenter of Liver Regeneration (ALR) by Regulating HNF4α Independent of c-Jun. Int J Mol Sci 2023; 24:ijms24098107. [PMID: 37175814 PMCID: PMC10179097 DOI: 10.3390/ijms24098107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Inflammasomes and innate immune cells have been shown to contribute to liver injury, thereby activating Kupffer cells, which release several cytokines, including IL-6, IL-1ß, and TNFα. Augmenter of liver regeneration (ALR) is a hepatotropic co-mitogen that was found to have anti-oxidative and anti-apoptotic properties and to attenuate experimental non-alcoholic fatty liver disease (NAFLD) and cholestasis. Additionally, hepatic ALR expression is diminished in patients with NAFLD or cholestasis, but less is known about the mechanisms of its regulation under these conditions. Therefore, we aimed to investigate the role of IL-1ß in ALR expression and to elucidate the molecular mechanism of this regulation in vitro. We found that ALR promoter activity and mRNA and protein expression were reduced upon treatment with IL-1ß. Early growth response protein-1 (Egr-1), an ALR inducer, was induced by IL-1ß but could not activate ALR expression, which may be attributed to reduced Egr-1 binding to the ALR promoter. The expression and nuclear localization of hepatocyte nuclear factor 4 α (HNF4α), another ALR-inducing transcription factor, was reduced by IL-1ß. Interestingly, c-Jun, a potential regulator of ALR and HNF4α, showed increased nuclear phosphorylation levels upon IL-1ß treatment but did not change the expression of ALR or HNF4α. In conclusion, this study offers evidence regarding the regulation of anti-apoptotic and anti-oxidative ALR by IL-1ß through reduced Egr-1 promoter binding and diminished HNF4α expression independent of c-Jun activation. Low ALR tissue levels in NAFLD and cholestatic liver injury may be caused by IL-1ß and contribute to disease progression.
Collapse
Affiliation(s)
- Jonas Nimphy
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sara Ibrahim
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Rania Dayoub
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Melter
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Liver Cell Research, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
18
|
Kong W, Li X, Zou M, Zhang Y, Cai H, Zhang L, Wang X. iNKT17 cells play a pathogenic role in ethinylestradiol-induced cholestatic hepatotoxicity. Arch Toxicol 2023; 97:561-580. [PMID: 36329302 DOI: 10.1007/s00204-022-03403-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
IL-17 is closely associated with inflammation in intrahepatic cholestasis (IHC). Targeting IL-17 ameliorates IHC in mice. Invariant natural killer T (iNKT) cells are predominantly enriched in the liver and they mediate drug-induced liver injury through their secreted cytokines. However, whether iNKT17 cells are involved in ethinylestradiol (EE)-induced IHC remains unclear. In the present study, the administration of EE (10 mg/kg in vivo and 6.25 μM in vitro) promoted the activation and expansion of iNKT17 cells, which contributed to a novel hepatic iNKT17/Treg imbalance. iNKT cell-deficient Jα18-/- mice and the RORγt inhibitor digoxin (20 μg) alleviated EE-induced cholestatic hepatotoxicity and downregulated the IL-17 signalling pathway. In contrast, the co-administration of EE with recombinant IL-17 (1 μg) to Jα18-/- mice induced cholestatic hepatotoxicity and increased the infiltration of hepatic neutrophils and monocytes. Importantly, the administration of IL-17-/- iNKT cells (3.5 × 105) to Jα18-/- mice resulted in the attenuation of hepatotoxicity and the recruitment of fewer hepatic neutrophils and monocytes than the adoptive transfer of wild-type iNKT cells. These results indicated that iNKT17 cells could exert pathogenic effects. The recruitment and activation of iNKT17 cells could be attributed to the high level of CXCR3 expression on their surface. CXCL10 deficiency ameliorated EE-induced cholestatic liver damage, reduced hepatic CXCR3+ iNKT cells and inhibited RORγt expression. These findings suggest that iNKT17 cells play a key role in EE-induced cholestatic liver injury via CXCR3-mediated recruitment and activation. Our study provides new insights and therapeutic targets for cholestatic diseases.
Collapse
Affiliation(s)
- Weichao Kong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengzhi Zou
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiying Zhang
- Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Heng Cai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xinzhi Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Gabbia D, Carpi S, Sarcognato S, Zanotto I, Sayaf K, Colognesi M, Polini B, Digiacomo M, Macchia M, Nieri P, Carrara M, Cazzagon N, Russo FP, Guido M, De Martin S. The phenolic compounds tyrosol and hydroxytyrosol counteract liver fibrogenesis via the transcriptional modulation of NADPH oxidases and oxidative stress-related miRNAs. Biomed Pharmacother 2023; 157:114014. [PMID: 36379119 DOI: 10.1016/j.biopha.2022.114014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is the result of a chronic pathological condition caused by the activation of hepatic stellate cells (HSCs), which induces the excessive deposition of extracellular matrix. Fibrogenesis is sustained by an exaggerated production of reactive oxidative species (ROS) by NADPH oxidases (NOXs), which are overactivated in hepatic inflammation. In this study, we investigated the antifibrotic properties of two phenolic compounds of natural origin, tyrosol (Tyr) and hydroxytyrosol (HTyr), known for their antioxidant and anti-inflammatory effects. We assessed Tyr and HTyr antifibrotic and antioxidant activity both in vitro, by a co-culture of LX2, HepG2 and THP1-derived Mϕ macrophages, set up to simulate the hepatic microenvironment, and in vivo, in a mouse model of liver fibrosis obtained by carbon tetrachloride treatment. We evaluated the mRNA and protein expression of profibrotic and oxidative markers (α-SMA, COL1A1, NOX1/4) by qPCR and/or immunocytochemistry or immunohistochemistry. The expression of selected miRNAs in mouse livers were measured by qPCR. Tyr and HTyr reduces fibrogenesis in vitro and in vivo, by downregulating all fibrotic markers. Notably, they also modulated oxidative stress by restoring the physiological levels of NOX1 and NOX4. In vivo, this effect was accompanied by a transcriptional regulation of inflammatory genes and of 2 miRNAs involved in the control of oxidative stress damage (miR-181-5p and miR-29b-3p). In conclusion, Tyr and HTyr exert antifibrotic and anti-inflammatory effects in preclinical in vitro and in vivo models of liver fibrosis, by modulating hepatic oxidative stress, representing promising candidates for further development.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy; NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy.
| | | | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Pisa, Italy; Department of Pathology, University of Pisa, 56100 Pisa, Italy.
| | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Nora Cazzagon
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy; Department of Medicine, University of Padova, Padova, Italy.
