1
|
Giovannini D, Antonelli F, Casciati A, De Angelis C, Denise Astorino M, Bazzano G, Fratini E, Ampollini A, Vadrucci M, Cisbani E, Nenzi P, Picardi L, Saran A, Marino C, Mancuso M, Ronsivalle C, Pazzaglia S. Comparing the effects of irradiation with protons or photons on neonatal mouse brain: Apoptosis, oncogenesis and hippocampal alterations. Radiother Oncol 2024; 195:110267. [PMID: 38614282 DOI: 10.1016/j.radonc.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND PURPOSE Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.
Collapse
Affiliation(s)
- Daniela Giovannini
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Francesca Antonelli
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Arianna Casciati
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | | | - Maria Denise Astorino
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Giulia Bazzano
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Emiliano Fratini
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Alessandro Ampollini
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Monia Vadrucci
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy; Italian Space Agency, Science and Research Directorate, Via del Politecnico 00133, Rome, Italy
| | | | - Paolo Nenzi
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Luigi Picardi
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Anna Saran
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Carmela Marino
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Mariateresa Mancuso
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Concetta Ronsivalle
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Simonetta Pazzaglia
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy.
| |
Collapse
|
2
|
Vigneux G, Laframboise T, Tharmalingam S, Thome C. Phenotypic and transcriptional changes in lens epithelial cells following acute and fractionated ionizing radiation exposure. Int J Radiat Biol 2024; 100:573-583. [PMID: 38289679 DOI: 10.1080/09553002.2023.2295965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Exposure to ionizing radiation is one of the known risk factors for the development of lens opacities. It is believed that radiation interactions with lens epithelial cells (LEC) are the underlying cause of cataract development, however, the exact mechanisms have yet to be identified. The aim of this study was to investigate how different radiation dose and fractionation impact normal LEC function. MATERIALS AND METHODS A human derived LEC cell line (HLE-B3) was exposed to a single acute x-ray dose (0.25 Gy) and 6 fractionated doses (total dose of 0.05, 0.1, 0.25, 0.5, 1, and 2 Gy divided over 5 equal fractions). LEC were examined for proliferation using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and migration using a Boyden chamber assay at various time points (0.25, 0.5, 1, 2, 4, 7, 9, 11, and 14 d) post-irradiation. Transcriptomic analysis through RNA sequencing was also performed to identify differentially expressed genes and regulatory networks in cells following 4 different acute exposures and 1 fractionated exposure. RESULTS Exposure to an acute dose of 0.25 Gy significantly increased proliferation and migration rates, peaking at 7 d post irradiation (20% and 240% greater than controls, respectively), before returning to baseline levels by day 14. Fractionated exposures had minimal effects up to a dose of 0.5 Gy, but significantly reduced proliferation and migration after 1 and 2 Gy by up to 50%. The largest transcriptional response occurred 12 h after an acute 0.25 Gy dose, with 362 genes up-regulated and 288 genes down-regulated. A unique panel of differentially expressed genes was observed between moderate versus high dose exposures, suggesting a dose-dependent transcriptional response in LEC that is more pronounced at lower doses. Gene ontology and upstream regulator analysis identified multiple biological processes and molecular functions implicated in the radiation response, in particular differentiation, motility, receptor/ligand binding, cell signaling and epithelial-mesenchymal cell transition. CONCLUSIONS Overall, this research provides novel insights into the dose and fractionation effects on functional changes and transcriptional regulatory networks in LEC, furthering our understanding of the mechanisms behind radiation induced cataracts.
Collapse
Affiliation(s)
- Graysen Vigneux
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada
| | - Taylor Laframboise
- School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Sujeenthar Tharmalingam
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada
- School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
- Northern Ontario School of Medicine (NOSM) University, Sudbury, Ontario, Canada
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Christopher Thome
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada
- School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
- Northern Ontario School of Medicine (NOSM) University, Sudbury, Ontario, Canada
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| |
Collapse
|
3
|
Abstract
PURPOSE Cataract (opacification of the ocular lens) is a typical tissue reaction (deterministic effect) following ionizing radiation exposure, for which prevention dose limits have been recommended in the radiation protection system. Manifestations of radiation cataracts can vary among individuals, but such potential individual responses remain uncharacterized. Here we review relevant literature and discuss implications for radiation protection. This review assesses evidence for significant modification of radiation-induced cataractogenesis by age at exposure, sex and genetic factors based on current scientific literature. CONCLUSIONS In addition to obvious physical factors (e.g. dose, dose rate, radiation quality, irradiation volume), potential factors modifying individual responses for radiation cataracts include sex, age and genetics, with comorbidity and coexposures also having important roles. There are indications and preliminary data identifying such potential modifiers of radiation cataract incidence or risk, although no firm conclusions can yet be drawn. Further studies and a consensus on the evidence are needed to gain deeper insights into factors determining individual responses regarding radiation cataracts and the implications for radiation protection.
