1
|
Aimaier R, Chung MH, Gu Y, Yu Q, Wei C, Li H, Guo Z, Long M, Li Y, Wang W, Li Q, Wang Z. FOXM1 promotes neurofibromatosis type 1-associated malignant peripheral nerve sheath tumor progression in a NUF2-dependent manner. Cancer Gene Ther 2023; 30:1390-1402. [PMID: 37488294 DOI: 10.1038/s41417-023-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue sarcomas characterized by poor prognosis and low drug response rates. Traditional chemo/radiotherapies show only mild benefits for patients with MPNSTs, and no targeted therapy is available in the clinic. A better understanding of the molecular background of MPNSTs is critical for the development of effective targeted therapies. Forkhead box M1 (FOXM1) has been implicated in the progression of many human malignancies, though its role in MPNSTs is unclear. In this study, using four Gene Expression Omnibus (GEO) datasets and a tissue microarray, we demonstrated that FOXM1 upregulation was associated with poor prognosis in patients with MPNSTs. FOXM1 overexpression and knockdown regulated the proliferation and colony formation of MPNST cells. Using bioinformatics analysis and luciferase reporter assays, we identified NUF2 as a direct downstream target of FOXM1. Both in vitro and in vivo experiments demonstrated that the induction of MPNST cell proliferation by FOXM1 was dependent on elevated NUF2 expression, as NUF2 knockdown abolished the FOXM1-induced proliferation of MPNST cells. Our study showed that the FOXM1-NUF2 axis mediates human MPNST progression and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiong Yu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ma S, Mi Z, Wang Z, Sun L, Liu T, Shi P, Wang C, Xue X, Chen W, Wang Z, Yu Y, Zhang Y, Bao F, Wang N, Wang H, Xia Q, Liu H, Sun Y, Zhang F. Single-cell sequencing analysis reveals development and differentiation trajectory of Schwann cells manipulated by M. leprae. PLoS Negl Trop Dis 2023; 17:e0011477. [PMID: 37478057 PMCID: PMC10361531 DOI: 10.1371/journal.pntd.0011477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND M. leprae preferentially infects Schwann cells (SCs) in the peripheral nerves leading to nerve damage and irreversible disability. Knowledge of how M. leprae infects and interacts with host SCs is essential for understanding mechanisms of nerve damage and revealing potential new therapeutic strategies. METHODOLOGY/PRINCIPAL FINDINGS We performed a time-course single-cell sequencing analysis of SCs infected with M. leprae at different time points, further analyzed the heterogeneity of SCs, subpopulations associated with M. leprae infection, developmental trajectory of SCs and validated by Western blot or flow cytometry. Different subpopulations of SCs exhibiting distinct genetic features and functional enrichments were present. We observed two subpopulations associated with M. leprae infection, a stem cell-like cell subpopulation increased significantly at 24 h but declined by 72 h after M. leprae infection, and an adipocyte-like cell subpopulation, emerged at 72 h post-infection. The results were validated and confirmed that a stem cell-like cell subpopulation was in the early stage of differentiation and could differentiate into an adipocyte-like cell subpopulation. CONCLUSIONS/SIGNIFICANCE Our results present a systematic time-course analysis of SC heterogeneity after infection by M. leprae at single-cell resolution, provide valuable information to understand the critical biological processes underlying reprogramming and lipid metabolism during M. leprae infection of SCs, and increase understanding of the disease-causing mechanisms at play in leprosy patients as well as revealing potential new therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peidian Shi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjie Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yueqian Yu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Na Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Honglei Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qianqian Xia
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
4
|
Genetic alterations associated with malignant transformation of sporadic vestibular schwannoma. Acta Neurochir (Wien) 2022; 164:343-352. [PMID: 34816314 PMCID: PMC8854236 DOI: 10.1007/s00701-021-05062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Introduction Malignant peripheral nerve sheath tumor of the vestibulocochlear nerve (VN-MPNST) is exceedingly rare and carries a poor prognosis. Little is known about its underlying genetics and in particular the process of malignant transformation. There is an ongoing debate on whether the transformation is initiated by ionizing radiation. We present here the analysis and comparison of two post-radiation VN-MPNST and one undergoing spontaneous transformation. Methods Four tumors from three patients (radiation-naïve vestibular schwannoma before (VS) and after (VN-MPNST) malignant transformation in addition to two post-radiation VN-MPNST) were subjected to DNA whole-genome microarray and whole-exome sequencing and tumor-specific mutations were called. Mutational signatures were characterized using MuSiCa. Results The tumor genomes were characterized predominantly by copy-number aberrations with 36–81% of the genome affected. Even the VS genome was grossly aberrated. The spontaneous malignant transformation was characterized by a near-total whole-genome doubling, disappearance of NF2 mutation and new mutations in three cancer-related genes (GNAQ, FOXO4 and PDGFRB). All tumors had homozygous loss of the tumor suppressor CDKN2A. Neither mutational signature nor copy number profile was associated with ionizing radiation. Conclusion The VN-MPNST genome in our cases is characterized by large copy-number aberrations and homozygous deletion of CDKN2A. Our study demonstrates a VS with genetic alterations similar to its malignant counterpart, suggesting the existence of premalignant VS. No consistent mutational signature was associated with ionizing radiation.