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
20
|
Wang H, Zhang J, Zhang X, Zhao N, Zhou Z, Tao L, Fu L, Peng S, Chai J. Fluorofenidone ameliorates cholestasis and fibrosis by inhibiting hepatic Erk/-Egr-1 signaling and Tgfβ1/Smad pathway in mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166556. [PMID: 36154893 DOI: 10.1016/j.bbadis.2022.166556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022]
Abstract
Cholestasis is characterized by intrahepatic accumulation of bile acids (BAs), resulting in liver injury, fibrosis, and liver failure. To date, only ursodeoxycholic acid and obeticholic acid have been approved for the treatment of cholestasis. As fluorofenidone (AKF-PD) was previously reported to play significant anti-fibrotic and anti-inflammatory roles in various diseases, we investigated whether AKF-PD ameliorates cholestasis. A mouse model of cholestasis was constructed by administering a 0.1 % 3,5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC) diet for 14 days. Male C57BL/6 J mice were treated with either AKF-PD or pirfenidone (PD) orally in addition to the DDC diet. Serum and liver tissues were subsequently collected and analyzed. We found that AKF-PD significantly reduced the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bile salts (TBA), as well as hepatic bile acids (BAs) levels. Hepatic histological analyses demonstrated that AKF-PD markedly attenuated hepatic inflammation and fibrosis. Further mechanistic analyses revealed that AKF-PD markedly inhibited expression of Cyp7a1, an enzyme key to BAs synthesis, by increasing Fxr nuclear translocation, and decreased hepatic inflammation by attenuating Erk/-Egr-1-mediated expression of inflammatory cytokines and chemokines Tnfα, Il-1β, Il-6, Ccl2, Ccl5 and Cxcl10. Moreover, AKF-PD was found to substantially reduce liver fibrosis via inhibition of Tgfβ1/Smad pathway in our mouse model. Here, we found that AKF-PD effectively attenuates cholestasis and hepatic fibrosis in the mouse model of DDC-induced cholestasis. As such, AKF-PD warrants further investigation as a candidate drug for treatment of cholestasis.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jian Zhang
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Nan Zhao
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongtao Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lei Fu
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shifang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
21
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
22
|
Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis 2022; 13:1106-1126. [PMID: 35855347 PMCID: PMC9286904 DOI: 10.14336/ad.2022.0104] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota, a collection of microorganisms that live within gastrointestinal tract, provides crucial signaling metabolites for the physiological of hosts. In healthy state, gut microbiota metabolites are helpful for maintaining the basic functions of hosts, whereas disturbed production of these metabolites can lead to numerous diseases such as metabolic diseases, cardiovascular diseases, gastrointestinal diseases, neurodegenerative diseases, and cancer. Although there are many reviews about the specific mechanisms of gut microbiota metabolites on specific diseases, there is no comprehensive summarization of the functions of these metabolites. In this Opinion, we discuss the knowledge of gut microbiota metabolites including the types of gut microbiota metabolites and their ways acting on targets. In addition, we summarize their physiological and pathologic functions in health and diseases, such as shaping the composition of gut microbiota and acting as nutrition. This paper can be helpful for understanding the roles of gut microbiota metabolites and thus provide guidance for developing suitable therapeutic strategies to combat microbial-driven diseases and improve health.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
23
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
24
|
Han X, Wang J, Gu H, Guo H, Cai Y, Liao X, Jiang M. Predictive value of serum bile acids as metabolite biomarkers for liver cirrhosis: a systematic review and meta-analysis. Metabolomics 2022; 18:43. [PMID: 35759044 DOI: 10.1007/s11306-022-01890-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION A large number of studies have explored the potential biomarkers for detecting liver cirrhosis in an early stage, yet consistent conclusions are still warranted. OBJECTIVES To conduct a review and a meta-analysis of the existing studies that test the serum level of bile acids in cirrhosis as the potential biomarkers to predict cirrhosis. METHODS Six databases had been searched from inception date to April 12, 2021. Screening and selection of the records were based on the inclusion criteria. The risk of bias was assessed with the Newcastle-Ottawa quality assessment scale (NOS). Mean difference (MD) and confidence intervals 95% (95% CI) were calculated by using the random effect model for the concentrations of bile acids in the meta-analysis, and I2 statistic was used to measure studies heterogeneity. This study was registered on PROSPERO. RESULTS A total of 1583 records were identified and 31 studies with 2679 participants (1263 in the cirrhosis group, 1416 in the healthy control group) were included. The quality of included studies was generally high, with 25 studies (80.6%) rated over 7 stars. A total of 45 bile acids or their ratios in included studies were extracted. 36 increased in the cirrhosis group compared with those of the healthy controls by a qualitative summary, 5 decreased and 4 presented with mixing results. The result of meta-analysis among 12 studies showed that 13 bile acids increased, among which four primary conjugated bile acids showed the most significant elevation in the cirrhosis group: GCDCA (MD = 11.38 μmol/L, 95% CI 8.21-14.55, P < 0.0001), GCA (MD = 5.72 μmol/L, 95% CI 3.47-7.97, P < 0.0001), TCDCA (MD = 3.57 μmol/L, 95% CI 2.64-4.49, P < 0.0001) and TCA (MD = 2.14 μmol/L, 95% CI 1.56-2.72, P < 0.0001). No significant differences were found between the two groups in terms of DCA (MD = - 0.1 μmol/L, 95% CI - 0.18 to - 0.01, P < 0.0001) and LCA (MD = - 0.01 μmol/L, 95% CI - 0.01 to - 0.02, P < 0.0001), UDCA (MD = - 0.14 μmol/L, 95% CI - 0.04 to - 0.32, P < 0.0001), and TLCA (MD = 0 μmol/L, 95% CI 0-0.01, P < 0.0001). Subgroup analysis in patients with hepatitis B cirrhosis showed similar results. CONCLUSION Altered serum bile acids profile seems to be associated with cirrhosis. Some specific bile acids (GCA, GCDCA, TCA, and TCDCA) may increase with the development of cirrhosis, which possibly underlay their potential role as predictive biomarkers for cirrhosis. Yet this predictive value still needs further investigation and validation in larger prospective cohort studies.
