1
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Novel Candidate loci and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing. Cancers (Basel) 2023; 15:cancers15030944. [PMID: 36765901 PMCID: PMC9913276 DOI: 10.3390/cancers15030944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The familial occurrence of hematological malignancies has been underappreciated. Recent studies suggest that up to 15% of adults with myeloid neoplasms carry germline pathogenic variants in cancer-predisposing genes. This study aimed to identify the underlying germline predisposition variant in patients with a strong family or personal onco-hematological history using whole exome sequencing on sixteen uncharacterized individuals. It was carried out in two groups of patients, one with samples available from two affected relatives (Cohort A) and one with available samples from the index case (Cohort B). In Cohort A, six families were characterized. Two families shared variants in genes associated with DNA damage response and involved in cancer development (CHEK2 and RAD54L). Pathogenic or likely pathogenic germline variants were also found in novel candidate genes (NFATC2 and TC2N). In two families, any relevant pathogenic or likely pathogenic genomic variants were identified. In Cohort B, four additional index cases were analyzed. Three of them harbor clinically relevant variants in genes with a probable role in the development of inherited forms of hematological malignancies (GATA1, MSH4 and PRF1). Overall, whole exome sequencing is a useful approach to achieve a further characterization of these patients and their mutational spectra. Moreover, further investigations may help improve optimization for disease management of affected patients and their families.
Collapse
|
3
|
Serratrice N, Lameche I, Attieh C, Chalah MA, Faddoul J, Tarabay B, Bou-Nassif R, Ali Y, Mattar JG, Nataf F, Ayache SS, Abi Lahoud GN. Spinal meningiomas, from biology to management - A literature review. Front Oncol 2023; 12:1084404. [PMID: 36713513 PMCID: PMC9880047 DOI: 10.3389/fonc.2022.1084404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Meningiomas arise from arachnoidal cap cells of the meninges, constituting the most common type of central nervous system tumors, and are considered benign tumors in most cases. Their incidence increases with age, and they mainly affect females, constituting 25-46% of primary spinal tumors. Spinal meningiomas could be detected incidentally or be unraveled by various neurological symptoms (e.g., back pain, sphincter dysfunction, sensorimotor deficits). The gold standard diagnostic modality for spinal meningiomas is Magnetic resonance imaging (MRI) which permits their classification into four categories based on their radiological appearance. According to the World Health Organization (WHO) classification, the majority of spinal meningiomas are grade 1. Nevertheless, they can be of higher grade (grades 2 and 3) with atypical or malignant histology and a more aggressive course. To date, surgery is the best treatment where the big majority of meningiomas can be cured. Advances in surgical techniques (ultrasonic dissection, microsurgery, intraoperative monitoring) increase the complete resection rate. Operated patients have a satisfactory prognosis, even in those with poor preoperative neurological status. Adjuvant therapy has a growing role in treating spinal meningiomas, mainly in the case of subtotal resection and tumor recurrence. The current paper reviews the fundamental epidemiological and clinical aspects of spinal meningiomas, their histological and genetic characteristics, and their management, including the various surgical novelties and techniques.