Collapse
Affiliation(s)
- Stephen G R Barnard
- UK Health Security Agency (UKHSA), Radiation, Chemical and Environmental Hazards Division (RCEHD), Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
4
|
Young TL, Whisenhunt KN, LaMartina SM, Hewitt AW, Mackey DA, Tompson SW. Sonic Hedgehog Intron Variant Associated With an Unusual Pediatric Cortical Cataract. Invest Ophthalmol Vis Sci 2022; 63:25. [PMID: 35749127 PMCID: PMC9234370 DOI: 10.1167/iovs.63.6.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify the genetic basis of an unusual pediatric cortical cataract demonstrating autosomal dominant inheritance in a large European–Australian pedigree. Methods DNA from four affected individuals were exome sequenced utilizing a NimbleGen SeqCap EZ Exome V3 kit and HiSeq 2500. DNA from 12 affected and four unaffected individuals were genotyped using Human OmniExpress-24 BeadChips. Multipoint linkage and haplotyping were performed (Superlink-Online SNP). DNA from one affected individual and his unaffected father were whole-genome sequenced on a HiSeq X Ten system. Rare small insertions/deletions and single-nucleotide variants (SNVs) were identified in the disease-linked region (Golden Helix SVS). Combined Annotation Dependent Depletion (CADD) analysis predicted variant deleteriousness. Putative enhancer function and variant effects were determined using the Dual-Glo Luciferase Assay system. Results Linkage mapping identified a 6.23-centimorgan support interval at chromosome 7q36. A co-segregating haplotype refined the critical region to 6.03 Mbp containing 21 protein-coding genes. Whole-genome sequencing uncovered 114 noncoding variants from which CADD predicted one was highly deleterious, a novel substitution within intron-1 of the sonic hedgehog signaling molecule (SHH) gene. ENCODE data suggested this site was a putative enhancer, subsequently confirmed by luciferase reporter assays with variant-associated gene overexpression. Conclusions In a large pedigree, we have identified a SHH intron variant that co-segregates with an unusual pediatric cortical cataract phenotype. SHH is important for lens formation, and mutations in its receptor (PTCH1) cause syndromic cataract. Our data implicate increased function of an enhancer important for SHH expression primarily within developing eye tissues.
Collapse
Affiliation(s)
- Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kristina N Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sarah M LaMartina
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Eye Department, Royal Hobart Hospital, University of Tasmania, Hobart, Tasmania, Australia
| | - David A Mackey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Eye Department, Royal Hobart Hospital, University of Tasmania, Hobart, Tasmania, Australia
| | - Stuart W Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
5
|
Little MP, Brenner AV, Grant EJ, Sugiyama H, Preston DL, Sakata R, Cologne J, Velazquez-Kronen R, Utada M, Mabuchi K, Ozasa K, Olson JD, Dugan GO, Pazzaglia S, Cline JM, Applegate KE. Age effects on radiation response: summary of a recent symposium and future perspectives. Int J Radiat Biol 2022; 98:1673-1683. [PMID: 35394411 PMCID: PMC9626395 DOI: 10.1080/09553002.2022.2063962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
One of the principal uncertainties when estimating population risk of late effects from epidemiological data is that few radiation-exposed cohorts have been followed up to extinction. Therefore, the relative risk model has often been used to estimate radiation-associated risk and to extrapolate risk to the end of life. Epidemiological studies provide evidence that children are generally at higher risk of cancer induction than adults for a given radiation dose. However, the strength of evidence varies by cancer site and questions remain about site-specific age at exposure patterns. For solid cancers, there is a large body of evidence that excess relative risk (ERR) diminishes with increasing age at exposure. This pattern of risk is observed in the Life Span Study (LSS) as well as in other radiation-exposed populations for overall solid cancer incidence and mortality and for most site-specific solid cancers. However, there are some disparities by endpoint in the degree of variation of ERR with exposure age, with some sites (e.g., colon, lung) in the LSS incidence data showing no variation, or even increasing ERR with increasing age at exposure. The pattern of variation of excess absolute risk (EAR) with age at exposure is often similar, with EAR for solid cancers or solid cancer mortality decreasing with increasing age at exposure in the LSS. We shall review the human data from the Japanese LSS cohort, and a variety of other epidemiological data sets, including a review of types of medical diagnostic exposures, also some radiobiological animal data, all bearing on the issue of variations of radiation late-effects risk with age at exposure and with attained age. The paper includes a summary of several oral presentations given in a Symposium on "Age effects on radiation response" as part of the 67th Annual Meeting of the Radiation Research Society, held virtually on 3-6 October 2021.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric J. Grant
- Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | - Ritsu Sakata
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John Cologne
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Raquel Velazquez-Kronen
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Mai Utada
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kotaro Ozasa
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John D. Olson
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory O. Dugan
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - J. Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
6
|
De Stefano I, Leonardi S, Casciati A, Pasquali E, Giardullo P, Antonelli F, Novelli F, Babini G, Tanori M, Tanno B, Saran A, Mancusoa M, Pazzaglia S. Contribution of Genetic Background to the Radiation Risk for Cancer and Non-Cancer Diseases in Ptch1+/- Mice. Radiat Res 2022; 197:43-56. [PMID: 33857285 DOI: 10.1667/rade-20-00247.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