Collapse
Affiliation(s)
- Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Juan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hongtao Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yili Cai
- Ningbo First Hospital, Ningbo, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
25
|
Th17 cells in the liver: balancing autoimmunity and pathogen defense. Semin Immunopathol 2022; 44:509-526. [PMID: 35211777 DOI: 10.1007/s00281-022-00917-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
In addition to carcinogenesis, T helper 17 (Th17) cells (a subtype of CD4 + T lymphocytes) are involved in the acute, chronic, and cirrhotic phases of liver diseases; however, their role in the development and progression of liver diseases remains unclear. It is difficult to elucidate the role of Th17 cells in liver diseases due to their dichotomous nature, i.e., plasticity in terms of pathogenic or host protective function depending on environmental and time phase factors. Moreover, insufficient depletion of Th17 cells by inhibiting the cytokines and transcription factors involved in their production causes difficulties in analyzing their specific role in vitro and in vivo murine models, partially due to complex interaction. This review summarizes the recent progress in understanding the plasticity and function of hepatic Th17 cells and type 3 cytokines.
Collapse
|
26
|
Bile Acids Activate NLRP3 Inflammasome, Promoting Murine Liver Inflammation or Fibrosis in a Cell Type-Specific Manner. Cells 2021; 10:cells10102618. [PMID: 34685598 PMCID: PMC8534222 DOI: 10.3390/cells10102618] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) as important signaling molecules are considered crucial in development of cholestatic liver injury, but there is limited understanding on the involved cell types and signaling pathways. The aim of this study was to evaluate the inflammatory and fibrotic potential of key BA and the role of distinct liver cell subsets focusing on the NLRP3 inflammasome. C57BL/6 wild-type (WT) and Nlrp3−/− mice were fed with a diet supplemented with cholic (CA), deoxycholic (DCA) or lithocholic acid (LCA) for 7 days. Additionally, primary hepatocytes, Kupffer cells (KC) and hepatic stellate cells (HSC) from WT and Nlrp3−/− mice were stimulated with aforementioned BA ex vivo. LCA feeding led to strong liver damage and activation of NLRP3 inflammasome. Ex vivo KC were the most affected cells by LCA, resulting in a pro-inflammatory phenotype. Liver damage and primary KC activation was both ameliorated in Nlrp3-deficient mice or cells. DCA feeding induced fibrotic alterations. Primary HSC upregulated the NLRP3 inflammasome and early fibrotic markers when stimulated with DCA, but not LCA. Pro-fibrogenic signals in liver and primary HSC were attenuated in Nlrp3−/− mice or cells. The data shows that distinct BA induce NLRP3 inflammasome activation in HSC or KC, promoting fibrosis or inflammation.
Collapse
|
27
|
Abstract
Clinical disorders that impair bile flow result in retention of bile acids and cholestatic liver injury, characterized by parenchymal cell death, bile duct proliferation, liver inflammation and fibrosis. However, the pathogenic role of bile acids in the development of cholestatic liver injury remains incompletely understood. In this review, we summarize the current understanding of this process focusing on the experimental and clinical evidence for direct effects of bile acids on each major cellular component of the liver: hepatocytes, cholangiocytes, stellate cells and immune cells. During cholestasis bile acids accumulated in the liver, causing oxidative stress and mitochondrial injury in hepatocytes. The stressed hepatocytes respond by releasing inflammatory cytokines through activation of specific signaling pathways and transcription factors. The recruited neutrophils and other immune cells then cause parenchymal cell death. In addition, bile acids also stimulate the proliferation of cholangiocytes and stellate cells that are responsible for bile duct proliferation and liver fibrosis. This review explores the evidence for bile acid involvement in these phenomena. The role of bile acid receptors, TGR5, FXR and the sphingosine-1-phosphate receptor 2 and the inflammasome are also examined. We hope that better understanding of these pathologic effects will facilitate new strategies for treating cholestatic liver injury.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
28
|
Tang J, Yan Z, Feng Q, Yu L, Wang H. The Roles of Neutrophils in the Pathogenesis of Liver Diseases. Front Immunol 2021; 12:625472. [PMID: 33763069 PMCID: PMC7982672 DOI: 10.3389/fimmu.2021.625472] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Neutrophils are the largest population of circulating leukocytes and the first responder against invading pathogens or other danger signals. Sophisticated machineries help them play critical roles in immunity and inflammation, including phagocytosis, superoxide production, cytokine and chemokine production, degranulation, and formation of neutrophil extracellular traps (NETs). After maturation and release from the bone marrow, neutrophils migrate to inflamed tissues in response to many stimuli. Increasing evidences indicate that neutrophils are critically involved in the pathogenesis of liver diseases, including liver cancer, thus making them promising target for the treatment of liver diseases. Here, we would like to provide the latest finding about the role of neutrophils in liver diseases and discuss the potentiality of neutrophils as target for liver diseases.