Collapse
|
5
|
Williams KB, Largaespada DA. New Model Systems and the Development of Targeted Therapies for the Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes (Basel) 2020; 11:E477. [PMID: 32353955 PMCID: PMC7290716 DOI: 10.3390/genes11050477] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder and cancer predisposition syndrome (1:3000 births) caused by mutations in the tumor suppressor gene NF1. NF1 encodes neurofibromin, a negative regulator of the Ras signaling pathway. Individuals with NF1 often develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage, some of which progress further to malignant peripheral nerve sheath tumors (MPNSTs). Treatment options for neurofibromas and MPNSTs are extremely limited, relying largely on surgical resection and cytotoxic chemotherapy. Identification of novel therapeutic targets in both benign neurofibromas and MPNSTs is critical for improved patient outcomes and quality of life. Recent clinical trials conducted in patients with NF1 for the treatment of symptomatic plexiform neurofibromas using inhibitors of the mitogen-activated protein kinase (MEK) have shown very promising results. However, MEK inhibitors do not work in all patients and have significant side effects. In addition, preliminary evidence suggests single agent use of MEK inhibitors for MPNST treatment will fail. Here, we describe the preclinical efforts that led to the identification of MEK inhibitors as promising therapeutics for the treatment of NF1-related neoplasia and possible reasons they lack single agent efficacy in the treatment of MPNSTs. In addition, we describe work to find targets other than MEK for treatment of MPNST. These have come from studies of RAS biochemistry, in vitro drug screening, forward genetic screens for Schwann cell tumors, and synthetic lethal screens in cells with oncogenic RAS gene mutations. Lastly, we discuss new approaches to exploit drug screening and synthetic lethality with NF1 loss of function mutations in human Schwann cells using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Kyle B. Williams
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Korfhage J, Lombard DB. Malignant Peripheral Nerve Sheath Tumors: From Epigenome to Bedside. Mol Cancer Res 2019; 17:1417-1428. [PMID: 31023785 DOI: 10.1158/1541-7786.mcr-19-0147] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas typically developing in the context of neurofibromatosis type 1 (NF-1). With the exception of surgical resection, these tumors are resistant to all current therapies, and unresectable, recurrent, or metastatic tumors are considered incurable. Preclinical studies have identified several novel candidate molecular targets for therapeutic intervention, but, to date, targeted therapies have proven ineffective. Recent studies have identified recurrent mutations in polycomb repressive complex 2 (PRC2) core components, embryonic ectoderm development protein (EED) and suppressor of zeste 12 homolog (SUZ12), in MPNST. These mutations result in global loss of the histone H3 lysine 27 trimethylation epigenetic mark, normally deposited by PRC2, and subsequent gain in acetylation at this residue. This altered chromatin state has been shown to promote MPNST malignancy; however, acetylation at this residue sensitizes MPNSTs to BRD4 and bromodomain and extra-terminal domain inhibition. Interestingly, the catalytic component of PRC2, enhancer of zeste homolog 2 (EZH2), is not mutated in MPNST, hinting that a noncanonical, PRC2-independent function of EZH2 may play a role in this cancer. This review examines the pathobiology of MPNST, the contribution of PRC2 subunits to this process, and the prospects for PRC2-related therapies for this cancer. IMPLICATIONS: Identification of mutations in the PRC2 components EED and SUZ12 in the majority of MPNSTs may imply noncanonical oncogenic activities of the intact component, EZH2, and provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Justin Korfhage
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
7
|
Høland M, Kolberg M, Danielsen SA, Bjerkehagen B, Eilertsen IA, Hektoen M, Mandahl N, van den Berg E, Smeland S, Mertens F, Sundby Hall K, Picci P, Sveen A, Lothe RA. Inferior survival for patients with malignant peripheral nerve sheath tumors defined by aberrant TP53. Mod Pathol 2018; 31:1694-1707. [PMID: 29946184 DOI: 10.1038/s41379-018-0074-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/22/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
Malignant peripheral nerve sheath tumor is a rare and aggressive disease with poor treatment response, mainly affecting adolescents and young adults. Few molecular biomarkers are used in the management of this cancer type, and although TP53 is one of few recurrently mutated genes in malignant peripheral nerve sheath tumor, the mutation prevalence and the corresponding clinical value of the TP53 network remains unsettled. We present a multi-level molecular study focused on aberrations in the TP53 network in relation to patient outcome in a series of malignant peripheral nerve sheath tumors from 100 patients and 38 neurofibromas, including TP53 sequencing, high-resolution copy number analyses of TP53 and MDM2, and gene expression profiling. Point mutations in TP53 were accompanied by loss of heterozygosity, resulting in complete loss of protein function in 8.2% of the malignant peripheral nerve sheath tumors. Another 5.5% had MDM2 amplification. TP53 mutation and MDM2 amplification were mutually exclusive and patients with either type of aberration in their tumor had a worse prognosis, compared to those without (hazard ratio for 5-year disease-specific survival 3.5, 95% confidence interval 1.78-6.98). Both aberrations had similar consequences on the gene expression level, as analyzed by a TP53-associated gene signature, a property also shared with the copy number aberrations and/or loss of heterozygosity at the TP53 locus, suggesting a common "TP53-mutated phenotype" in as many as 60% of the tumors. This was a poor prognostic phenotype (hazard ratio = 4.1, confidence interval:1.7-9.8), thus revealing a TP53-non-aberrant patient subgroup with a favorable outcome. The frequency of the "TP53-mutated phenotype" warrants explorative studies of stratified treatment strategies in malignant peripheral nerve sheath tumor.