Experimental mouse studies are important to gain a comprehensive, quantitative and mechanistic understanding of the biological factors that modify individual risk of radiation-induced health effects, including age at exposure, dose, dose rate, organ/tissue specificity and genetic factors. In this study, neonatal Ptch1+/- mice bred on CD1 and C57Bl/6 background received whole-body irradiation at postnatal day 2. This time point represents a critical phase in the development of the eye lens, cerebellum and dentate gyrus (DG), when they are also particularly susceptible to radiation effects. Irradiation was performed with γ rays (60Co) at doses of 0.5, 1 and 2 Gy, delivered at 0.3 Gy/min or 0.063 Gy/min. Wild-type and mutant mice were monitored for survival, lens opacity, medulloblastoma (MB) and neurogenesis defects. We identified an inverse genetic background-driven relationship between the radiosensitivity to induction of lens opacity and MB and that to neurogenesis deficit in Ptch1+/- mutants. In fact, high incidence of radiation-induced cataract and MB were observed in Ptch1+/-/CD1 mutants that instead showed no consequence of radiation exposure on neurogenesis. On the contrary, no induction of radiogenic cataract and MB was reported in Ptch1+/-/C57Bl/6 mice that were instead susceptible to induction of neurogenesis defects. Compared to Ptch1+/-/CD1, the cerebellum of Ptch1+/-/C57Bl/6 mice showed increased radiosensitivity to apoptosis, suggesting that differences in processing radiation-induced DNA damage may underlie the opposite strain-related radiosensitivity to cancer and non-cancer pathologies. Altogether, our results showed lack of dose-rate-related effects and marked influence of genetic background on the radiosensitivity of Ptch1+/-mice, supporting a major contribution of individual sensitivity to radiation risk in the population.
Collapse
Affiliation(s)
- I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancusoa
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
7
|
Tanno B, Babini G, Leonardi S, De Stefano I, Merla C, Novelli F, Antonelli F, Casciati A, Tanori M, Pasquali E, Giardullo P, Pazzaglia S, Mancuso M. miRNA-Signature of Irradiated Ptch1+/- Mouse Lens is Dependent on Genetic Background. Radiat Res 2022; 197:22-35. [PMID: 33857324 DOI: 10.1667/rade-20-00245.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
One harmful long-term effect of ionizing radiation is cataract development. Recent studies have been focused on elucidating the mechanistic pathways involved in this pathogenesis. Since accumulating evidence has established a role of microRNAs in ocular diseases, including cataract, the goal of this work was to determine the microRNA signature of the mouse lens, at short time periods postirradiation, to understand the mechanisms related to radio-induced cataractogenesis. To evaluate the differences in the microRNA profiles, 10-week-old Patched1 heterozygous (Ptch1+/-) mice, bred onto two different genetic backgrounds (CD1 and C57Bl/6J), received whole-body 2 Gy γ-ray irradiation, and 24 h later lenses were collected. Next-generation sequencing and bioinformatics analysis revealed that genetic background markedly influenced the list of the deregulated microRNAs and the mainly predicted perturbed biological functions of 2 Gy irradiated Ptch1+/- mouse lenses. We identified a subset of microRNAs with a contra-regulated expression between strains, with a key role in regulating Toll-like receptor (TLR)-signaling pathways. Furthermore, a detailed analysis of miRNome data showed a completely different DNA damage response in mouse lenses 24 h postirradiation, mainly mediated by a marked upregulation of p53 signaling in Ptch1+/-/C57Bl/6J lenses that was not detected on a CD1 background. We propose a strict interplay between p53 and TLR signaling in Ptch1+/-/C57Bl/6J lenses shortly after irradiation that could explain both the resistance of this strain to developing lens opacities and the susceptibility of CD1 background to radiation-induced cataractogenesis through activation of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - C Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
8
|
Antonelli F, Casciati A, Belles M, Serra N, Linares-Vidal MV, Marino C, Mancuso M, Pazzaglia S. Long-Term Effects of Ionizing Radiation on the Hippocampus: Linking Effects of the Sonic Hedgehog Pathway Activation with Radiation Response. Int J Mol Sci 2021; 22:ijms222212605. [PMID: 34830484 PMCID: PMC8624704 DOI: 10.3390/ijms222212605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy represents one of the primary treatment modalities for primary and metastatic brain tumors. Although recent advances in radiation techniques, that allow the delivery of higher radiation doses to the target volume, reduce the toxicity to normal tissues, long-term neurocognitive decline is still a detrimental factor significantly affecting quality of life, particularly in pediatric patients. This imposes the need for the development of prevention strategies. Based on recent evidence, showing that manipulation of the Shh pathway carries therapeutic potential for brain repair and functional recovery after injury, here we evaluate how radiation-induced hippocampal alterations are modulated by the constitutive activation of the Shh signaling pathway in Patched 1 heterozygous mice (Ptch1+/-). Our results show, for the first time, an overall protective effect of constitutive Shh pathway activation on hippocampal radiation injury. This activation, through modulation of the proneural gene network, leads to a long-term reduction of hippocampal deficits in the stem cell and new neuron compartments and to the mitigation of radio-induced astrogliosis, despite some behavioral alterations still being detected in Ptch1+/- mice. A better understanding of the pathogenic mechanisms responsible for the neural decline following irradiation is essential for identifying prevention measures to contain the harmful consequences of irradiation. Our data have important translational implications as they suggest a role for Shh pathway manipulation to provide the therapeutic possibility of improving brain repair and functional recovery after radio-induced injury.