Collapse
Affiliation(s)
- Jiaojiao Tang
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zijun Yan
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiyu Feng
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lexing Yu
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Hongyang Wang
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
29
|
Huang W, Kong D. The intestinal microbiota as a therapeutic target in the treatment of NAFLD and ALD. Biomed Pharmacother 2021; 135:111235. [DOI: 10.1016/j.biopha.2021.111235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
|
30
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
31
|
Zhao X, Yang L, Chang N, Hou L, Zhou X, Dong C, Liu F, Yang L, Li L. Neutrophil recruitment mediated by sphingosine 1-phosphate (S1P)/S1P receptors during chronic liver injury. Cell Immunol 2020; 359:104243. [PMID: 33197723 DOI: 10.1016/j.cellimm.2020.104243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 01/25/2023]
Abstract
Excessive neutrophils are recruited to damaged tissue and cause collateral injury under chronic inflammatory conditions. Sphingosine 1-phosphate (S1P) modulates kinds of physiological and pathological actions by inducing recruitment of various cell types through S1P receptors (S1PRs). This study aimed to detect the S1P/S1PRs-mediated effects on neutrophil recruitment during chronic liver inflammation. In present study, increased neutrophils originated from bone marrow (BM) were detected in liver tissue of BDL-treated mice. Hepatic sphingosine kinase 1 (SphK, S1P rate-limiting enzyme) or S1P levels positively correlated with neutrophil marker expression in liver of mice and patients. In vitro, expression of S1PR1, S1PR2 and S1PR3 were detected in both mouse BM neutrophils and differentiated human neutrophil-like (dHL60) cells. S1P powerfully boosted the migration and cytoskeletal remodeling of BM neutrophils through S1PR1 or S1PR2. Different from BM neutrophils, the migration and cytoskeletal remodeling of dHL60 cells were mediated by S1PR2 or S1PR3. S1PR2 blockade obviously attenuates neutrophil infiltration in bile duct ligation (BDL)-induced mouse liver injury. In conclusion, S1P/S1PRs system plays a pivotal role in neutrophil recruitment.
Collapse
Affiliation(s)
- Xinhao Zhao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Xuan Zhou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Chengbin Dong
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
32
|
Zhao X, Yang L, Chang N, Hou L, Zhou X, Yang L, Li L. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis 2020; 11:379. [PMID: 32424179 PMCID: PMC7235026 DOI: 10.1038/s41419-020-2582-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023]
Abstract
Inappropriate neutrophil infiltration and subsequent neutrophil extracellular trap (NET) formation have been confirmed to be involved in chronic inflammatory conditions. Fatty liver disease is an increasingly severe health problem worldwide and currently considered the most common cause of chronic liver disease. Sphingosine 1-phosphate (S1P), a product of membrane sphingolipid metabolism, regulates vital physiological and pathological actions by inducing infiltration and activation of various cell types through S1P receptors (S1PRs). Here, we seek to determine the S1PR-mediated effects on neutrophil activation during chronic liver inflammation. In this study, NETs are detected in the early stage of methionine-choline-deficient and a high-fat (MCDHF) diet-induced liver injury. NET depletion by deoxyribonuclease I intraperitoneal injection significantly protects liver from MCDHF-induced liver injury in vivo. Meanwhile, we show that levels of myeloperoxidase-DNA complex (NET marker) in the serum present positive correlation with sphingosine kinase1 (S1P rate-limiting enzyme) messenger RNA expression or S1P levels in the injured liver of MCDHF-fed mice. In vitro, S1PR2 participates in the redirection of neutrophil apoptosis to NETosis via Gαi/o, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and reactive oxygen species signaling pathways. Moreover, S1PR2 knockdown in MCDHF-fed mice by S1PR2-siRNA intravenous injection significantly inhibits NET formation in damaged liver tissue and then alleviates hepatic inflammation and fibrosis. Conclusion: In the early stage of fatty liver disease, S1PR2-mediated neutrophil activation plays an important role in the evolvement of liver injury.
Collapse
Affiliation(s)
- Xinhao Zhao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Xuan Zhou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
33
|
Intrahepatic biliary strictures after liver transplantation are morphologically similar to primary sclerosing cholangitis but immunologically distinct. Eur J Gastroenterol Hepatol 2020; 32:276-284. [PMID: 31895887 DOI: 10.1097/meg.0000000000001649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Biliary strictures are an important cause of morbidity and mortality in primary hepatic disease and after liver transplantation (LT). We aimed to characterize inflammatory cytokines in biliary fluids in biliary strictures to investigate their immunological origin. METHODS We conducted a retrospective study on 72 patients with strictures after LT, eight patients with primary sclerosing cholangitis (PSC) and 15 patients with secondary sclerosing cholangitis (SSC). We measured cytokines interleukin (IL)-2, -4, -6, -10, -17, monocyte chemoattractant protein (MCP)-1, fibroblast growth factor (FGF)-2 and interferon (IFN)-γ as well as biochemical components such as protein and phospholipids in biliary fluid obtained from endoscopic retrograde cholangiography (ERC). Cell viability assays were performed on human cholangiocytes (H69) after being treated with IL-6, IL-4 and IFN-γ. RESULTS Bile of patients with diffuse strictures after LT or due to SSC showed low values of all measured cytokines except for IL-6 levels, which were largely elevated in patients with diffuse strictures after LT. Patients high in biliary IL-6 showed an increase in profibrotic markers FGF-2 and MCP-1. In contrast, PSC bile was dominated by a Th1/Th17 profile with elevated IL-2, IL-17 and IFN-γ. In LT patients with biliary strictures, biliary IL-6 negatively predicted retransplantation-free survival after ERC. CONCLUSION PSC patients showed a biliary Th1/Th17 cytokine profile, while SSC and diffuse strictures showed low values of cytokines except IL-6. In diffuse intrahepatic strictures after LT, biliary IL-6 is strongly associated with retransplantation-free survival after ERC.
Collapse
|
34
|
Inflammation: Cause or consequence of chronic cholestatic liver injury. Food Chem Toxicol 2020; 137:111133. [PMID: 31972189 DOI: 10.1016/j.fct.2020.111133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Cholestasis is a result of obstruction of the biliary tracts. It is a common cause of liver pathology after exposure to toxic xenobiotics and during numerous other liver diseases. Accumulation of bile acids in the liver is thought to be a major driver of liver injury during cholestasis and can lead to eventual liver fibrosis and cirrhosis. As such, current therapy in the field of chronic liver diseases with prominent cholestasis relies heavily on increasing choleresis to limit accumulation of bile acids. Many of these same diseases also present with autoimmunity before the onset of cholestasis though, indicating the inflammation may be an initiating component of the pathology. Moreover, cytotoxic inflammatory mediators accumulate during cholestasis and can propagate liver injury. Anti-inflammatory biologics and small molecules have largely failed clinical trials in these diseases though and as such, targeting inflammation as a means to address cholestatic liver injury remains debatable. The purpose of this review is to understand the different roles that inflammation can play during cholestatic liver injury and attempt to define how new therapeutic targets that limit or control inflammation may be beneficial for patients with chronic cholestatic liver disease.