Collapse
Affiliation(s)
- Nicolas Serratrice
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
| | - Imène Lameche
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
| | - Christian Attieh
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
| | - Moussa A Chalah
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France,EA 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est, Créteil, France,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Joe Faddoul
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France,Service de Neurochirurgie, Centre Hospitalier de la Côte Basque, Bayonne, France
| | - Bilal Tarabay
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
| | - Rabih Bou-Nassif
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Youssef Ali
- Institut de Chirurgie Osseuse et de Neurochirurgie, Médipole-Montagard, Avignon, France
| | - Joseph G Mattar
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
| | - François Nataf
- Service de Neurochirurgie, Hôpital Lariboisière, Paris, France
| | - Samar S Ayache
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France,EA 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est, Créteil, France,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon,Service de Physiologie-Explorations Fonctionnelles, DMU FIxIT, Hôpital Henri Mondor, Créteil, France
| | - Georges N Abi Lahoud
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon,*Correspondence: Georges N Abi Lahoud,
| |
Collapse
|
4
|
Lucia RM, Huang WL, Pathak KV, McGilvrey M, David-Dirgo V, Alvarez A, Goodman D, Masunaka I, Odegaard AO, Ziogas A, Pirrotte P, Norden-Krichmar TM, Park HL. Association of Glyphosate Exposure with Blood DNA Methylation in a Cross-Sectional Study of Postmenopausal Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47001. [PMID: 35377194 PMCID: PMC8978648 DOI: 10.1289/ehp10174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Glyphosate is the most commonly used herbicide in the world and is purported to have a variety of health effects, including endocrine disruption and an elevated risk of several types of cancer. Blood DNA methylation has been shown to be associated with many other environmental exposures, but to our knowledge, no studies to date have examined the association between blood DNA methylation and glyphosate exposure. OBJECTIVE We conducted an epigenome-wide association study to identify DNA methylation loci associated with urinary glyphosate and its metabolite aminomethylphosphonic acid (AMPA) levels. Secondary goals were to determine the association of epigenetic age acceleration with glyphosate and AMPA and develop blood DNA methylation indices to predict urinary glyphosate and AMPA levels. METHODS For 392 postmenopausal women, white blood cell DNA methylation was measured using the Illumina Infinium MethylationEPIC BeadChip array. Glyphosate and AMPA were measured in two urine samples per participant using liquid chromatography-tandem mass spectrometry. Methylation differences at the probe and regional level associated with glyphosate and AMPA levels were assessed using a resampling-based approach. Probes and regions that had an false discovery rate q < 0.1 in ≥ 90 % of 1,000 subsamples of the study population were considered differentially methylated. Differentially methylated sites from the probe-specific analysis were combined into a methylation index. Epigenetic age acceleration from three epigenetic clocks and an epigenetic measure of pace of aging were examined for associations with glyphosate and AMPA. RESULTS We identified 24 CpG sites whose methylation level was associated with urinary glyphosate concentration and two associated with AMPA. Four regions, within the promoters of the MSH4, KCNA6, ABAT, and NDUFAF2/ERCC8 genes, were associated with glyphosate levels, along with an association between ESR1 promoter hypomethylation and AMPA. The methylation index accurately predicted glyphosate levels in an internal validation cohort. AMPA, but not glyphosate, was associated with greater epigenetic age acceleration. DISCUSSION Glyphosate and AMPA exposure were associated with DNA methylation differences that could promote the development of cancer and other diseases. Further studies are warranted to replicate our results, determine the functional impact of glyphosate- and AMPA-associated differential DNA methylation, and further explore whether DNA methylation could serve as a biomarker of glyphosate exposure. https://doi.org/10.1289/EHP10174.
Collapse
Affiliation(s)
- Rachel M. Lucia
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Wei-Lin Huang
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Khyatiben V. Pathak
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Marissa McGilvrey
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Victoria David-Dirgo
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Andrea Alvarez
- Department of Medicine, University of California, Irvine, California, USA
| | - Deborah Goodman
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Irene Masunaka
- Department of Medicine, University of California, Irvine, California, USA
| | - Andrew O. Odegaard
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, California, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Hannah Lui Park
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, USA
| |
Collapse
|
5
|
Cheung M, Kadariya Y, Sementino E, Hall MJ, Cozzi I, Ascoli V, Ohar JA, Testa JR. Novel LRRK2 mutations and other rare, non-BAP1-related candidate tumor predisposition gene variants in high-risk cancer families with mesothelioma and other tumors. Hum Mol Genet 2021; 30:1750-1761. [PMID: 34008015 DOI: 10.1093/hmg/ddab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
There is irrefutable evidence that germline BAP1 mutations contribute to malignant mesothelioma (MM) susceptibility. However, BAP1 mutations are not found in all cases with evidence of familial MM or in other high-risk cancer families affected by various cancers, including MM. The goal of this study was to use whole genome sequencing (WGS) to determine the frequency and types of germline gene variants occurring in 12 MM patients selected from a series of 141 asbestos-exposed MM patients with a family history of cancer but without a germline BAP1 mutation. WGS was also performed on 2 MM cases, a proband and sibling, from a previously reported family with multiple cases of MM without inheritance of a predisposing BAP1 mutation. Altogether, germline DNA sequencing variants were identified in 20 cancer-related genes in 10 of the 13 probands. Germline indel, splice site, and missense mutations and two large deletions were identified. Among the 13 MM index cases, 6 (46%) exhibited one or more predicted pathogenic mutations. Affected genes encode proteins involved in DNA repair (ATM, ATR, BRCA2, BRIP1, CHEK2, MLH3, MUTYH, POLE, POLE4, POLQ, XRCC1), chromatin modification (ARID1B, DNMT3A, JARID2, SETD1B) or other cellular pathways: LRRK2 (2 cases) and MSH4. Notably, somatic truncating mutation or deletions of LRRK2 were occasionally found in MMs in The Cancer Genome Atlas, and expression of LRRK2 was undetectable or downregulated in a majority of primary MMs and MM cell lines we examined, implying that loss of LRRK2 expression is a newly recognized tumor suppressor alteration in MM.