Collapse
Affiliation(s)
- Francesca Antonelli
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
- Correspondence: (F.A.); (S.P.)
| | - Arianna Casciati
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Montserrat Belles
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Noemi Serra
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Maria Victoria Linares-Vidal
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Carmela Marino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Simonetta Pazzaglia
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
- Correspondence: (F.A.); (S.P.)
| |
Collapse
|
9
|
Ainsbury EA, Barnard SGR. Sensitivity and latency of ionising radiation-induced cataract. Exp Eye Res 2021; 212:108772. [PMID: 34562436 DOI: 10.1016/j.exer.2021.108772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023]
Abstract
When managed with appropriate radiation protection procedures, ionising radiation is of great benefit to society. Opacification of the lens, and vision impairing cataract, have recently been recognised at potential effects of relatively low dose radiation exposure, on the order of 1 Gy or below. Within the last 10 years, understanding of the effects of low dose ionising radiation on the lens has increased, particularly in terms of DNA damage and responses, and how multiple radiation or other events in the lens might contribute to the overall risk of cataract. However, gaps remain, not least in the understanding of how radiation interacts with other risk factors such as aging, as well as the relative radiosensitivity of the lens compared to tissues of the body. This paper reviews the current literature in the field of low dose radiation cataract, with a particular focus on sensitivity and latency.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| | - Stephen G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| |
Collapse
|
10
|
McCarron RA, Barnard SGR, Babini G, Dalke C, Graw J, Leonardi S, Mancuso M, Moquet JE, Pawliczek D, Pazzaglia S, De Stefano I, Ainsbury EA. Radiation-Induced Lens Opacity and Cataractogenesis: A Lifetime Study Using Mice of Varying Genetic Backgrounds. Radiat Res 2021; 197:57-66. [PMID: 33984859 DOI: 10.1667/rade-20-00266.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Recent epidemiological findings and reanalysis of historical data suggest lens opacities resulting from ionizing radiation exposures are likely induced at lower doses than previously thought. These observations have led to ICRP recommendations for a reduction in the occupational dose limits for the eye lens, as well as subsequent implementation in EU member states. The EU CONCERT LDLensRad project was initiated to further understand the effects of ionizing radiation on the lens and identify the mechanism(s) involved in radiation-induced cataract, as well as the impact of dose and dose-rate. Here, we present the results of a long-term study of changes to lens opacity in male and female adult mice from a variety of different genetic (radiosensitive or radioresistant) backgrounds, including mutant strains Ercc2 and Ptch1, which were assumed to be susceptible to radiation-induced lens opacities. Mice received 0.5, 1 and 2 Gy 60Co gamma-ray irradiation at dose rates of 0.063 and 0.3 Gy min-1. Scheimpflug imaging was used to quantify lens opacification as an early indicator of cataract, with monthly observations taken postirradiation for an 18-month period in all strains apart from 129S2, which were observed for 12 months. Opacification of the lens was found to increase with time postirradiation (with age) for most mouse models, with ionizing radiation exposure increasing opacities further. Sex, dose, dose rate and genetic background were all found to be significant contributors to opacification; however, significant interactions were identified, which meant that the impact of these factors was strain dependent. Mean lens density increased with higher dose and dose rate in the presence of Ercc2 and Ptch1 mutations. This project was the first to focus on low (<1 Gy) dose, multiple dose rate, sex and strain effects in lens opacification, and clearly demonstrates the importance of these experimental factors in radiobiological investigations on the lens. The results provide insight into the effects of ionizing radiation on the lens as well as the need for further work in this area to underpin appropriate radiation protection legislation and guidance.
Collapse
Affiliation(s)
- R A McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - S G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom.,Durham University, School of Biosciences, Durham, United Kingdom
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy.,Department of Woman and Child Health, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - C Dalke
- Helmholtz Zentrum München GmbH, German Research Centre for Environmental Health, Neuherberg, Germany
| | - J Graw
- Helmholtz Zentrum München GmbH, German Research Centre for Environmental Health, Neuherberg, Germany
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - J E Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - D Pawliczek
- Helmholtz Zentrum München GmbH, German Research Centre for Environmental Health, Neuherberg, Germany
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| |
Collapse
|
11
|
Barnard SGR, McCarron R, Mancuso M, De Stefano I, Pazzaglia S, Pawliczek D, Dalke C, Ainsbury EA. Radiation-induced DNA Damage and Repair in Lens Epithelial Cells of both Ptch1(+/-) and Ercc2(+/-) Mutated Mice. Radiat Res 2021; 197:36-42. [PMID: 33652474 DOI: 10.1667/rade-20-00264.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 11/03/2022]
Abstract
Epidemiological studies suggest an increased incidence and risk of cataract after low-dose (<2 Gy) ionizing radiation exposures. However, the biological mechanism(s) of this process are not fully understood. DNA damage and repair are thought to have a contributing role in radiation-induced cataractogenesis. Recently we have reported an inverse dose-rate effect, as well as the low-dose response, of DNA damage and repair in lens epithelial cells (LECs). Here, we present further initial findings from two mutated strains (Ercc2+/- and Ptch1+/-) of mice, both reportedly susceptible to radiation-induced cataract, and their DNA damage and repair response to low-dose and low-dose-rate gamma rays. Our results support the hypothesis that the lens epithelium responds differently to radiation than other tissues, with reported radiation susceptibility to DNA damage not necessarily translating to the LECs. Genetic predisposition and strain(s) of mice have a significant role in radiation-induced cataract susceptibility.
