1
|
Chaiyadet S, Sotillo J, Smout M, Cooper M, Doolan DL, Waardenberg A, Eichenberger RM, Field M, Brindley PJ, Laha T, Loukas A. Small extracellular vesicles but not microvesicles from Opisthorchis viverrini promote cell proliferation in human cholangiocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540805. [PMID: 37292777 PMCID: PMC10245807 DOI: 10.1101/2023.05.22.540805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic infection with O. viverrini has been linked to the development of cholangiocarcinoma (CCA), which is a major public health burden in the Lower Mekong River Basin countries, including Thailand, Lao PDR, Vietnam and Cambodia. Despite its importance, the exact mechanisms by which O. viverrini promotes CCA are largely unknown. In this study, we characterized different extracellular vesicle populations released by O. viverrini (OvEVs) using proteomic and transcriptomic analyses and investigated their potential role in host-parasite interactions. While 120k OvEVs promoted cell proliferation in H69 cells at different concentrations, 15k OvEVs did not produce any effect compared to controls. The proteomic analysis of both populations showed differences in their composition that could contribute to this differential effect. Furthermore, the miRNAs present in 120k EVs were analysed and their potential interactions with human host genes was explored by computational target prediction. Different pathways involved in inflammation, immune response and apoptosis were identified as potentially targeted by the miRNAs present in this population of EVs. This is the first study showing specific roles for different EV populations in the pathogenesis of a parasitic helminth, and more importantly, an important advance towards deciphering the mechanisms used in establishment of opisthorchiasis and liver fluke infection-associated malignancy.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Martha Cooper
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Ashley Waardenberg
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Current affiliation: i-Synapse, Cairns, QLD, Australia
| | - Ramon M Eichenberger
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Matt Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
2
|
Aapkes SE, Bernts LHP, Barten TRM, van den Berg M, Gansevoort RT, Drenth JPH. Estrogens in polycystic liver disease: A target for future therapies? Liver Int 2021; 41:2009-2019. [PMID: 34153174 PMCID: PMC8456902 DOI: 10.1111/liv.14986] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Patients suffering from polycystic liver disease (PLD) can develop large liver volumes, leading to physical and psychological complaints, reducing quality of life. There is an unmet need for new therapies in these patients. Estrogen seems to be a promising target for new therapies. In this review, we summarize the available experimental and epidemiological evidence to unravel the role of estrogens and other female hormones in PLD, to answer clinical questions and identify new targets for therapy. METHODS We identified all experimental and epidemiologial studies concerning estrogens or other female hormones and PLD, to answer pre-defined clinial questions. RESULTS Female sex is the most important risk factor for the presence and severity of disease; estrogen supplementation enhances liver growth and after menopause, liver growth decreases. Experimental studies show the presence of the estrogen receptors alfa and beta on cystic cholangiocytes, and increased in vitro growth after administration of estrogen. CONCLUSIONS Based on the available evidence, female PLD patients should be discouraged from taking estrogen-containing contraceptives or hormone replacement therapy. Since liver growth rates decline after menopause, treatment decisions should be based on measured liver growth in postmenopausal women. Finally, blockage of estrogen receptors or estrogen production is a promising target for new therapies.