Collapse
Affiliation(s)
- Maren Høland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Matthias Kolberg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Stine Aske Danielsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Oral Biology, University of Oslo, Oslo, Norway.,Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Ina A Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Merete Hektoen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nils Mandahl
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Eva van den Berg
- Department of Genetics, The University Medical Center Groningen, Groningen, The Netherlands
| | - Sigbjørn Smeland
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Kirsten Sundby Hall
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Piero Picci
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Peacock JD, Pridgeon MG, Tovar EA, Essenburg CJ, Bowman M, Madaj Z, Koeman J, Boguslawski EA, Grit J, Dodd RD, Khachaturov V, Cardona DM, Chen M, Kirsch DG, Maina F, Dono R, Winn ME, Graveel CR, Steensma MR. Genomic Status of MET Potentiates Sensitivity to MET and MEK Inhibition in NF1-Related Malignant Peripheral Nerve Sheath Tumors. Cancer Res 2018; 78:3672-3687. [PMID: 29720369 DOI: 10.1158/0008-5472.can-17-3167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are highly resistant sarcomas that occur in up to 13% of individuals with neurofibromatosis type I (NF1). Genomic analysis of longitudinally collected tumor samples in a case of MPNST disease progression revealed early hemizygous microdeletions in NF1 and TP53, with progressive amplifications of MET, HGF, and EGFR To examine the role of MET in MPNST progression, we developed mice with enhanced MET expression and Nf1 ablation (Nf1fl/ko;lox-stop-loxMETtg/+;Plp-creERTtg/+ ; referred to as NF1-MET). NF1-MET mice express a robust MPNST phenotype in the absence of additional mutations. A comparison of NF1-MET MPNSTs with MPNSTs derived from Nf1ko/+;p53R172H;Plp-creERTtg/+ (NF1-P53) and Nf1ko/+;Plp-creERTtg/+ (NF1) mice revealed unique Met, Ras, and PI3K signaling patterns. NF1-MET MPNSTs were uniformly sensitive to the highly selective MET inhibitor, capmatinib, whereas a heterogeneous response to MET inhibition was observed in NF1-P53 and NF1 MPNSTs. Combination therapy of capmatinib and the MEK inhibitor trametinib resulted in reduced response variability, enhanced suppression of tumor growth, and suppressed RAS/ERK and PI3K/AKT signaling. These results highlight the influence of concurrent genomic alterations on RAS effector signaling and therapy response to tyrosine kinase inhibitors. Moreover, these findings expand our current understanding of the role of MET signaling in MPNST progression and identify a potential therapeutic niche for NF1-related MPNSTs.Significance: Longitudinal genomic analysis reveals a positive selection for MET and HGF copy number gain early in malignant peripheral nerve sheath tumor progression. Cancer Res; 78(13); 3672-87. ©2018 AACR.
Collapse
Affiliation(s)
- Jacqueline D Peacock
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan.,College of Health Professions, Ferris State University, Big Rapids, Michigan
| | - Matthew G Pridgeon
- Spectrum Health System, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Elizabeth A Tovar
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Curt J Essenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Megan Bowman
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Julie Koeman
- Genomics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Elissa A Boguslawski
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Jamie Grit
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Rebecca D Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Vadim Khachaturov
- Spectrum Health System, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Mark Chen
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.,Department Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Flavio Maina
- Aix-Marseille Univ, CNRS, IBDM, Marseille, France
| | - Rosanna Dono
- Aix-Marseille Univ, CNRS, IBDM, Marseille, France
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Carrie R Graveel
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan. .,Spectrum Health System, Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Michigan State University College of Human Medicine, Grand Rapids, Michigan
| |
Collapse
|
9
|
Eckfeldt CE, Pomeroy EJ, Lee RDW, Hazen KS, Lee LA, Moriarity BS, Largaespada DA. RALB provides critical survival signals downstream of Ras in acute myeloid leukemia. Oncotarget 2018; 7:65147-65156. [PMID: 27556501 PMCID: PMC5323144 DOI: 10.18632/oncotarget.11431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations that activate RAS proto-oncogenes and their effectors are common in acute myeloid leukemia (AML); however, efforts to therapeutically target Ras or its effectors have been unsuccessful, and have been hampered by an incomplete understanding of which effectors are required for AML proliferation and survival. We investigated the role of Ras effector pathways in AML using murine and human AML models. Whereas genetic disruption of NRAS(V12) expression in an NRAS(V12) and Mll-AF9-driven murine AML induced apoptosis of leukemic cells, inhibition of phosphatidylinositol-3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) signaling did not reproduce this effect. Conversely, genetic disruption of RALB signaling induced AML cell death and phenocopied the effects of suppressing oncogenic Ras directly - uncovering a novel role for RALB signaling in AML survival. Knockdown of RALB led to decreased phosphorylation of TBK1 and reduced BCL2 expression, providing mechanistic insight into RALB survival signaling in AML. Notably, we found that patient-derived AML blasts have higher levels of RALB-TBK1 signaling compared to normal blood leukocytes, supporting a pathophysiologic role for RALB signaling for AML patients. Overall, our work provides new insight into the specific roles of Ras effector pathways in AML and has identified RALB signaling as a key survival pathway.