Collapse
Affiliation(s)
- S G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, United Kingdom.,Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - R McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, United Kingdom
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - D Pawliczek
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - C Dalke
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - E A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, United Kingdom
| |
Collapse
|
12
|
Pawliczek D, Fuchs H, Gailus-Durner V, de Angelis MH, Quinlan R, Graw J, Dalke C. On the Nature of Murine Radiation-Induced Subcapsular Cataracts: Optical Coherence Tomography-Based Fine Classification, In Vivo Dynamics and Impact on Visual Acuity. Radiat Res 2021; 197:7-21. [PMID: 33631790 DOI: 10.1667/rade-20-00163.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation is widely known to induce various kinds of lens cataracts, of which posterior subcapsular cataracts (PSCs) have the highest prevalence. Despite some studies regarding the epidemiology and biology of radiation-induced PSCs, the mechanism underscoring the formation of this type of lesions and their dose dependency remain uncertain. Within the current study, our team investigated the in vivo characteristics of PSCs in B6C3F1 mice (F1-hybrids of BL6 × C3H) that received 0.5-2 Gy γ-ray irradiation after postnatal day 70. For purposes of assessing lenticular damages, spectral domain optical coherence tomography was utilized, and the visual acuity of the mice was measured to analyze their levels of visual impairment, and histological sections were then prepared in to characterize in vivo phenotypes. Three varying in vivo phenotype anterior and posterior lesions were thus revealed and correlated with the applied doses to understand their marginal influence on the visual acuity of the studied mice. Histological data indicated no significantly increased odds ratios for PSCs below a dose of 1 Gy at the end of the observation time. Furthermore, our team demonstrated that when the frequencies of the posterior and anterior lesions were calculated at early time points, their responses were in accordance with a deterministic model, whereas at later time points, their responses were better described via a stochastic model. The current study will aid in honing the current understanding of radiation-induced cataract formation and contributes greatly to addressing the fundamental questions of lens dose response within the field of radiation biology.
Collapse
Affiliation(s)
- Daniel Pawliczek
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabê de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZB), Neuherberg, Germany
| | - Roy Quinlan
- Department of Biosciences, School of Biological and Medical Sciences, University of Durham, Durham, United Kingdom
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
13
|
Pawliczek D, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Graw J, Dalke C. Ionising radiation causes vision impairment in neonatal B6C3F1 mice. Exp Eye Res 2021; 204:108432. [PMID: 33454312 DOI: 10.1016/j.exer.2020.108432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Ionising radiation interacts with lenses and retinae differently. In human lenses, posterior subcapsular cataracts are the predominant observation, whereas retinae of adults are comparably resistant to even relatively high doses. In this study, we demonstrate the effects of 2 Gy of low linear energy transfer ionising radiation on eyes of B6C3F1 mice aged postnatal day 2. Optical coherence tomography and Scheimpflug imaging were utilised for the first time to monitor murine lenses and retinae in vivo. The visual acuity of the mice was determined and histological analysis was conducted. Our results demonstrated that visual acuity was reduced by as much as 50 % approximately 9 months after irradiation in irradiated mice. Vision impairment was caused by retinal atrophy and inner cortical cataracts. These results help to further our understanding of the risk of ionising radiation for human foeti (∼ 8 mo), which follow the same eye development stages as neonatal mice.
Collapse
Affiliation(s)
- Daniel Pawliczek
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Helmut Fuchs
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany; German Center for Diabetes Research (DZB), Neuherberg, Germany
| | - Jochen Graw
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Claudia Dalke
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.