Collapse
Affiliation(s)
- Sophie E. Aapkes
- Department of NephrologyUniversity Medical Center GroningenUniversity Hospital GroningenGroningenthe Netherlands
| | - Lucas H. P. Bernts
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenthe Netherlands
| | - Thijs R. M. Barten
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenthe Netherlands
| | - Marjan van den Berg
- Department of GynaecologyUniversity Medical Center GroningenUniversity Hospital GroningenGroningenthe Netherlands
| | - Ron T. Gansevoort
- Department of NephrologyUniversity Medical Center GroningenUniversity Hospital GroningenGroningenthe Netherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
3
|
Tzoupis H, Nteli A, Androutsou ME, Tselios T. Gonadotropin-Releasing Hormone and GnRH Receptor: Structure, Function and Drug Development. Curr Med Chem 2021; 27:6136-6158. [PMID: 31309882 DOI: 10.2174/0929867326666190712165444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gonadotropin-Releasing Hormone (GnRH) is a key element in sexual maturation and regulation of the reproductive cycle in the human organism. GnRH interacts with the pituitary cells through the activation of the Gonadotropin Releasing Hormone Receptors (GnRHR). Any impairments/dysfunctions of the GnRH-GnRHR complex lead to the development of various cancer types and disorders. Furthermore, the identification of GnRHR as a potential drug target has led to the development of agonist and antagonist molecules implemented in various treatment protocols. The development of these drugs was based on the information derived from the functional studies of GnRH and GnRHR. OBJECTIVE This review aims at shedding light on the versatile function of GnRH and GnRH receptor and offers an apprehensive summary regarding the development of different agonists, antagonists and non-peptide GnRH analogues. CONCLUSION The information derived from these studies can enhance our understanding of the GnRH-GnRHR versatile nature and offer valuable insight into the design of new more potent molecules.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea 14671, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| |
Collapse
|
4
|
Ramirez-Expósito MJ, Martínez-Martos JM, Cantón-Habas V, Carrera-González MDP. Moderate Beer Consumption Modifies Tumoral Growth Parameters and Pyrrolidone Carboxypeptidase Type-I and Type-II Specific Activities in the Hypothalamus-Pituitary-Mammary Gland Axis in an Animal Model of Breast Cancer. Nutr Cancer 2020; 73:2695-2707. [PMID: 33305601 DOI: 10.1080/01635581.2020.1856891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIMS To determine the effect of moderate alcoholic and nonalcoholic beer consumption on tumoral growth parameters, the histopathology, pyrrolidone carboxypeptidase type I (Pcp I), and type II (Pcp II) specific activities in the hypothalamus-pituitary-mammary gland axis, and the circulating levels of estradiol (E2) and progesterone (P4) in rats with N-methyl-N-nitrosourea (NMU) induced mammary tumors. MATERIAL AND METHODS Food and drink intake, weight gain and tumor growth parameters were collected. The malignant phenotype of the tumor was performed using the Scarff-Bloom-Richardson grading method. Pcp specific activities were fluorometrically analyzed using pyroglutamyl-β-naphthylamide as substrate. Circulating steroid hormones were determined. RESULTS Differences were found in tumoral parameters, depending on the drink. Animals that were given alcohol-containing beer (A/C) beer to drink showed the lowest values of hypothalamic Pcp I, in association with the lowest levels of circulating E2. The significant decrease in Pcp I activity in all NMU-treated groups suggest a clear role of the Pcp I in the tumoral process, and A/C beer interferes with it. DISCUSSION Moderate consumption of alcoholic beer would have beneficial effects against mammary tumors through the modification of the endocrine status mediated by GnRH due to changes on Pcp I and II activities at different levels.
Collapse
Affiliation(s)
- María Jesús Ramirez-Expósito
- Department of Health Sciences, Faculty of Experimental and Health Sciences, University of Jaén, Jaén, Spain.,Experimental and Clinical Physiopathology Research Group CTS-1039, University of Jaén, Jaén, Spain
| | - José Manuel Martínez-Martos
- Department of Health Sciences, Faculty of Experimental and Health Sciences, University of Jaén, Jaén, Spain.,Experimental and Clinical Physiopathology Research Group CTS-1039, University of Jaén, Jaén, Spain
| | - Vanesa Cantón-Habas
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba. IMIBIC, Córdoba, Spain
| | - María Del Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, University of Jaén, Jaén, Spain.,Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba. IMIBIC, Córdoba, Spain
| |
Collapse
|
5
|
Nilsson E, Benrick A, Kokosar M, Krook A, Lindgren E, Källman T, Martis MM, Højlund K, Ling C, Stener-Victorin E. Transcriptional and Epigenetic Changes Influencing Skeletal Muscle Metabolism in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2018; 103:4465-4477. [PMID: 30113663 DOI: 10.1210/jc.2018-00935] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/27/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). Despite this, the mechanisms underlying insulin resistance in PCOS are largely unknown. OBJECTIVE To investigate the genome-wide DNA methylation and gene expression patterns in skeletal muscle from women with PCOS and controls and relate them to phenotypic variations. DESIGN/PARTICIPANTS In a case-control study, skeletal muscle biopsies from women with PCOS (n = 17) and age-, weight-, and body mass index‒matched controls (n = 14) were analyzed by array-based DNA methylation and mRNA expression profiling. RESULTS Eighty-five unique transcripts were differentially expressed in muscle from women with PCOS vs controls, including DYRK1A, SYNPO2, SCP2, and NAMPT. Furthermore, women with PCOS had reduced expression of genes involved in immune system pathways. Two CpG sites showed differential DNA methylation after correction for multiple testing. However, an mRNA expression of ∼30% of the differentially expressed genes correlated with DNA methylation levels of CpG sites in or near the gene. Functional follow-up studies demonstrated that KLF10 is under transcriptional control of insulin, where insulin promotes glycogen accumulation in myotubes of human muscle cells. Testosterone downregulates the expression levels of COL1A1 and MAP2K6. CONCLUSION PCOS is associated with aberrant skeletal muscle gene expression with dysregulated pathways. Furthermore, we identified specific changes in muscle DNA methylation that may affect gene expression. This study showed that women with PCOS have epigenetic and transcriptional changes in skeletal muscle that, in part, can explain the metabolic abnormalities seen in these women.