Collapse
Affiliation(s)
- Craig E Eckfeldt
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily J Pomeroy
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robin D W Lee
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine S Hazen
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lindsey A Lee
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Troutman S, Moleirinho S, Kota S, Nettles K, Fallahi M, Johnson GL, Kissil JL. Crizotinib inhibits NF2-associated schwannoma through inhibition of focal adhesion kinase 1. Oncotarget 2018; 7:54515-54525. [PMID: 27363027 PMCID: PMC5342359 DOI: 10.18632/oncotarget.10248] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/13/2016] [Indexed: 02/05/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a dominantly inherited autosomal disease characterized by schwannomas of the 8th cranial nerve. The NF2 tumor suppressor gene encodes for Merlin, a protein implicated as a suppressor of multiple cellular signaling pathways. To identify potential drug targets in NF2-associated malignancies we assessed the consequences of inhibiting the tyrosine kinase receptor MET. We identified crizotinib, a MET and ALK inhibitor, as a potent inhibitor of NF2-null Schwann cell proliferation in vitro and tumor growth in vivo. To identify the target/s of crizotnib we employed activity-based protein profiling (ABPP), leading to identification of FAK1 (PTK2) as the relevant target of crizotinib inhibition in NF2-null schwannoma cells. Subsequent studies confirm that inhibition of FAK1 is sufficient to suppress tumorigenesis in animal models of NF2 and that crizotinib-resistant forms of FAK1 can rescue the effects of treatment. These studies identify a FDA approved drug as a potential treatment for NF2 and delineate the mechanism of action in NF2-null Schwann cells.
Collapse
Affiliation(s)
- Scott Troutman
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Susana Moleirinho
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Smitha Kota
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Kendall Nettles
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Mohammad Fallahi
- Department of Informatics Core, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Joseph L Kissil
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| |
Collapse
|
11
|
Lai B, Zou J, Lin Z, Qu Z, Song A, Xu Y, Gao X. Haploinsufficiency of hnRNP U Changes Activity Pattern and Metabolic Rhythms. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:173-183. [PMID: 29128567 DOI: 10.1016/j.ajpath.2017.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022]
Abstract
The neuropeptides arginine vasopressin (Avp) and vasoactive intestinal polypeptide (Vip) are critical for the communication and coupling of suprachiasmatic nucleus neurons, which organize daily rhythms of physiology and behavior in mammals. However, how these peptides are regulated remains uncharacterized. We found that heterogeneous nuclear ribonucleoprotein U (hnRNP U) is essential for the expression of Avp and Vip. Loss of one copy of the Hnrnpu gene resulted in fragmented locomotor activities and disrupted metabolic rhythms. Hnrnpu+/- mice were more active than wild-type mice in the daytime but more inactive at night. These phenotypes were partially rescued by microinfusion of Avp and Vip into free-moving animals. In addition, hnRNP U modulated Avp and Vip via directly binding to their promoters together with brain and muscle Arnt-like protein-1/circadian locomotor output cycles kaput heterodimers. Our work identifies hnRNP U as a novel regulator of the circadian pacemaker and provides new insights into the mechanism of rhythm output.
Collapse
Affiliation(s)
- Beibei Lai
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Jianghuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Zhipeng Qu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Ying Xu
- Medical College of Soochou University, Suzhou, China.
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China.
| |
Collapse
|
12
|
An HY, Hong KT, Kang HJ, Choi JY, Hong C, Kim HY, Choi TH, Kang CH, Kim HS, Cheon JE, Park SH, Park JD, Park KD, Shin HY. Malignant peripheral nerve sheath tumor in children: A single-institute retrospective analysis. Pediatr Hematol Oncol 2017; 34:468-477. [PMID: 29286874 DOI: 10.1080/08880018.2017.1408730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malignant peripheral nerve sheath tumors are rare tumors that originate from Schwann cells. Patients with neurofibromatosis type 1 are prone to develop these tumors. Due to their rarity and lack of established treatment, the prognosis of malignant peripheral nerve sheath tumors is poor. A retrospective study was conducted on children treated for malignant peripheral nerve sheath tumors at the Seoul National University Children's Hospital between 2007 and 2016. Eleven patients were diagnosed with malignant nerve sheath tumors at a median age of 12 years, eight of whom had neurofibromatosis type 1. All the patients underwent chemotherapy and received surgical resection, and 5 patients relapsed. The 2-year overall survival rate was 72.7%, and the 2-year event-free survival rate was 58.2%. Univariate analysis was performed to assess the correlations between the clinical factors. There was no statistically significant difference in the overall survival rate according to the patients' clinical factors. However, there was a decreasing trend in the relationship between the event-free survival rate and the prevalence of neurofibromatosis type 1. Regular follow up of neurofibromatosis type 1. Regular follow-up of neurofibromatosis type 1 patients may identify detection of early relapse of malignant peripheral nerve sheath tumors. Genetic studies of these patients and tumors may identify opportunities for targeted therapy.
Collapse
Affiliation(s)
- Hong Yul An
- a Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Korea
| | - Kyung Taek Hong
- a Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - Hyoung Jin Kang
- a Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - Jung Yoon Choi
- a Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Korea
| | - CheRy Hong
- a Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - Hyun-Young Kim
- c Department of Surgery , Seoul National University College of Medicine , Seoul , Korea
| | - Tae Hyun Choi
- d Department of Plastic and Reconstructive Surgery , Seoul National University College of Medicine , Seoul , Korea
| | - Chang Hyun Kang
- e Department of Thoracic and Cardiovascular Surgery , Seoul National University Hospital , Seoul National University College of Medicine , Seoul , Korea
| | - Han-Soo Kim
- f Department of Orthopedic Surgery , Seoul National University College of Medicine , Seoul , Korea
| | - Jung-Eun Cheon
- g Department of Radiology, Seoul National University College of Medicine , Seoul National University Children's Hospital , Seoul , Korea
| | - Sung-Hye Park
- h Department of Pathology , Seoul National University, College of Medicine , Seoul , Korea
| | - June Dong Park
- a Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - Kyung Duk Park
- a Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - Hee Young Shin
- a Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| |
Collapse
|
13
|
Malignant Peripheral Nerve Sheath Tumors State of the Science: Leveraging Clinical and Biological Insights into Effective Therapies. Sarcoma 2017; 2017:7429697. [PMID: 28592921 PMCID: PMC5448069 DOI: 10.1155/2017/7429697] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is the leading cause of mortality in patients with neurofibromatosis type 1. In 2002, an MPNST consensus statement reviewed the current knowledge and provided guidance for the diagnosis and management of MPNST. Although the improvement in clinical outcome has not changed, substantial progress has been made in understanding the natural history and biology of MPNST through imaging and genomic advances since 2002. Genetically engineered mouse models that develop MPNST spontaneously have greatly facilitated preclinical evaluation of novel drugs for translation into clinical trials led by consortia efforts. Continued work in identifying alterations that contribute to the transformation, progression, and metastasis of MPNST coupled with longitudinal follow-up, biobanking, and data sharing is needed to develop prognostic biomarkers and effective prevention and therapeutic strategies for MPNST.