| |
Collapse
|
14
|
Hamada N, Azizova TV, Little MP. An update on effects of ionizing radiation exposure on the eye. Br J Radiol 2020; 93:20190829. [PMID: 31670577 PMCID: PMC8519632 DOI: 10.1259/bjr.20190829] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
The International Commission on Radiological Protection (ICRP) has considered for over 60 years that the lens of the eye is among the most radiosensitive tissues, and has recommended dose limits for the lens to prevent occurrence of vision impairing cataracts (VICs). Epidemiological evidence that doses much lower than previously thought produce cataracts led ICRP to recommend reducing dose threshold for VICs and reducing an occupational equivalent dose limit for the lens in 2011, when only a single threshold of 0.5 Gy was recommended. On the basis of epidemiological evidence, ICRP assumed progression of minor opacities into VICs and no dose rate effect. This contrasts with previously recommended separate thresholds for minor opacities and VICs, and for different exposure scenarios. Progression was assumed based on similar risks of cataracts and cataract surgery in Japanese atomic bomb survivors. The absence of dose rate effect derived from the observed similar thresholds for protracted exposures in Chernobyl cleanup workers and in atomic bomb survivors. Since 2011, there has been an increasing body of epidemiological evidence relating to cataracts and other ocular diseases (i.e. glaucoma and macular degeneration), particularly at low doses and low dose rates. This review paper gives an overview of the scientific basis of the 2011 ICRP recommendation, discusses the plausibility of these two assumptions in the light of emerging scientific evidence, and considers the radiosensitivity of the lens among ocular structures.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Tamara V. Azizova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, 456780, Ozersk, Russia
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, MSC 9778, Bethesda, MD 20892-9778, USA
| |
Collapse
|
15
|
Barnard SGR, McCarron R, Moquet J, Quinlan R, Ainsbury E. Inverse dose-rate effect of ionising radiation on residual 53BP1 foci in the eye lens. Sci Rep 2019; 9:10418. [PMID: 31320710 PMCID: PMC6639373 DOI: 10.1038/s41598-019-46893-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
The influence of dose rate on radiation cataractogenesis has yet to be extensively studied. One recent epidemiological investigation suggested that protracted radiation exposure increases radiation-induced cataract risk: cumulative doses of radiation mostly <100 mGy received by US radiologic technologists over 5 years were associated with an increased excess hazard ratio for cataract development. However, there are few mechanistic studies to support and explain such observations. Low-dose radiation-induced DNA damage in the epithelial cells of the eye lens (LECs) has been proposed as a possible contributor to cataract formation and thus visual impairment. Here, 53BP1 foci was used as a marker of DNA damage. Unexpectedly, the number of 53BP1 foci that persisted in the mouse lens samples after γ-radiation exposure increased with decreasing dose-rate at 4 and 24 h. The C57BL/6 mice were exposed to 0.5, 1 and 2 Gy ƴ-radiation at 0.063 and 0.3 Gy/min and also 0.5 Gy at 0.014 Gy/min. This contrasts the data we obtained for peripheral blood lymphocytes collected from the same animal groups, which showed the expected reduction of residual 53BP1 foci with reducing dose-rate. These findings highlight the likely importance of dose-rate in low-dose cataract formation and, furthermore, represent the first evidence that LECs process radiation damage differently to blood lymphocytes.
Collapse
Affiliation(s)
- Stephen G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK.
- Durham University, Department of Biosciences, Durham, UK.
| | - Roisin McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| | - Roy Quinlan
- Durham University, Department of Biosciences, Durham, UK.
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| |
Collapse
|
16
|
Barnard SGR, Moquet J, Lloyd S, Ellender M, Ainsbury EA, Quinlan RA. Dotting the eyes: mouse strain dependency of the lens epithelium to low dose radiation-induced DNA damage. Int J Radiat Biol 2018; 94:1116-1124. [PMID: 30359158 DOI: 10.1080/09553002.2018.1532609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Epidemiological evidence regarding the radiosensitivity of the lens of the eye and radiation cataract development has led to changes in the EU Basic Safety Standards for protection of the lens against ionizing radiation. However, mechanistic details of lens radiation response pathways and their significance for cataractogenesis remain unclear. Radiation-induced DNA damage and the potential impairment of repair pathways within the lens epithelium, a cell monolayer that covers the anterior hemisphere of the lens, are likely to be involved. MATERIALS AND METHODS In this work, the lens epithelium has been analyzed for its DNA double-strand break (DSB) repair response to ionizing radiation. The responses of epithelial cells located at the anterior pole (central region) have been compared to at the very periphery of the monolayer (germinative and transitional zones). Described here are the different responses in the two regions and across four strains (C57BL/6, 129S2, BALB/c and CBA/Ca) over a low dose (0-25 mGy) in-vivo whole body X-irradiation range up to 24 hours post exposure. RESULTS DNA damage and repair as visualized through 53BP1 staining was present across the lens epithelium, although repair kinetics appeared non-uniform. Epithelial cells in the central region have significantly more 53BP1 foci. The sensitivities of different mouse strains have also been compared. CONCLUSIONS 129S2 and BALB/c showed higher levels of DNA damage, with BALB/c showing significantly less inter-individual variability and appearing to be a more robust model for future DNA damage and repair studies. As a result of this study, BALB/c was identified as a suitable radiosensitive lens strain to detect and quantify early low dose ionizing radiation DNA damage effects in the mouse eye lens specifically, as an indicator of cataract formation.