Collapse
Affiliation(s)
| | | | | | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111 USA
| | - Ilaria Cozzi
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy
| | - Valeria Ascoli
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy
| | - Jill A Ohar
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1054 USA
| | | |
Collapse
|
6
|
Dhooge M, Baert-Desurmont S, Corsini C, Caron O, Andrieu N, Berthet P, Bonadona V, Cohen-Haguenauer O, De Pauw A, Delnatte C, Dussart S, Lasset C, Leroux D, Maugard C, Moretta-Serra J, Popovici C, Buecher B, Colas C, Noguès C. National recommendations of the French Genetics and Cancer Group - Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. Eur J Med Genet 2020; 63:104080. [PMID: 33039684 DOI: 10.1016/j.ejmg.2020.104080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
In case of suspected hereditary predisposition to digestive cancers, next-generation sequencing can analyze simultaneously several genes associated with an increased risk of developing these tumors. Thus, "Gastro Intestinal" (GI) gene panels are commonly used in French molecular genetic laboratories. Lack of international recommendations led to disparities in the composition of these panels and in the management of patients. To harmonize practices, the Genetics and Cancer Group (GGC)-Unicancer set up a working group who carried out a review of the literature for 31 genes of interest in this context and established a list of genes for which the estimated risks associated with pathogenic variant seemed sufficiently reliable and high for clinical use. Pancreatic cancer susceptibility genes have been excluded. This expertise defined a panel of 14 genes of confirmed clinical interest and relevant for genetic counseling: APC, BMPR1A, CDH1, EPCAM, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4 and STK11. The reasons for the exclusion of the others 23 genes have been discussed. The paucity of estimates of the associated tumor risks led to the exclusion of genes, in particular CTNNA1, MSH3 and NTHL1, despite their implication in the molecular pathways involved in the pathophysiology of GI cancers. A regular update of the literature is planned to up-grade this panel of genes in case of new data on candidate genes. Genetic and epidemiological studies and international collaborations are needed to better estimate the risks associated with the pathogenic variants of these genes either selected or not in the current panel.
Collapse
Affiliation(s)
- Marion Dhooge
- APHP.Centre (Cochin Hospital), Paris University, Paris, France.