Collapse
Affiliation(s)
- Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health and Education, University of Skövde, Skövde, Sweden
| | - Milana Kokosar
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Mihaela M Martis
- National Bioinformatics Infrastructure Sweden, Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kurt Højlund
- Department of Endocrinology, Odense University, Odense C, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | | |
Collapse
|
6
|
Giordano DM, Pinto C, Maroni L, Benedetti A, Marzioni M. Inflammation and the Gut-Liver Axis in the Pathophysiology of Cholangiopathies. Int J Mol Sci 2018; 19:E3003. [PMID: 30275402 PMCID: PMC6213589 DOI: 10.3390/ijms19103003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
Cholangiocytes, the epithelial cells lining the bile ducts, represent the unique target of a group of progressive diseases known as cholangiopathies whose pathogenesis remain largely unknown. In normal conditions, cholangiocytes are quiescent and participate to the final bile volume and composition. Following exogenous or endogenous stimuli, cholangiocytes undergo extensive modifications of their phenotype. Reactive cholangiocytes actively proliferate and release a set of proinflammatory molecules, which act in autocrine/paracrine manner mediating the cross-talk with other liver cell types and innate and adaptive immune cells. Cholangiocytes themselves activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Gut microbiota has been implicated in the development and progression of the two most common cholangiopathies, i.e., primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), which have distinctive microbiota composition compared to healthy individuals. The impairment of intestinal barrier functions or gut dysbiosis expose cholangiocytes to an increasing amount of microorganisms and may exacerbate inflammatory responses thus leading to fibrotic remodeling of the organ. The present review focuses on the complex interactions between the activation of innate immune responses in reactive cholangiocytes, dysbiosis, and gut permeability to bacterial products in the pathogenesis of PSC and PBC.
Collapse
Affiliation(s)
- Debora Maria Giordano
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Claudio Pinto
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Luca Maroni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Antonio Benedetti
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| |
Collapse
|
7
|
Sato K, Meng F, Giang T, Glaser S, Alpini G. Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1262-1269. [PMID: 28648950 PMCID: PMC5742086 DOI: 10.1016/j.bbadis.2017.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/06/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Keisaku Sato
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Academic Research Integration, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Thao Giang
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States.