Collapse
Affiliation(s)
- S G R Barnard
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,b Department of Biosciences , Durham University , Durham , UK
| | - J Moquet
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - S Lloyd
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,c School of Biosciences , The University of Birmingham , Edgbaston , UK
| | - M Ellender
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - E A Ainsbury
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - R A Quinlan
- b Department of Biosciences , Durham University , Durham , UK
| |
Collapse
|
17
|
Vulin A, Sedkaoui M, Moratille S, Sevenet N, Soularue P, Rigaud O, Guibbal L, Dulong J, Jeggo P, Deleuze JF, Lamartine J, Martin MT. Severe PATCHED1 Deficiency in Cancer-Prone Gorlin Patient Cells Results in Intrinsic Radiosensitivity. Int J Radiat Oncol Biol Phys 2018; 102:417-425. [PMID: 30191873 DOI: 10.1016/j.ijrobp.2018.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/30/2018] [Accepted: 05/20/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Gorlin syndrome (or basal-cell nevus syndrome) is a cancer-prone genetic disease in which hypersusceptibility to secondary cancer and tissue reaction after radiation therapy is debated, as is increased radiosensitivity at cellular level. Gorlin syndrome results from heterozygous mutations in the PTCH1 gene for 60% of patients, and we therefore aimed to highlight correlations between intrinsic radiosensitivity and PTCH1 gene expression in fibroblasts from adult patients with Gorlin syndrome. METHODS AND MATERIALS The radiosensitivity of fibroblasts from 6 patients with Gorlin syndrome was determined by cell-survival assay after high (0.5-3.5 Gy) and low (50-250 mGy) γ-ray doses. PTCH1 and DNA damage response gene expression was characterized by real-time polymerase chain reaction and Western blotting. DNA damage and repair were investigated by γH2AX and 53BP1 foci assay. PTCH1 knockdown was performed in cells from healthy donors by using stable RNA interference. Gorlin cells were genotyped by 2 complementary sequencing methods. RESULTS Only cells from patients with Gorlin syndrome who presented severe deficiency in PATCHED1 protein exhibited a significant increase in cellular radiosensitivity, affecting cell responses to both high and low radiation doses. For 2 of the radiosensitive cell strains, heterozygous mutations in the 5' end of PTCH1 gene explain PATCHED1 protein deficiency. In all sensitive cells, DNA damage response pathways (ATM, CHK2, and P53 levels and activation by phosphorylation) were deregulated after irradiation, whereas DSB repair recognition was unimpaired. Furthermore, normal cells with RNA interference-mediated PTCH1 deficiency showed reduced survival after irradiation, directly linking this gene to high- and low-dose radiosensitivity. CONCLUSIONS In the present study, we show an inverse correlation between PTCH1 expression level and cellular radiosensitivity, suggesting an explanation for the conflicting results previously reported for Gorlin syndrome and possibly providing a basis for prognostic screens for radiosensitive patients with Gorlin syndrome and PTCH1 mutations.
Collapse
Affiliation(s)
- Adeline Vulin
- Laboratory of Genomics and Radiobiology of Keratinopoiesis, CEA, DRF/IFJ/iRCM, INSERM/UMR967, Université Paris-Diderot, Université Paris-Saclay, Evry, France
| | - Melissa Sedkaoui
- Laboratory of Genomics and Radiobiology of Keratinopoiesis, CEA, DRF/IFJ/iRCM, INSERM/UMR967, Université Paris-Diderot, Université Paris-Saclay, Evry, France
| | - Sandra Moratille
- Laboratory of Genomics and Radiobiology of Keratinopoiesis, CEA, DRF/IFJ/iRCM, INSERM/UMR967, Université Paris-Diderot, Université Paris-Saclay, Evry, France
| | - Nicolas Sevenet
- Molecular Genetics Laboratory, Institut Bergonié/INSERM U1218, Université de Bordeaux, Bordeaux cedex, France
| | - Pascal Soularue
- Laboratory of Genomics and Radiobiology of Keratinopoiesis, CEA, DRF/IFJ/iRCM, INSERM/UMR967, Université Paris-Diderot, Université Paris-Saclay, Evry, France
| | - Odile Rigaud
- Laboratory of Genomics and Radiobiology of Keratinopoiesis, CEA, DRF/IFJ/iRCM, INSERM/UMR967, Université Paris-Diderot, Université Paris-Saclay, Evry, France
| | - Laure Guibbal
- Laboratory of Genomics and Radiobiology of Keratinopoiesis, CEA, DRF/IFJ/iRCM, INSERM/UMR967, Université Paris-Diderot, Université Paris-Saclay, Evry, France
| | - Joshua Dulong
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS - Université Lyon I, Lyon Cedex 07, France
| | - Penny Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | | | - Jérôme Lamartine
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS - Université Lyon I, Lyon Cedex 07, France
| | - Michèle T Martin
- Laboratory of Genomics and Radiobiology of Keratinopoiesis, CEA, DRF/IFJ/iRCM, INSERM/UMR967, Université Paris-Diderot, Université Paris-Saclay, Evry, France.
| |
Collapse
|
18
|
Yun KL, Wang ZY. Target/signalling pathways of natural plant-derived radioprotective agents from treatment to potential candidates: A reverse thought on anti-tumour drugs. Biomed Pharmacother 2017; 91:1122-1151. [DOI: 10.1016/j.biopha.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
|
19
|
Hamada N. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence. Int J Radiat Biol 2016; 93:1024-1034. [DOI: 10.1080/09553002.2016.1266407] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
20
|
Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, Kadhim M, Hamada N. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:238-261. [DOI: 10.1016/j.mrrev.2016.07.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
|
21
|
Individual response to ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:369-386. [PMID: 27919342 DOI: 10.1016/j.mrrev.2016.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
The human response to ionizing radiation (IR) varies among individuals. The first evidence of the individual response to IR was reported in the beginning of the 20th century. Considering nearly one century of observations, we here propose three aspects of individual IR response: radiosensitivity for early or late adverse tissue events after radiotherapy on normal tissues (non-cancer effects attributable to cell death); radiosusceptibility for IR-induced cancers; and radiodegeneration for non-cancer effects that are often attributable to mechanisms other than cell death (e.g., cataracts and circulatory disease). All the molecular and cellular mechanisms behind IR-induced individual effects are not fully elucidated. However, some specific assays may help their quantification according to the dose and to the genetic status. Accumulated data on individual factors have suggested that the individual IR response cannot be ignored and raises some clinical and societal issues. The individual IR response therefore needs to be taken into account to better evaluate the risks related to IR exposure.