| | - Stéphanie Baert-Desurmont
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Carole Corsini
- Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Olivier Caron
- Gustave-Roussy University Hospital, Villejuif, France
| | - Nadine Andrieu
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France; Unité Inserm, Institut Curie, Paris, France
| | | | | | | | - Antoine De Pauw
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | | | | | | | - Dominique Leroux
- Grenoble University Hospital, Couple-Enfant Hospital, Grenoble, France
| | | | - Jessica Moretta-Serra
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Cornel Popovici
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Bruno Buecher
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Chrystelle Colas
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Catherine Noguès
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | | |
Collapse
|
7
|
Brosseau JP, Liao CP, Le LQ. Translating current basic research into future therapies for neurofibromatosis type 1. Br J Cancer 2020; 123:178-186. [PMID: 32439933 PMCID: PMC7374719 DOI: 10.1038/s41416-020-0903-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a hereditary tumour syndrome that predisposes to benign and malignant tumours originating from neural crest cells. Biallelic inactivation of the tumour-suppressor gene NF1 in glial cells in the skin, along a nerve plexus or in the brain results in the development of benign tumours: cutaneous neurofibroma, plexiform neurofibroma and glioma, respectively. Despite more than 40 years of research, only one medication was recently approved for treatment of plexiform neurofibroma and no drugs have been specifically approved for the management of other tumours. Work carried out over the past several years indicates that inhibiting different cellular signalling pathways (such as Hippo, Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase and those mediated by sex hormones) in tumour cells or targeting cells in the microenvironment (nerve cells, macrophages, mast cells and T cells) might benefit NF1 patients. In this review, we outline previous strategies aimed at targeting these signalling pathways or cells in the microenvironment, agents that are currently in clinical trials, and the latest advances in basic research that could culminate in the development of novel therapeutics for patients with NF1.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
8
|
Rotunno M, Barajas R, Clyne M, Hoover E, Simonds NI, Lam TK, Mechanic LE, Goldstein AM, Gillanders EM. A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1519-1534. [PMID: 32467344 DOI: 10.1158/1055-9965.epi-19-1551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The application of next-generation sequencing (NGS) technologies in cancer research has accelerated the discovery of somatic mutations; however, progress in the identification of germline variation associated with cancer risk is less clear. We conducted a systematic literature review of cancer genetic susceptibility studies that used NGS technologies at an exome/genome-wide scale to obtain a fuller understanding of the research landscape to date and to inform future studies. The variability across studies on methodologies and reporting was considerable. Most studies sequenced few high-risk (mainly European) families, used a candidate analysis approach, and identified potential cancer-related germline variants or genes in a small fraction of the sequenced cancer cases. This review highlights the importance of establishing consensus on standards for the application and reporting of variants filtering strategies. It also describes the progress in the identification of cancer-related germline variation to date. These findings point to the untapped potential in conducting studies with appropriately sized and racially diverse families and populations, combining results across studies and expanding beyond a candidate analysis approach to advance the discovery of genetic variation that accounts for the unexplained cancer heritability.
Collapse
Affiliation(s)
- Melissa Rotunno
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland.
| | - Rolando Barajas
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mindy Clyne
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elise Hoover
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | | | - Tram Kim Lam
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Leah E Mechanic
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alisa M Goldstein
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elizabeth M Gillanders
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
9
|
Brandt ZJ, North PN, Link BA. Somatic Mutations of lats2 Cause Peripheral Nerve Sheath Tumors in Zebrafish. Cells 2019; 8:E972. [PMID: 31450674 PMCID: PMC6770745 DOI: 10.3390/cells8090972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular signaling pathways underlying peripheral nerve sheath tumor (PNST) formation are poorly understood. Hippo signaling has been recently implicated in the biology of various cancers, and is thought to function downstream of mutations in the known PNST driver, NF2. Utilizing CRISPR-Cas9 gene editing, we targeted the canonical Hippo signaling kinase Lats2. We show that, while germline deletion leads to early lethality, targeted somatic mutations of zebrafish lats2 leads to peripheral nerve sheath tumor formation. These peripheral nerve sheath tumors exhibit high levels of Hippo effectors Yap and Taz, suggesting that dysregulation of these transcriptional co-factors drives PNST formation in this model. These data indicate that somatic lats2 deletion in zebrafish can serve as a powerful experimental platform to probe the mechanisms of PNST formation and progression.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paula N North
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
10
|
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is an autosomal dominantly inherited tumor predisposition syndrome with an incidence of one in 3000-4000 individuals with no currently effective therapies. The NF1 gene encodes neurofibromin, which functions as a negative regulator of RAS. NF1 is a chronic multisystem disorder affecting many different tissues. Due to cell-specific complexities of RAS signaling, therapeutic approaches for NF1 will likely have to focus on a particular tissue and manifestation of the disease. Areas covered: We discuss the multisystem nature of NF1 and the signaling pathways affected due to neurofibromin deficiency. We explore the cell-/tissue-specific molecular and cellular consequences of aberrant RAS signaling in NF1 and speculate on their potential as therapeutic targets for the disease. We discuss recent genomic, transcriptomic, and proteomic studies combined with molecular, cellular, and biochemical analyses which have identified several targets for specific NF1 manifestations. We also consider the possibility of patient-specific gene therapy approaches for NF1. Expert opinion: The emergence of NF1 genotype-phenotype correlations, characterization of cell-specific signaling pathways affected in NF1, identification of novel biomarkers, and the development of sophisticated animal models accurately reflecting human pathology will continue to provide opportunities to develop therapeutic approaches to combat this multisystem disorder.