Collapse
|
35
|
Abstract
Cholestasis results in blockage of bile flow whether the point of obstruction occurs extrahepatically or intrahepatically. Bile acids are a primary constituent of bile, and thus one of the primary outcomes is acute retention of bile acids in hepatocytes. Bile acids are normally secreted into the biliary tracts and then released into the small bowel before recirculating back to the liver. Retention of bile acids has long been hypothesized to be a primary cause of the associated liver injury that occurs during acute or chronic cholestasis. Despite this, a surge of papers in the last decade have reported a primary role for inflammation in the pathophysiology of cholestatic liver injury. Furthermore, it has increasingly been recognized that both the constituency of individual bile acids that make up the greater pool, as well as their conjugation status, is intimately involved in their toxicity, and this varies between species. Finally, the role of bile acids in drug-induced cholestatic liver injury remains an area of increasing interest. The purpose of this review is to critically evaluate current proposed mechanisms of cholestatic liver injury, with a focus on the evolving role of bile acids in cell death and inflammation.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
36
|
Li C, Yang G, Lin L, Xuan Y, Yan S, Ji X, Song F, Lu M, Lan T. Slit2 signaling contributes to cholestatic fibrosis in mice by activation of hepatic stellate cells. Exp Cell Res 2019; 385:111626. [PMID: 31545977 DOI: 10.1016/j.yexcr.2019.111626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 01/07/2023]
Abstract
Liver Cholestasis is a widespread disease of broad etiologies and ultimately results in fibrosis, which is still lacking effective therapeutic strategies. Activation of hepatic stellate cells (HSCs) is the key event of liver fibrosis. Here, we aimed to investigate the effect and mechanism of the Slit2 signaling in cholestasis-induced liver fibrosis. Our findings revealed that the serum levels and hepatic expression of Slit2 were significantly increased in patients with primary biliary cirrhosis (PBC). Additionally, Slit2-Tg mice were much more vulnerable to BDL-induced liver injury and fibrosis compared to WT control. Slit2 up-regulation by Slit2 recombinant protein induced proliferation, and inhibited apoptosis of human HSCs cell line LX-2 via p38 and ERK signaling pathway, resulting in the activation of HSCs. In contrast, Slit2 down-regulation by siRNA silencing inhibit the activation of HSCs. In conclusion, Slit2 is involved in the activation of HSCs and liver fibrogenesis, highlighting Slit2 as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Changzheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guizhi Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China; Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuanyuan Xuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sishan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoqian Ji
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fenyun Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minqiang Lu
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Zhao Q, Zhang T, Xiao X, Huang J, Wang Y, Gonzalez FJ, Li F. Impaired clearance of sunitinib leads to metabolic disorders and hepatotoxicity. Br J Pharmacol 2019; 176:2162-2178. [PMID: 30875096 PMCID: PMC6555861 DOI: 10.1111/bph.14664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/23/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Sunitinib is a small-molecule TK inhibitor associated with hepatotoxicity. The mechanisms of its toxicity are still unclear. EXPERIMENTAL APPROACH In the present study, mice were treated with 60, 150, and 450 mg·kg-1 sunitinib to evaluate sunitinib hepatotoxicity. Sunitinib metabolites and endogenous metabolites in liver, serum, faeces, and urine were analysed using ultra-performance LC electrospray ionization quadrupole time-of-flight MS-based metabolomics. KEY RESULTS Four reactive metabolites and impaired clearance of sunitinib in liver played a dominant role in sunitinib-induced hepatotoxicity. Using a non-targeted metabolomics approach, various metabolic pathways, including mitochondrial fatty acid β-oxidation (β-FAO), bile acids, lipids, amino acids, nucleotides, and tricarboxylic acid cycle intermediates, were disrupted after sunitinib treatment. CONCLUSIONS AND IMPLICATIONS These studies identified significant alterations in mitochondrial β-FAO and bile acid homeostasis. Activation of PPARα and inhibition of xenobiotic metabolism may be of value in attenuating sunitinib hepatotoxicity.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xue‐Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Jian‐Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Wang
- Department of PathologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|
38
|
Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol 2019; 15:491-501. [PMID: 31227819 DOI: 10.1038/s41584-019-0243-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Inflammatory arthritis occurs in many diseases and is characterized by joint inflammation and damage. However, the inflammatory state in arthritis is commonly associated with systemic manifestations, which are generally linked to a poor prognosis. The pro-inflammatory cytokine IL-17 functions within a complex network of cytokines and contributes to the pathogenesis of various inflammatory diseases. Three IL-17 inhibitors have already been approved for the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis. After a brief description of IL-17 and its local effects on joints, this Review focuses on the systemic effects of IL-17 in inflammatory arthritis. Increased circulating concentrations of bioactive IL-17 mediate changes in blood vessels, liver and cardiac and skeletal muscles. The effects of IL-17 on vascular and cardiac cells might contribute to the increased risk of cardiovascular events that occurs in all patients with inflammatory disorders. In the liver, IL-17 contributes to the high circulating concentrations of acute-phase proteins, such as C-reactive protein, and the appearance of liver lesions. In skeletal muscle, IL-17 contributes to muscle contractibility defects and weakness. Thus, targeting IL-17 might have beneficial effects at both local and systemic levels, and could also be proposed for the treatment of a wider range of inflammatory diseases.