| |
Collapse
|
8
|
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1220-1231. [PMID: 28716705 PMCID: PMC5777905 DOI: 10.1016/j.bbadis.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Angela C Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
9
|
Kennedy L, Hargrove L, Demieville J, Bailey JM, Dar W, Polireddy K, Chen Q, Nevah Rubin MI, Sybenga A, DeMorrow S, Meng F, Stockton L, Alpini G, Francis H. Knockout of l-Histidine Decarboxylase Prevents Cholangiocyte Damage and Hepatic Fibrosis in Mice Subjected to High-Fat Diet Feeding via Disrupted Histamine/Leptin Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:600-615. [PMID: 29248461 PMCID: PMC5840487 DOI: 10.1016/j.ajpath.2017.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 02/08/2023]
Abstract
Feeding a high-fat diet (HFD) coupled with sugar, mimicking a Western diet, causes fatty liver disease in mice. Histamine induces biliary proliferation and fibrosis and regulates leptin signaling. Wild-type (WT) and l-histidine decarboxylase (Hdc-/-) mice were fed a control diet or an HFD coupled with a high fructose corn syrup equivalent. Hematoxylin and eosin and Oil Red O staining were performed to determine steatosis. Biliary mass and cholangiocyte proliferation were evaluated by immunohistochemistry. Senescence and fibrosis were measured by quantitative PCR and immunohistochemistry. Hepatic stellate cell activation was detected by immunofluorescence. Histamine and leptin levels were measured by enzyme immunoassay. Leptin receptor (Ob-R) was evaluated by quantitative PCR. The HDC/histamine/histamine receptor axis, ductular reaction, and biliary senescence were evaluated in patients with nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or end-stage liver disease. Hdc-/- HFD mice had increased steatosis compared with WT HFD mice. WT HFD mice had increased biliary mass, biliary proliferation, senescence, fibrosis, and hepatic stellate cell activation, which were reduced in Hdc-/- HFD mice. In Hdc-/- HFD mice, serum leptin levels increased, whereas biliary Ob-R expression decreased. Nonalcoholic steatohepatitis patients had increased HDC/histamine/histamine receptor signaling. Hdc-/- HFD mice are susceptible to obesity via dysregulated leptin/Ob-R signaling, whereas the lack of HDC protects from HFD-induced fibrosis and cholangiocyte damage. HDC/histamine/leptin signaling may be important in managing obesity-induced biliary damage.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Jennifer Demieville
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas
| | - Jennifer M Bailey
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Wasim Dar
- Division of Immunology and Organ Transplantation, Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kishore Polireddy
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Qingzheng Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Moises I Nevah Rubin
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Amelia Sybenga
- Department of Anatomic and Clinical Pathology, Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Fanyin Meng
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Lindsey Stockton
- Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Heather Francis
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
| |
Collapse
|
10
|
Scrushy M, O'Brien A, Glaser S. Recent advances in understanding bile duct remodeling and fibrosis. F1000Res 2018; 7:F1000 Faculty Rev-1165. [PMID: 30109019 PMCID: PMC6069725 DOI: 10.12688/f1000research.14578.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cholestatic liver disease encompasses a detrimental group of diseases that are non-discriminatory in nature. These diseases occur over every age range from infancy (biliary atresia) to geriatrics (hepatitis). They also cover both genders in the form of primary sclerosing cholangitis in men and primary biliary cholangitis in women. Oftentimes, owing to the disease progression and extensive scarring, the treatment of last resort becomes a liver transplant. In this review, we will briefly discuss and explore new avenues of understanding in the progression of cholestatic liver disease and possible therapeutic targets for intervention. The greater our understanding into the idiopathic nature of cholestatic liver disease, the better our chances of discovering treatment options to halt or reverse the progression, reducing or eliminating the need for expensive and risky transplants.
Collapse
Affiliation(s)
| | - April O'Brien
- Texas A&M University College of Medicine, Temple, TX, USA
- Central Texas Veterans Research Center, Temple, TX, USA
| | - Shannon Glaser
- Texas A&M University College of Medicine, Temple, TX, USA
- Central Texas Veterans Research Center, Temple, TX, USA
- Digestive Diseases Research Center, Baylor Scott & White Health, Temple, TX, USA
| |
Collapse
|
11
|
McMillin M, DeMorrow S, Glaser S, Venter J, Kyritsi K, Zhou T, Grant S, Giang T, Greene JF, Wu N, Jefferson B, Meng F, Alpini G. Melatonin inhibits hypothalamic gonadotropin-releasing hormone release and reduces biliary hyperplasia and fibrosis in cholestatic rats. Am J Physiol Gastrointest Liver Physiol 2017; 313:G410-G418. [PMID: 28751425 PMCID: PMC5792219 DOI: 10.1152/ajpgi.00421.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023]
Abstract