Collapse
Affiliation(s)
- James A Walker
- a Center for Genomic Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Meena Upadhyaya
- b Division of Cancer and Genetics , Cardiff University , Cardiff , UK
| |
Collapse
|
11
|
Wu LMN, Deng Y, Wang J, Zhao C, Wang J, Rao R, Xu L, Zhou W, Choi K, Rizvi TA, Remke M, Rubin JB, Johnson RL, Carroll TJ, Stemmer-Rachamimov AO, Wu J, Zheng Y, Xin M, Ratner N, Lu QR. Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis. Cancer Cell 2018; 33:292-308.e7. [PMID: 29438698 PMCID: PMC5813693 DOI: 10.1016/j.ccell.2018.01.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive Schwann cell (SC)-lineage-derived sarcomas. Molecular events driving SC-to-MPNST transformation are incompletely understood. Here, we show that human MPNSTs exhibit elevated HIPPO-TAZ/YAP expression, and that TAZ/YAP hyperactivity in SCs caused by Lats1/2 loss potently induces high-grade nerve-associated tumors with full penetrance. Lats1/2 deficiency reprograms SCs to a cancerous, progenitor-like phenotype and promotes hyperproliferation. Conversely, disruption of TAZ/YAP activity alleviates tumor burden in Lats1/2-deficient mice and inhibits human MPNST cell proliferation. Moreover, genome-wide profiling reveals that TAZ/YAP-TEAD1 directly activates oncogenic programs, including platelet-derived growth factor receptor (PDGFR) signaling. Co-targeting TAZ/YAP and PDGFR pathways inhibits tumor growth. Thus, our findings establish a previously unrecognized convergence between Lats1/2-TAZ/YAP signaling and MPNST pathogenesis, revealing potential therapeutic targets in these untreatable tumors.
Collapse
Affiliation(s)
- Lai Man Natalie Wu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yaqi Deng
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jincheng Wang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jiajia Wang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rohit Rao
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lingli Xu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc Remke
- Departments of Pediatric Oncology, Neuropathology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf 40225, Germany; Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Düsseldorf 40225, Germany
| | - Joshua B Rubin
- Departments of Pediatrics and Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randy L Johnson
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, USA
| | - Thomas J Carroll
- Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anat O Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Abstract
Current therapies for malignant peripheral nerve sheath tumors (MPNSTs) are ineffective. The study by Wu et al. in this issue of Cancer Cell provides evidence that the HIPPO pathway is overactive in human MPNSTs and that combined modulation of LATS1/2-YAP/TAZ and PDGFR signaling in Schwann cells reduces MPNST growth.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, University at Buffalo, Buffalo, NY 14203, USA.
| | - Yannick Poitelon
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY 12208, USA
| |
Collapse
|
13
|
Ronellenfitsch MW, Oh J, Satomi K, Sumi K, Harter PN, Steinbach JP, Felsberg J, Capper D, Voegele C, Durand G, McKay J, Le Calvez‐Kelm F, Schittenhelm J, Klink B, Mittelbronn M, Ohgaki H. CASP9 germline mutation in a family with multiple brain tumors. Brain Pathol 2018; 28:94-102. [PMID: 27935156 PMCID: PMC8028618 DOI: 10.1111/bpa.12471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/26/2016] [Indexed: 11/30/2022] Open
Abstract
We report a novel CASP9 germline mutation that may increase susceptibility to the development of brain tumors. We identified this mutation in a family in which three brain tumors had developed within three generations, including two anaplastic astrocytomas occurring in cousins. The cousins were diagnosed at similar ages (29 and 31 years), and their tumors showed similar histological features. Genetic analysis revealed somatic IDH1 and TP53 mutations in both tumors. However, no germline TP53 mutations were detected, despite the fact that this family fulfills the criteria of Li-Fraumeni-like syndrome. Whole exome sequencing revealed a germline stop-gain mutation (R65X) in the CASP9 gene, which encodes caspase-9, a key molecule for the p53-dependent mitochondrial death pathway. This mutation was also detected in DNA extracted from blood samples from the two siblings who were each a parent of one of the affected cousins. Caspase-9 immunohistochemistry showed the absence of caspase-9 immunoreactivity in the anaplastic astrocytomas and normal brain tissues of the cousins. These observations suggest that CASP9 germline mutations may have played a role at least in part to the susceptibility of development of gliomas in this Li-Fraumeni-like family lacking a TP53 germline mutation.