Collapse
|
22
|
De Stefano I, Giardullo P, Tanno B, Leonardi S, Pasquali E, Babini G, Saran A, Mancuso M. Nonlinear Radiation-Induced Cataract Using the RadiosensitivePtch1+/–Mouse Model. Radiat Res 2016; 186:315-21. [DOI: 10.1667/rr14440.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Chassaing N, Davis EE, McKnight KL, Niederriter AR, Causse A, David V, Desmaison A, Lamarre S, Vincent-Delorme C, Pasquier L, Coubes C, Lacombe D, Rossi M, Dufier JL, Dollfus H, Kaplan J, Katsanis N, Etchevers HC, Faguer S, Calvas P. Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network. Genome Res 2016; 26:474-85. [PMID: 26893459 PMCID: PMC4817771 DOI: 10.1101/gr.196048.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
Abstract
Ocular developmental anomalies (ODA) such as anophthalmia/microphthalmia (AM) or anterior segment dysgenesis (ASD) have an estimated combined prevalence of 3.7 in 10,000 births. Mutations in SOX2 are the most frequent contributors to severe ODA, yet account for a minority of the genetic drivers. To identify novel ODA loci, we conducted targeted high-throughput sequencing of 407 candidate genes in an initial cohort of 22 sporadic ODA patients. Patched 1 (PTCH1), an inhibitor of sonic hedgehog (SHH) signaling, harbored an enrichment of rare heterozygous variants in comparison to either controls, or to the other candidate genes (four missense and one frameshift); targeted resequencing of PTCH1 in a second cohort of 48 ODA patients identified two additional rare nonsynonymous changes. Using multiple transient models and a CRISPR/Cas9-generated mutant, we show physiologically relevant phenotypes altering SHH signaling and eye development upon abrogation of ptch1 in zebrafish for which in vivo complementation assays using these models showed that all six patient missense mutations affect SHH signaling. Finally, through transcriptomic and ChIP analyses, we show that SOX2 binds to an intronic domain of the PTCH1 locus to regulate PTCH1 expression, findings that were validated both in vitro and in vivo. Together, these results demonstrate that PTCH1 mutations contribute to as much as 10% of ODA, identify the SHH signaling pathway as a novel effector of SOX2 activity during human ocular development, and indicate that ODA is likely the result of overactive SHH signaling in humans harboring mutations in either PTCH1 or SOX2.
Collapse
Affiliation(s)
- Nicolas Chassaing
- CHU Toulouse, Service de Génétique Médicale, Hôpital Purpan, 31059 Toulouse, France; Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; Inserm U1056, 31000 Toulouse, France
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA; Department of Pediatrics and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Kelly L McKnight
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Adrienne R Niederriter
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Alexandre Causse
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; CHU Toulouse, Service d'Ophtalmologie, Hôpital Purpan, 31059 Toulouse, France
| | - Véronique David
- Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, Faculté de Médecine, 35043 Rennes, France; Laboratoire de Génétique Moléculaire, CHU Pontchaillou, 35043 Rennes Cedex, France
| | - Annaïck Desmaison
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France
| | - Sophie Lamarre
- Université de Toulouse; INSA, UPS, INP, LISBP, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France; Plateforme Biopuces de la Génopole de Toulouse Midi Pyrénées, INSA/DGBA 135, 31077 Toulouse, France
| | | | - Laurent Pasquier
- Service de Génétique Clinique, Hôpital Sud, 35200 Rennes, France
| | - Christine Coubes
- Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France
| | - Didier Lacombe
- Service de Génétique Médicale, Hôpital Pellegrin, 33076 Bordeaux Cedex, France; Université Bordeaux Segalen, Laboratoire MRGM, 33076 Bordeaux, France
| | - Massimiliano Rossi
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, 69677 Bron, France; INSERM U1028 UMR CNRS 5292, UCBL, CRNL TIGER Team, 69677 Bron Cedex, France
| | - Jean-Louis Dufier
- Service d'Ophtalmologie, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Helene Dollfus
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Josseline Kaplan
- INSERM U781 & Department of Genetics, Paris Descartes University, 75015 Paris, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA; Department of Pediatrics and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Heather C Etchevers
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; INSERM, UMR_S910, Aix-Marseille University, Faculté de Médecine, 13385 Marseille, France
| | | | - Patrick Calvas
- CHU Toulouse, Service de Génétique Médicale, Hôpital Purpan, 31059 Toulouse, France; Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; Inserm U1056, 31000 Toulouse, France
| |
Collapse
|