Collapse
|
14
|
Sohier P, Luscan A, Lloyd A, Ashelford K, Laurendeau I, Briand-Suleau A, Vidaud D, Ortonne N, Pasmant E, Upadhyaya M. Confirmation of mutation landscape of NF1-associated malignant peripheral nerve sheath tumors. Genes Chromosomes Cancer 2017; 56:421-426. [PMID: 28124441 DOI: 10.1002/gcc.22446] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/25/2016] [Accepted: 01/12/2017] [Indexed: 12/16/2022] Open
Abstract
The commonest tumors associated with neurofibromatosis type 1 (NF1) are benign peripheral nerve sheath tumors, called neurofibromas. Malignant transformation of neurofibromas into aggressive MPNSTs may occur with a poor patient prognosis. A cooperative role of SUZ12 or EED inactivation, along with NF1, TP53, and CDKN2A loss-of-function, has been proposed to drive progression to MPNSTs. An exome sequencing analysis of eight MPNSTs, one plexiform neurofibroma, and seven cutaneous neurofibromas was undertaken. Biallelic inactivation of the NF1 gene was observed in the plexiform neurofibroma and the MPNSTs, underlining that somatic biallelic NF1 inactivation is likely to be the initiating event for plexiform neurofibroma genesis, although it is unlikely to be sufficient for the subsequent MPNST development. The majority (5/8) of MPNSTs in our analyses demonstrated homozygous or heterozygous deletions of CDKN2A, which may represent an early event following NF1 LOH in the malignant transformation of Schwann cells from plexiform neurofibroma to MPNST. Biallelic somatic alterations of SUZ12 was also found in 4/8 MPNSTs. EED biallelic alterations were detected in 2 of the other four MPNSTs, with one tumor having a homozygous EED deletion. A missense mutation in the chromatin regulator KDM2B was also identified in one MPNST. No TP53 point mutations were found in this study, confirming previous data that TP53 mutations may be relatively rare in NF1-associated MPNSTs. Our study confirms the frequent biallelic inactivation of PRC2 subunits SUZ12 and EED in MPNSTs, and suggests the implication of KDM2B.
Collapse
Affiliation(s)
- Pierre Sohier
- Service de Pathologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Armelle Luscan
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France.,EA7331, Université Paris Descartes, Faculté de Pharmacie de Paris, France
| | - Angharad Lloyd
- Institute of Cancer and Genetics, Cardiff University, UK
| | | | - Ingrid Laurendeau
- EA7331, Université Paris Descartes, Faculté de Pharmacie de Paris, France
| | - Audrey Briand-Suleau
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France.,EA7331, Université Paris Descartes, Faculté de Pharmacie de Paris, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France.,EA7331, Université Paris Descartes, Faculté de Pharmacie de Paris, France
| | - Nicolas Ortonne
- Département de Pathologie, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France.,EA7331, Université Paris Descartes, Faculté de Pharmacie de Paris, France
| | | |
Collapse
|
15
|
Hirbe AC, Dahiya S, Friedmann-Morvinski D, Verma IM, Clapp DW, Gutmann DH. Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation. Oncotarget 2016; 7:7403-14. [PMID: 26859681 PMCID: PMC4884927 DOI: 10.18632/oncotarget.7232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that arise sporadically or in association with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. In individuals with NF1, MPNSTs are hypothesized to arise from Nf1-deficient Schwann cell precursor cells following the somatic acquisition of secondary cooperating genetic mutations (e.g., p53 loss). To model this sequential genetic cooperativity, we coupled somatic lentivirus-mediated p53 knockdown in the adult right sciatic nerve with embryonic Schwann cell precursor Nf1 gene inactivation in two different Nf1 conditional knockout mouse strains. Using this approach, ∼60% of mice with Periostin-Cre-mediated Nf1 gene inactivation (Periostin-Cre; Nf1flox/flox mice) developed tumors classified as low-grade MPNSTs following p53 knockdown (mean, 6 months). Similarly, ∼70% of Nf1+/− mice with GFAP-Cre-mediated Nf1 gene inactivation (GFAP-Cre; Nf1flox/null mice) developed low-grade MPNSTs following p53 knockdown (mean, 3 months). In addition, wild-type and Nf1+/− mice with GFAP-Cre-mediated Nf1 loss develop MPNSTs following somatic p53 knockout with different latencies, suggesting potential influences of Nf1+/− stromal cells in MPNST pathogenesis. Collectively, this new MPNST model system permits the analysis of somatically-acquired events as well as tumor microenvironment signals that potentially cooperate with Nf1 loss in the development and progression of this deadly malignancy.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Inder M Verma
- The Salk Institute of Biological Studies, Laboratory of Genetics, La Jolla, CA, USA
| | - D Wade Clapp
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St. Louis, MO, USA