Collapse
Affiliation(s)
- Michael W. Ronellenfitsch
- Senckenberg Institute of Neurooncology, University Hospital FrankfurtFrankfurt am Main, Germany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Ji‐Eun Oh
- International Agency for Research on Cancer (IARC)LyonFrance
| | - Kaishi Satomi
- International Agency for Research on Cancer (IARC)LyonFrance
| | - Koichiro Sumi
- International Agency for Research on Cancer (IARC)LyonFrance
| | - Patrick N. Harter
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Neurology (Edinger Institute), Goethe UniversityFrankfurt am MainGermany
| | - Joachim P. Steinbach
- Senckenberg Institute of Neurooncology, University Hospital FrankfurtFrankfurt am Main, Germany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jörg Felsberg
- Department of NeuropathologyUniversity of DüsseldorfDüsseldorf, Germany
| | - David Capper
- Department of NeuropathologyUniversity of HeidelbergHeidelberg, Germany
- Clinical Cooperation Unit NeuropathologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Geoffroy Durand
- International Agency for Research on Cancer (IARC)LyonFrance
| | - James McKay
- International Agency for Research on Cancer (IARC)LyonFrance
| | | | - Jens Schittenhelm
- Institute of Pathology and Neuropathology, Eberhard‐Karls University of TuebingenTuebingen, Germany
| | - Barbara Klink
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of Medicine Carl Gustav Carus, TU DresdenInstitute for Clinical Genetics, DresdenGermany
- German Cancer Consortium (DKTK)DresdenGermany
- National Center for Tumor Diseases (NCT)DresdenGermany
| | - Michel Mittelbronn
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Neurology (Edinger Institute), Goethe UniversityFrankfurt am MainGermany
| | - Hiroko Ohgaki
- International Agency for Research on Cancer (IARC)LyonFrance
| |
Collapse
|
14
|
Forsström LM, Sumi K, Mäkinen MJ, Oh JE, Herva R, Kleihues P, Ohgaki H, Aaltonen LA. Germline MSH6 Mutation in a Patient With Two Independent Primary Glioblastomas. J Neuropathol Exp Neurol 2017; 76:848-853. [PMID: 28922847 DOI: 10.1093/jnen/nlx066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
We previously reported a patient who had developed 2 glioblastomas at the age of 54 and 64 years, respectively. The first glioblastoma in the right frontal lobe was treated with surgery and radiotherapy. Ten years later, the patient developed a second, left frontal glioblastoma. Discordant patterns of TP53 and PTEN mutations suggested that the second tumor was not a recurrence but an independently developed glioblastoma. To determine the molecular mechanism underlying this enigmatic case with 10-year survival, we performed whole-exome sequencing. We found that both tumors were IDH-wildtype, excluding the possibility of secondary glioblastomas that developed from a less malignant astrocytic precursor lesion. We here report that the patient carried a heterozygous germline mutation [c.3305_3306insT; p.1102-fs-insT(Gly1105/TrpfsX3)] in the MSH6 mismatch repair gene. Further sequencing revealed that in addition to the germline MSH6 mutation, the first glioblastoma showed loss of the MSH6 wild-type allele, and the second glioblastoma carried a somatic MSH6 mutation [c.1403G>A; p.Arg468His]. Our results indicate that both glioblastomas had 2 hits in the MSH6 gene, and that loss of MSH6 function was the key event in the pathogenesis of these 2 independent primary glioblastomas.