Collapse
Affiliation(s)
- Audrey Beringer
- Immunogenomics and Inflammation Research Unit, EA 4130, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, University of Lyon, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
39
|
Ravacci GR, Ishida R, Torrinhas RS, Sala P, Machado NM, Fonseca DC, André Baptista Canuto G, Pinto E, Nascimento V, Franco Maggi Tavares M, Sakai P, Faintuch J, Santo MA, Moura EGH, Neto RA, Logullo AF, Waitzberg DL. Potential premalignant status of gastric portion excluded after Roux en-Y gastric bypass in obese women: A pilot study. Sci Rep 2019; 9:5582. [PMID: 30944407 PMCID: PMC6447527 DOI: 10.1038/s41598-019-42082-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
We evaluated whether the excluded stomach (ES) after Roux-en-Y gastric bypass (RYGB) can represent a premalignant environment. Twenty obese women were prospectively submitted to double-balloon enteroscopy (DBE) with gastric juice and biopsy collection, before and 3 months after RYGB. We then evaluated morphological and molecular changes by combining endoscopic and histopathological analyses with an integrated untargeted metabolomics and transcriptomics multiplatform. Preoperatively, 16 women already presented with gastric histopathological alterations and an increased pH (≥4.0). These gastric abnormalities worsened after RYGB. A 90-fold increase in the concentration of bile acids was found in ES fluid, which also contained other metabolites commonly found in the intestinal environment, urine, and faeces. In addition, 135 genes were differentially expressed in ES tissue. Combined analysis of metabolic and gene expression data suggested that RYGB promoted activation of biological processes involved in local inflammation, bacteria overgrowth, and cell proliferation sustained by genes involved in carcinogenesis. Accumulated fluid in the ES appears to behave as a potential premalignant environment due to worsening inflammation and changing gene expression patterns that are favorable to the development of cancer. Considering that ES may remain for the rest of the patient’s life, long-term ES monitoring is therefore recommended for patients undergoing RYGB.
Collapse
Affiliation(s)
- Graziela Rosa Ravacci
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Robson Ishida
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Suzana Torrinhas
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Priscila Sala
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Natasha Mendonça Machado
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Danielle Cristina Fonseca
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele André Baptista Canuto
- Departamento de Quimica Analitica, Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA, Brazil.,Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ernani Pinto
- Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Paulo Sakai
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Joel Faintuch
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marco Aurelio Santo
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | - Dan Linetzky Waitzberg
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
40
|
Preventive effect of artemisinin extract against cholestasis induced via lithocholic acid exposure. Biosci Rep 2018; 38:BSR20181011. [PMID: 30217945 PMCID: PMC6246771 DOI: 10.1042/bsr20181011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Obstructive cholestasis characterized by biliary pressure increase leading to leakage of bile back that causes liver injury. The present study aims to evaluate the effects of artemisinin in obstructive cholestasis in mice. The present study was carried out on 40 adult healthy mice that were divided into 4 groups, 10 mice each; the negative control group didn’t receive any medication. The normal group was fed normally with 100 mg/kg of artemisinin extract orally. The cholestatic group fed on 1% lithocholic acid (LCA) mixed into control diet and cholestatic group co-treated with 100 mg/kg of artemisinin extract orally. Mice were treated for 1 month then killed at end of the experiment. A significant increase in alanine aminotransferase, aspartate aminotransferase, and total and direct bilirubin was detected in mice exposed to LCA toxicity. That increase was significantly reduced to normal values in mice co-treated with artemisinin. LCA toxicity causes multiple areas of necrosis of irregular distribution. However, artemisinin co-treatment showed normal hepatic architecture. Moreover, LCA causes down-regulation of hepatic mRNA expressions of a set of genes that are responsible for ATP binding cassette and anions permeability as ATP-binding cassette sub-family G member 8, organic anion-transporting polypeptide, and multidrug resistance-associated protein 2 genes that were ameliorated by artemisinin administration. Similarly, LCA toxicity significantly down-regulated hepatic mRNA expression of constitutive androstane receptor, OATP4, and farnesoid x receptor genes. However, artemisinin treatment showed a reasonable prevention. In conclusion, the current study strikingly revealed that artemisinin treatment can prevent severe hepatotoxicity and cholestasis that led via LCA exposure.
Collapse
|
41
|
Beringer A, Miossec P. IL-17 and IL-17-producing cells and liver diseases, with focus on autoimmune liver diseases. Autoimmun Rev 2018; 17:1176-1185. [PMID: 30321671 DOI: 10.1016/j.autrev.2018.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
The pro-inflammatory cytokine interleukin(IL)-17 and IL-17-producing cells are important players in the pathogenesis of many autoimmune / inflammatory diseases. More recently, they have been associated with liver diseases. This review first describes the general knowledge on IL-17 and IL-17 producing cells. The second part describes the in vitro and in vivo effects of IL-17 on liver cells and the contribution of IL-17 producing cells to liver diseases. IL-17 induces immune cell infiltration and liver damage driving to hepatic inflammation and fibrosis and contributes to autoimmune liver diseases. The circulating levels of IL-17 and the frequency of IL-17-producing cells are elevated in a variety of acute and chronic liver diseases. The last part focuses on the effects of IL-17 deletion or neutralization in various murine models. Some of these observed beneficial effects suggest that targeting the IL-17 axis could be a new therapeutic strategy to prevent chronicity and progression of various liver diseases.
Collapse
Affiliation(s)
- Audrey Beringer
- Immunogenomics and Inflammation Research Unit EA4130, University of Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA4130, University of Lyon, Lyon, France.