| |
Collapse
|
16
|
Pomeroy EJ, Lee LA, Lee RDW, Schirm DK, Temiz NA, Ma J, Gruber TA, Diaz-Flores E, Moriarity BS, Downing JR, Shannon KM, Largaespada DA, Eckfeldt CE. Ras oncogene-independent activation of RALB signaling is a targetable mechanism of escape from NRAS(V12) oncogene addiction in acute myeloid leukemia. Oncogene 2016; 36:3263-3273. [PMID: 27991934 PMCID: PMC5464975 DOI: 10.1038/onc.2016.471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
Somatic mutations that lead to constitutive activation of NRAS and KRAS proto-oncogenes are among the most common in human cancer and frequently occur in acute myeloid leukemia (AML). An inducible NRAS(V12)-driven AML mouse model has established a critical role for continued NRAS(V12) expression in leukemia maintenance. In this model genetic suppression of NRAS(V12) expression results in rapid leukemia remission, but some mice undergo spontaneous relapse with NRAS(V12)-independent (NRI) AMLs providing an opportunity to identify mechanisms that bypass the requirement for Ras oncogene activity and drive leukemia relapse. We found that relapsed NRI AMLs are devoid of NRAS(V12) expression and signaling through the major oncogenic Ras effector pathways, phosphatidylinositol-3-kinase and mitogen-activated protein kinase, but express higher levels of an alternate Ras effector, Ralb, and exhibit NRI phosphorylation of the RALB effector TBK1, implicating RALB signaling in AML relapse. Functional studies confirmed that inhibiting CDK5-mediated RALB activation with a clinically relevant experimental drug, dinaciclib, led to potent RALB-dependent antileukemic effects in human AML cell lines, induced apoptosis in patient-derived AML samples in vitro and led to a 2-log reduction in the leukemic burden in patient-derived xenograft mice. Furthermore, dinaciclib potently suppressed the clonogenic potential of relapsed NRI AMLs in vitro and prevented the development of relapsed AML in vivo. Our findings demonstrate that Ras oncogene-independent activation of RALB signaling is a therapeutically targetable mechanism of escape from NRAS oncogene addiction in AML.
Collapse
Affiliation(s)
- E J Pomeroy
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - L A Lee
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - R D W Lee
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - D K Schirm
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - N A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - J Ma
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - T A Gruber
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - E Diaz-Flores
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - B S Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Division of Hematology and Oncology, Minneapolis, MN, USA
| | - J R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - K M Shannon
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - D A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Division of Hematology and Oncology, Minneapolis, MN, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - C E Eckfeldt
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Immortalization of human normal and NF1 neurofibroma Schwann cells. J Transl Med 2016; 96:1105-15. [PMID: 27617404 DOI: 10.1038/labinvest.2016.88] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023] Open
Abstract
Neurofibromas, which are benign Schwann cell tumors, are the hallmark feature in the autosomal dominant condition neurofibromatosis 1 (NF1) and are associated with biallelic loss of NF1 gene function. There is a need for effective therapies for neurofibromas, particularly the larger, plexiform neurofibromas. Tissue culture is an important tool for research. However, it is difficult to derive enriched human Schwann cell cultures, and most enter replicative senescence after 6-10 passages, impeding cell-based research in NF1. Through exogenous expression of human telomerase reverse transcriptase and murine cyclin-dependent kinase (mCdk4), normal (NF1 wild-type), neurofibroma-derived Schwann cells heterozygous for NF1 mutation, and neurofibroma-derived Schwann cells homozygous for NF1 mutation were immortalized, including some matched samples from the same NF1 patient. Initial experiments employed retroviral vectors, while subsequent work utilized lentiviral vectors carrying these genes because of improved efficiency. Expression of both transgenes was required for immortalization. Molecular and immunohistochemical analysis indicated that these cell lines are of Schwann cell lineage and have a range of phenotypes, many of which are consistent with their primary cultures. This is the first report of immortalization and detailed characterization of multiple human NF1 normal nerve and neurofibroma-derived Schwann cell lines, which will be highly useful research tools to study NF1 and other Schwann tumor biology and conditions.