Collapse
Affiliation(s)
- Linda M Forsström
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; International Agency for Research on Cancer, Lyon, France; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Koichiro Sumi
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; International Agency for Research on Cancer, Lyon, France; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Markus J Mäkinen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; International Agency for Research on Cancer, Lyon, France; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Ji Eun Oh
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; International Agency for Research on Cancer, Lyon, France; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Riitta Herva
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; International Agency for Research on Cancer, Lyon, France; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Paul Kleihues
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; International Agency for Research on Cancer, Lyon, France; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Hiroko Ohgaki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; International Agency for Research on Cancer, Lyon, France; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; International Agency for Research on Cancer, Lyon, France; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio). PLoS One 2015; 10:e0145801. [PMID: 26713440 PMCID: PMC4700982 DOI: 10.1371/journal.pone.0145801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023] Open
Abstract
Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio) in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5) and to other genes related to memory formation (btg2, npas4b), which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics.
Collapse
|
16
|
Oh JE, Ohta T, Satomi K, Foll M, Durand G, McKay J, Le Calvez-Kelm F, Mittelbronn M, Brokinkel B, Paulus W, Ohgaki H. Alterations in the NF2/LATS1/LATS2/YAP Pathway in Schwannomas. J Neuropathol Exp Neurol 2015; 74:952-9. [PMID: 26360373 DOI: 10.1097/nen.0000000000000238] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Schwannomas are benign nerve sheath tumors composed of well-differentiated Schwann cells. Other than frequent NF2 (neurofibromatosis type 2) mutations (50%-60%), their molecular pathogenesis is not fully understood. LATS1 and LATS2 are downstream molecules of NF2 and are negative regulators of the yes-associated protein (YAP) oncogene in the Hippo signaling pathway. We assessed mutations of the NF2, LATS1, and LATS2 genes, promoter methylation of LATS1 and LATS2, and expression of YAP and phosphorylated YAP in 82 cases of sporadic schwannomas. Targeted sequencing using the Ion Torrent Proton instrument revealed NF2 mutations in 45 cases (55%), LATS1 mutations in 2 cases (2%), and LATS2 mutations in 1 case (1%) of schwannoma. Methylation-specific polymerase chain reaction showed promoter methylation of LATS1 and LATS2 in 14 cases (17%) and 25 cases (30%), respectively. Overall, 62 cases (76%) had at least 1 alteration in the NF2, LATS1, and/or LATS2 genes. Immunohistochemistry revealed nuclear YAP expression in 18 of 42 cases of schwannoma (43%) and reduced cytoplasmic phosphorylated YAP expression in 15 of 49 cases of schwannoma (31%), all of which had at least 1 alteration in the NF2, LATS1, and/or LATS2 genes. These results suggest that an abnormal Hippo signaling pathway is involved in the pathogenesis of most sporadic schwannomas.
Collapse
Affiliation(s)
- Ji-Eun Oh
- From the International Agency for Research on Cancer, Lyon, France (JEO, TO, KS, MF, GD, JM, FCK, HO); Institute of Neurology (Edinger Institute), Goethe-University Frankfurt, Frankfurt/Main, Germany (MM); and Department of Neurosurgery (BB) and Institute of Neuropathology (WP), University Hospital Munster, Munster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Karsy M, Guan J, Sivakumar W, Neil JA, Schmidt MH, Mahan MA. The genetic basis of intradural spinal tumors and its impact on clinical treatment. Neurosurg Focus 2015; 39:E3. [DOI: 10.3171/2015.5.focus15143] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic alterations in the cells of intradural spinal tumors can have a significant impact on the treatment options, counseling, and prognosis for patients. Although surgery is the primary therapy for most intradural tumors, radiochemothera-peutic modalities and targeted interventions play an ever-evolving role in treating aggressive cancers and in addressing cancer recurrence in long-term survivors. Recent studies have helped delineate specific genetic and molecular differences between intradural spinal tumors and their intracranial counterparts and have also identified significant variation in therapeutic effects on these tumors. This review discusses the genetic and molecular alterations in the most common intradural spinal tumors in both adult and pediatrie patients, including nerve sheath tumors (that is, neurofibroma and schwannoma), meningioma, ependymoma, astrocytoma (that is, low-grade glioma, anaplastic astrocytoma, and glioblastoma), hemangioblastoma, and medulloblastoma. It also examines the genetics of metastatic tumors to the spinal cord, arising either from the CNS or from systemic sources. Importantly, the impact of this knowledge on therapeutic options and its application to clinical practice are discussed.
Collapse
|