| |
Collapse
|
42
|
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol 2018; 9:1853. [PMID: 30150987 PMCID: PMC6099188 DOI: 10.3389/fimmu.2018.01853] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Once known exclusively for their role in nutrients absorption, primary bile acids, chenodeoxycholic and cholic acid, and secondary bile acids, deoxycholic and lithocholic acid, are signaling molecules, generated from cholesterol breakdown by the interaction of the host and intestinal microbiota, acting on several receptors including the G protein-coupled bile acid receptor 1 (GPBAR1 or Takeda G-protein receptor 5) and the Farnesoid-X-Receptor (FXR). Both receptors are placed at the interface of the host immune system with the intestinal microbiota and are highly represented in cells of innate immunity such as intestinal and liver macrophages, dendritic cells and natural killer T cells. Here, we review how GPBAR1 and FXR modulate the intestinal and liver innate immune system and contribute to the maintenance of a tolerogenic phenotype in entero-hepatic tissues, and how regulation of innate immunity might help to explain beneficial effects exerted by GPBAR1 and FXR ligands in immune and metabolic disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
43
|
Yu D, Cai SY, Mennone A, Vig P, Boyer JL. Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents. Liver Int 2018; 38:1128-1138. [PMID: 29356312 PMCID: PMC6032984 DOI: 10.1111/liv.13698] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Cholestatic liver injury is mediated by bile acid-induced inflammatory responses. We hypothesized that superior therapeutic effects might be achieved by combining treatments that reduce the bile acid pool size with one that blocks inflammation. METHODS Bile duct-ligated (BDL) rats and Mdr2(Abcb4)-/- mice were treated with all-trans retinoic acid (atRA), a potent inhibitor of bile acid synthesis, 5 mg/kg/d by gavage, or Cenicriviroc (CVC), a known antagonist of CCR2 and CCR5, 50 mg/kg/d alone or in combination for 14 days and 1 month respectively. RESULTS All-trans retinoic acid alone reduced bile acid pool size and liver necrosis in BDL rats. However, the combination with CVC further reduced liver to body weight ratio, bile acid pool size, plasma liver enzyme, bilirubin, liver necrosis and fibrosis when compared to the atRA treatment. The assessment of hepatic hydroxyproline content further confirmed the reduced liver injury concurrent with reduction of pro-inflammatory cytokines emphasizing the synergistic effects of these two agents. Profiling of hepatic inflammatory cells revealed that combination therapy reduced neutrophils and T cells but not macrophages. The superior therapeutic effects of combination treatment were also confirmed in Mdr2-/- mice where a significant reduction in plasma liver enzymes, bilirubin, liver fibrosis, bile duct proliferation and hepatic infiltration of neutrophils and T cells and expression of cytokines were found. CONCLUSIONS Multitargeted therapy is an important paradigm for treating cholestatic liver injury. The combination of CVC with atRA or other FXR activators may warrant a clinical trial in patients with cholestatic liver disease.
Collapse
Affiliation(s)
- Dongke Yu
- Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Shi-Ying Cai
- Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Albert Mennone
- Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Pamela Vig
- Allergan plc, South San Francisco, CA 94080
| | - James L. Boyer
- Liver Center, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
44
|
Beringer A, Thiam N, Molle J, Bartosch B, Miossec P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin Exp Immunol 2018; 193:221-233. [PMID: 29676779 DOI: 10.1111/cei.13140] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokines interleukin (IL)-17 and tumour necrosis factor (TNF)-α are targets for treatment in many chronic inflammatory diseases. Here, we examined their role in liver inflammatory response compared to that of IL-6. Human hepatoma cells (HepaRG, Huh7.5 and HepG2 cells) and primary human hepatocytes (PHH) were cultured with IL-6, IL-17 and/or TNF-α. To determine the contribution of the IL-6 pathway in the IL-17/TNF-α-mediated effect, an anti-IL-6 receptor antibody was used. IL-17 and TNF-α increased in synergy IL-6 secretion by HepaRG cells and PHH but not by Huh7.5 and HepG2 cells. This IL-17/TNF-α synergistic cooperation enhanced the levels of C-reactive protein (CRP) and aspartate aminotransferase (ASAT) in HepaRG cell and PHH cultures through the induction of IL-6. IL-17/TNF-α also up-regulated IL-8, monocyte chemoattractant protein (MCP)-1 and chemokine (C-C motif) ligand 20 (CCL20) chemokines in synergy through an IL-6-independent pathway. Interestingly, first exposure to IL-17, but not to TNF-α, was crucial for the initiation of the IL-17/TNF-α synergistic effect on IL-6 and IL-8 production. In HepaRG cells, IL-17 enhanced IL-6 mRNA stability resulting in increased IL-6 protein levels. The IL-17A/TNF-α synergistic effect on IL-6 and IL-8 induction was mediated through the activation of extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase, nuclear factor-κB and/or protein kinase B (Akt)-phosphatidylinositol 3-kinase signalling pathways. Therefore, the IL-17/TNF-α synergistic interaction mediates systemic inflammation and cell damage in hepatocytes mainly through IL-6 for CRP and ASAT induction. Independently of IL-6, the IL-17A/TNF-α combination may also induce immune cell recruitment by chemokine up-regulation. IL-17 and/or TNF-α neutralization can be a promising therapeutic strategy to control both systemic inflammation and liver cell attraction.
Collapse
Affiliation(s)
- A Beringer
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon
| | - N Thiam
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon
| | - J Molle
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, University of Lyon, Lyon, France
| | - B Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, University of Lyon, Lyon, France
| | - P Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon
| |
Collapse
|
45
|
Yu Q, Jiang Z, Zhang L. Bile acid regulation: A novel therapeutic strategy in non-alcoholic fatty liver disease. Pharmacol Ther 2018; 190:81-90. [PMID: 29684468 DOI: 10.1016/j.pharmthera.2018.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive fat deposition in the liver in the absence of significant alcohol consumption. Dysregulated bile acid (BA) metabolism is an important indicator in the pathology of NAFLD, which could progress into more severe forms of liver injury. Lipid metabolism, immune environment and intestinal bacteria are all affected by dysregulated BA metabolism directly, but the mechanisms remain unclear. Several drug candidates that target BA metabolism, either used alone or in combination with other agents, are currently under development for treatment of NAFLD. Here, we summarize the relationship of dysregulated BA metabolism and NAFLD, discuss the effects and mechanisms of dysregulated BAs-induced lipid metabolism disorder. Challenges in developing novel treatments are also discussed.