Collapse
|
18
|
Malignant Peripheral Nerve Sheath Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:495-530. [DOI: 10.1007/978-3-319-30654-4_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Liao X, Han C, Qin W, Liu X, Yu L, Lu S, Chen Z, Zhu G, Su H, Mo Z, Qin X, Peng T. Genome-wide association study identified PLCE1- rs2797992 and EGFR- rs6950826 were associated with TP53 expression in the HBV-related hepatocellular carcinoma of Chinese patients in Guangxi. Am J Transl Res 2016; 8:1799-1812. [PMID: 27186304 PMCID: PMC4859909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE The genome-wide association approach was employed to explore the association between single nucleotide polymorphisms (SNPs) and TP53 expression in the HBV-related hepatocellular carcinoma (HCC) of Chinese patients in Guangxi. METHODS 403 HBV-related HCC patients were recruited into this study and classified according to the TP53 expression in the cancer by immunohistochemistry. DNA was extracted from the cancer and genotyped with the Human ExomeBeadChip 12v1-1 system; quality control and principal-component analysis (PCA) were applied for data analysis. RESULTS The Genome-wide association analysis indicated that rs2797992 with a P value of 4.35 × 10(-5) locus in PLCE1 gene and rs6950826 with a P value of 2.2 × 10(-3) locus in EGFR gene were associated with TP53 expression in the HCC. A allele of rs2797992 predicted a decreased risk for TP53 expression in HCC. In contrast, A allele of rs6950826 increased the risk for TP53 expression. There was no strong LD locus in the tested regions. PLCE1 and EGFR were associated with TP53 in pathway and at HCC mRNA level. CONCLUSION rs2797992 of PLCE1 gene and rs6950826 of EGFR gene are associated with TP53 expression, but not with the prognosis of HBV-related HCC in HBV-related HCC of Chinese patients in Guangxi.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Sicong Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Zhiwei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning, 530021, Guangxi Province, China
| |
Collapse
|
20
|
The Challenge of Cancer Genomics in Rare Nervous System Neoplasms: Malignant Peripheral Nerve Sheath Tumors as a Paradigm for Cross-Species Comparative Oncogenomics. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:464-77. [PMID: 26740486 DOI: 10.1016/j.ajpath.2015.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Comprehensive genomic analyses of common nervous system cancers provide new insights into their pathogenesis, diagnosis, and treatment. Although analogous studies of rare nervous system tumors are needed, there are major barriers to performing such studies. Cross-species comparative oncogenomics, identifying driver mutations in mouse cancer models and validating them in human tumors, is a promising alternative. Although still in its infancy, this approach is being applied to malignant peripheral nerve sheath tumors (MPNSTs), rare Schwann cell-derived malignancies that occur sporadically, after radiotherapy, and in neurofibromatosis type 1. Studies of human neurofibromatosis type 1-associated tumors suggest that NF1 tumor suppressor loss in Schwann cells triggers cell-autonomous and intercellular changes, resulting in development of benign neurofibromas; subsequent neurofibroma-MPNST progression is caused by aberrant growth factor signaling and mutations affecting the p16(INK4A)-cyclin D1-CDK4-Rb and p19(ARF)-Mdm2-p53 cell cycle pathways. Mice with Nf1, Trp53, and/or Cdkn2a mutations that overexpress the Schwann cell mitogen neuregulin-1 or overexpress the epidermal growth factor receptor validate observations in human tumors and, to various degrees, model human tumorigenesis. Genomic analyses of MPNSTs arising in neuregulin-1 and epidermal growth factor receptor-overexpressing mice and forward genetic screens with Sleeping Beauty transposons implicate additional signaling cascades in MPNST pathogenesis. These studies confirm the utility of mouse models for MPNST driver gene discovery and provide new insights into the complexity of MPNST pathogenesis.
Collapse
|
21
|
Hirbe AC, Dahiya S, Miller CA, Li T, Fulton RS, Zhang X, McDonald S, DeSchryver K, Duncavage EJ, Walrath J, Reilly KM, Abel HJ, Pekmezci M, Perry A, Ley TJ, Gutmann DH. Whole Exome Sequencing Reveals the Order of Genetic Changes during Malignant Transformation and Metastasis in a Single Patient with NF1-plexiform Neurofibroma. Clin Cancer Res 2015; 21:4201-11. [PMID: 25925892 DOI: 10.1158/1078-0432.ccr-14-3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) occur at increased frequency in individuals with neurofibromatosis type 1 (NF1), where they likely arise from benign plexiform neurofibroma precursors. While previous studies have used a variety of discovery approaches to discover genes associated with MPNST pathogenesis, it is currently unclear what molecular events are associated with the evolution of MPNST from plexiform neurofibroma. EXPERIMENTAL DESIGN Whole-exome sequencing was performed on biopsy materials representing plexiform neurofibroma (n = 3), MPNST, and metastasis from a single individual with NF1 over a 14-year period. Additional validation cases were used to assess candidate genes involved in malignant progression, while a murine MPNST model was used for functional analysis. RESULTS There was an increasing proportion of cells with a somatic NF1 gene mutation as the tumors progressed from benign to malignant, suggesting a clonal process in MPNST development. Copy number variations, including loss of one copy of the TP53 gene, were identified in the primary tumor and the metastatic lesion, but not in benign precursor lesions. A limited number of genes with nonsynonymous somatic mutations (βIII-spectrin and ZNF208) were discovered, several of which were validated in additional primary and metastatic MPNST samples. Finally, increased βIII-spectrin expression was observed in the majority of MPNSTs, and shRNA-mediated knockdown reduced murine MPNST growth in vivo. CONCLUSIONS Collectively, the ability to track the molecular evolution of MPNST in a single individual with NF1 offers new insights into the sequence of genetic events important for disease pathogenesis and progression for future mechanistic study.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher A Miller
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Tiandao Li
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Robert S Fulton
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Xiaochun Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Sandra McDonald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine DeSchryver
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica Walrath
- Rare Tumors Initiative, National Cancer Institute, Bethesda, Maryland. Division of Statistical Genomics, St. Louis, Missouri
| | - Karlyne M Reilly
- Rare Tumors Initiative, National Cancer Institute, Bethesda, Maryland. Division of Statistical Genomics, St. Louis, Missouri
| | | | - Melike Pekmezci
- Neurological Surgery, UCSF School of Medicine, San Francisco, California
| | - Arie Perry
- Neurological Surgery, UCSF School of Medicine, San Francisco, California. Department of Neurology, Washington University, St. Louis, Missouri
| | - Timothy J Ley
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University, St. Louis, Missouri.
| |
Collapse
|
22
|
Yuan SM, Cui L, Guo Y, Wang J, Hu XB, Jiang HQ, Hong ZJ. Surgical management of giant neurofibroma in soft tissue: a single-center retrospective analysis. Int J Clin Exp Med 2015; 8:5245-5253. [PMID: 26131098 PMCID: PMC4483935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Neurofibroma, a common benign tumor in soft tissue, continues to grow, and often appears to be giant. In this study, we retrospectively analyzed the surgical treatment of 26 patients with giant neurofibromas in our clinic in the past 10 years from Jan. 2004 to Dec. 2013. The tumors were located in the head (n = 10), trunk (n = 9), limbs (n = 5), and multi-sites (n = 2). According to the location and extent of the lesion, as well as the adjacent anatomy, surgical management was performed to partially (n = 15) or almost completely (n = 11) resect the tumor. The wounds were repaired by skin flap or skin graft. Among them, one child with a giant tumor in the scalp underwent three times of skin expander treatment, and acquired complete removal of the tumor finally without baldness. Eleven cases underwent the interventional embolization of tumor's nutrient arteries, which successfully reduced the bleeding in operation. Most of the skin flap and skin graft survived well. After operation, the appearance of the patients and the function of the limbs were improved largely. In conclusion, for the giant neurofibroma, surgical treatment effectively reduces the tumor burden, rehabilitates the appearance and function, and so improves the quality of life. Skin expandor and interventional embolization of nutrient artery can be used when appropriate.
Collapse
Affiliation(s)
- Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002, Jiangsu, China
| | - Lei Cui
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002, Jiangsu, China
| | - Yao Guo
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002, Jiangsu, China
| | - Jun Wang
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002, Jiangsu, China
| | - Xin-Bao Hu
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002, Jiangsu, China
| | - Hui-Qing Jiang
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002, Jiangsu, China
| | - Zhi-Jian Hong
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002, Jiangsu, China
| |
Collapse
|
23
|
Kolberg M, Høland M, Lind GE, Ågesen TH, Skotheim RI, Hall KS, Mandahl N, Smeland S, Mertens F, Davidson B, Lothe RA. Protein expression of BIRC5, TK1, and TOP2A in malignant peripheral nerve sheath tumours--A prognostic test after surgical resection. Mol Oncol 2015; 9:1129-39. [PMID: 25769404 PMCID: PMC5528761 DOI: 10.1016/j.molonc.2015.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/22/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022] Open
Abstract
No consensus treatment regime exists beyond surgery for malignant peripheral nerve sheath tumours (MPNST), and the purpose of the present study was to find new approaches to stratify patients with good and poor prognosis and to better guide therapeutic intervention for this aggressive soft tissue cancer. From a total of 67 MPNSTs from Scandinavian patients with and without neurofibromatosis type 1, 30 MPNSTs were investigated by genome‐wide RNA expression profiling and 63 MPNSTs by immunohistochemical (IHC) analysis, and selected genes were submitted to analyses of disease‐specific survival. The potential drug target genes survivin (BIRC5), thymidine kinase 1 (TK1), and topoisomerase 2‐alpha (TOP2A), all encoded on chromosome arm 17q, were up‐regulated in MPNST as compared to benign neurofibromas. Each of them was found to be independent prognostic markers on the gene expression level, as well as on the protein level. A prognostic profile was identified by combining the nuclear expression scores of the three proteins. For patients with completely resected tumours only 15% in the high risk group were alive after two years, as compared to 78% in the low risk group. In conclusion, we found a novel protein expression profile which identifies MPNST patients with inferior prognosis even after assumed curative surgery. The tested proteins are drug targets; therefore the expression profile may provide predictive information guiding the design of future clinical trials. Importantly, as the effect is seen on the protein level using IHC, the biomarker panel can be readily implemented in routine clinical testing.
Collapse
Affiliation(s)
- Matthias Kolberg
- Department of Molecular Oncology, Institute for Cancer Research, Division of Cancer Medicine Surgery and Transplantation, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maren Høland
- Department of Molecular Oncology, Institute for Cancer Research, Division of Cancer Medicine Surgery and Transplantation, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Division of Cancer Medicine Surgery and Transplantation, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trude H Ågesen
- Department of Molecular Oncology, Institute for Cancer Research, Division of Cancer Medicine Surgery and Transplantation, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Division of Cancer Medicine Surgery and Transplantation, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kirsten Sundby Hall
- Department of Oncology, Division of Cancer Medicine Surgery and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Nils Mandahl
- Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden
| | - Sigbjørn Smeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Oncology, Division of Cancer Medicine Surgery and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Fredrik Mertens
- Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden
| | - Ben Davidson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Division of Diagnostics and Intervention, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Division of Cancer Medicine Surgery and Transplantation, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Over the past decade, substantial insight into the biological function of the tumor suppressors neurofibromin (NF1) and Merlin (NF2) has been gained. The purpose of this review is to highlight some of the major advances in our understanding of the biology of neurofibromatosis type 1 (NF1) and neurofibromatosis type 2 (NF2) as they relate to the development of novel therapies for these disorders. RECENT FINDINGS The development of increasingly sophisticated preclinical models over the recent years has provided the platform from which to rationally develop molecular targeted therapies for both NF1 and NF2-related tumors, such as within the Department of Defense-sponsored Neurofibromatosis Clinical Trials Consortium. SUMMARY Clinical trials with molecular-targeted therapies have become a reality for neurofibromatosis patients, and hold substantial promise for improving the morbidity and mortality of individuals affected with these disorders.
Collapse
|