Collapse
Affiliation(s)
- Qinwei Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
46
|
Jena PK, Sheng L, Di Lucente J, Jin LW, Maezawa I, Wan YJY. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J 2018; 32:2866-2877. [PMID: 29401580 DOI: 10.1096/fj.201700984rr] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to identify the intrinsic links that explain the effect of a Western diet (WD) on cognitive dysfunction. Specific pathogen-free, wild-type mice were fed either a control diet (CD) or a high-fat, high-sucrose WD after weaning and were euthanized at 10 mo of age to study the pathways that affect cognitive health. The results showed that long-term WD intake reduced hippocampal synaptic plasticity and the level of brain-derived neurotrophic factor mRNA in the brain and isolated microglia. A WD also activated ERK1/2 and reduced postsynaptic density-95 in the brain, suggesting postsynaptic damage. Moreover, WD-fed mice had increased inflammatory signaling in the brain, ileum, liver, adipose tissue, and spleen, which was accompanied by microglia activation. In the brain, as well as in the digestive tract, a WD reduced signaling regulated by retinoic acid and bile acids (BAs), whose receptors form heterodimers to control metabolism and inflammation. Furthermore, a WD intake caused dysbiosis and dysregulated BA synthesis with reduced endogenous ligands for BA receptors, i.e., farnesoid X receptor and G-protein-coupled bile acid receptor in the liver and brain. Together, dysregulated BA synthesis and dysbiosis were accompanied by systemic inflammation, microglial activation, and reduced neuroplasticity induced by WD.-Jena, P. K., Sheng, L., Di Lucente, J., Jin, L.-W., Maezawa, I., Wan, Y.-J. Y. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| |
Collapse
|
47
|
Dietary and metabolic modulators of hepatic immunity. Semin Immunopathol 2017; 40:175-188. [PMID: 29110070 DOI: 10.1007/s00281-017-0659-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
The liver is the central metabolic organ of the organism and is thus constantly exposed to gut-derived dietary and microbial antigens. The liver maintains homoeostatic tolerance to these mostly harmless antigens. However, the liver also functions as a barrier organ to harmful pathogens and is thus permissive to liver inflammation. The regulation of the delicate balance between liver tolerance and liver inflammation is of vital importance for the organism. In recent years, a general role for dietary components and metabolites as immune mediators has been emerging. However, although the liver is exposed to a great deal of metabolic mediators, surprisingly, little is known about their actual role in the regulation of hepatic immune responses. Here, we will explore the possible impacts of metabolic mediators for homoeostatic and pathological immunity in the liver, by highlighting selected examples of metabolic immune regulation in the liver.
Collapse
|
48
|
Lin SY, Wang YY, Chen WY, Liao SL, Chou ST, Yang CP, Chen CJ. Hepatoprotective activities of rosmarinic acid against extrahepatic cholestasis in rats. Food Chem Toxicol 2017; 108:214-223. [PMID: 28789951 DOI: 10.1016/j.fct.2017.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022]
Abstract
Though rosmarinic acid possesses nutritional, pharmaceutical, and toxic properties and shows therapeutic potential on liver diseases, its therapeutic effects against cholestatic liver diseases have not been proven. Using an extrahepatic cholestasis rat model by bile-duct ligation (BDL), daily oral administration of rosmarinic acid showed improvement effects on liver histology, serum biochemicals, ductular reaction, oxidative stress, inflammation, and fibrosis. Rosmarinic acid alleviated BDL-induced transforming growth factor beta-1 (TGF-β1) production and hepatic collagen deposition, and the anti-fibrotic effects were accompanied by reductions in matrix-producing cells and Smad2/3. BDL rats showed increased hepatic NF-κB/AP-1 activities, inflammatory cell infiltration/accumulation, and cytokine production, and these signs of hepatic inflammation were ameliorated by rosmarinic acid. Mechanistic study revealed an inhibitory effect of rosmarinic acid on the axis of the high mobility group box-1 (HMGB1)/toll-like receptor-4 (TLR4) in BDL rats. Results of cultured hepatic stellate cells further showed the impacts of rosmarinic acid which attenuated TGF-β1-induced stellate cell mitogenic and fibrogenic activation. Our findings support the concept that rosmarinic acid could serve as a hepatoprotective agent, and dietary rosmarinic acid supplementation may be beneficial in terms of improving cholestasis-related liver injury via mechanisms involving resolution of oxidative burden and down-regulation of HMGB1/TLR4, NF-κB, AP-1, and TGF-β1/Smad signaling.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei City 112, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei City 112, Taiwan; Division of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, Taichung City 433, Taiwan
| | - Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
49
|
Paquissi FC. Immunity and Fibrogenesis: The Role of Th17/IL-17 Axis in HBV and HCV-induced Chronic Hepatitis and Progression to Cirrhosis. Front Immunol 2017; 8:1195. [PMID: 29033929 PMCID: PMC5626935 DOI: 10.3389/fimmu.2017.01195] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis is a common final pathway for most chronic liver diseases; representing an increasing burden worldwide and is associated with increased morbidity and mortality. Current evidence has shown that, after an initial injury, the immune response has a significant participation in the ongoing damage, and progression from chronic viral hepatitis (CVH) to cirrhosis, driving the activation and maintenance of main fibrogenic pathways. Among immune deregulations, those related to the subtype 17 of T helper lymphocytes (Th17)/interleukin-17 (IL-17) axis have been recognized as key immunopathological and prognostic elements in patients with CVH. The Th17/IL-17 axis has been found involved in several points of fibrogenesis chain from the activation of stellate cells, increased expression of profibrotic factors as TGF-β, promotion of the myofibroblastic or epithelial–mesenchymal transition, stimulation of the synthesis of collagen, and induction of imbalance between matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). It also promotes the recruitment of inflammatory cells and increases the expression of proinflammatory cytokines such as IL-6 and IL-23. So, the Th17/IL-17 axis is simultaneously the fuel and the flame of a sustained proinflammatory and profibrotic environment. This work aims to present the immunopathologic and prognostic role of the Th17/IL-17 axis and related pathways in fibrogenesis and progression to cirrhosis in patients with liver disease due to hepatitis B virus (HBV) and hepatitis C virus (HCV).
Collapse
|
50
|
Abstract
Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury.
Collapse
Affiliation(s)
- Man Li
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shi-Ying Cai
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James L Boyer
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|