Melatonin is a hormone produced by the pineal gland with increased circulating levels shown to inhibit biliary hyperplasia and fibrosis during cholestatic liver injury. Melatonin also has the capability to suppress the release of hypothalamic gonadotropin-releasing hormone (GnRH), a hormone that promotes cholangiocyte proliferation when serum levels are elevated. However, the interplay and contribution of neural melatonin and GnRH to cholangiocyte proliferation and fibrosis in bile duct-ligated (BDL) rats have not been investigated. To test this, cranial levels of melatonin were increased by implanting osmotic minipumps that performed an intracerebroventricular (ICV) infusion of melatonin or saline for 7 days starting at the time of BDL. Hypothalamic GnRH mRNA and cholangiocyte secretion of GnRH and melatonin were assessed. Cholangiocyte proliferation and fibrosis were measured. Primary human hepatic stellate cells (HSCs) were treated with cholangiocyte supernatants, GnRH, or the GnRH receptor antagonist cetrorelix acetate, and cell proliferation and fibrosis gene expression were assessed. Melatonin infusion reduced hypothalamic GnRH mRNA expression and led to decreased GnRH and increased melatonin secretion from cholangiocytes. Infusion of melatonin was found to reduce hepatic injury, cholangiocyte proliferation, and fibrosis during BDL-induced liver injury. HSCs supplemented with BDL cholangiocyte supernatant had increased proliferation, and this increase was reversed when HSCs were supplemented with supernatants from melatonin-infused rats. GnRH stimulated fibrosis gene expression in HSCs, and this was reversed by cetrorelix acetate cotreatment. Increasing bioavailability of melatonin in the brain may improve outcomes during cholestatic liver disease.NEW & NOTEWORTHY We have previously demonstrated that GnRH is expressed in cholangiocytes and promotes their proliferation during cholestasis. In addition, dark therapy, which increases melatonin, reduced cholangiocyte proliferation and fibrosis during cholestasis. This study expands these findings by investigating neural GnRH regulation by melatonin during BDL-induced cholestasis by infusing melatonin into the brain. Melatonin infusion reduced cholangiocyte proliferation and fibrosis, and these effects are due to GNRH receptor 1-dependent paracrine signaling between cholangiocytes and hepatic stellate cells.
Collapse
Affiliation(s)
- Matthew McMillin
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Julie Venter
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Konstantina Kyritsi
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Stephanie Grant
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Thao Giang
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - John F Greene
- Department of Pathology, Baylor Scott & White Health, Temple, Texas; and
| | - Nan Wu
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Brandi Jefferson
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
- Research Foundation, Baylor Scott & White Health, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas;
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| |
Collapse
|
12
|
Kyritsi K, Meng F, Zhou T, Wu N, Venter J, Francis H, Kennedy L, Onori P, Franchitto A, Bernuzzi F, Invernizzi P, McDaniel K, Mancinelli R, Alvaro D, Gaudio E, Alpini G, Glaser S. Knockdown of Hepatic Gonadotropin-Releasing Hormone by Vivo-Morpholino Decreases Liver Fibrosis in Multidrug Resistance Gene 2 Knockout Mice by Down-Regulation of miR-200b. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1551-1565. [PMID: 28502477 PMCID: PMC5500827 DOI: 10.1016/j.ajpath.2017.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 11/26/2022]
Abstract
Hepatic fibrosis occurs during the progression of primary sclerosing cholangitis (PSC) and is characterized by accumulation of extracellular matrix proteins. Proliferating cholangiocytes and activated hepatic stellate cells (HSCs) participate in the promotion of liver fibrosis during cholestasis. Gonadotropin-releasing hormone (GnRH) is a trophic peptide hormone synthesized by hypothalamic neurons and the biliary epithelium and exerts its biological effects on cholangiocytes by interaction with the receptor subtype (GnRHR1) expressed by cholangiocytes and HSCs. Previously, we demonstrated that administration of GnRH to normal rats increased intrahepatic biliary mass (IBDM) and hepatic fibrosis. Also, miR-200b is associated with the progression of hepatic fibrosis; however, the role of the GnRH/GnRHR1/miR-200b axis in the development of hepatic fibrosis in PSC is unknown. Herein, using the mouse model of PSC (multidrug resistance gene 2 knockout), the hepatic knockdown of GnRH decreased IBDM and liver fibrosis. In vivo and in vitro administration of GnRH increased the expression of miR-200b and fibrosis markers. The GnRH/GnRHR1 axis and miR-200b were up-regulated in human PSC samples. Cetrorelix, a GnRHR1 antagonist, inhibited the expression of fibrotic genes in vitro and decreased IBDM and hepatic fibrosis in vivo. Inhibition of miR-200b decreased the expression of fibrosis genes in vitro in cholangiocyte and HSC lines. Targeting the GnRH/GnRHR1/miR-200b axis may be key for the management of hepatic fibrosis during the progression of PSC.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Fanyin Meng
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas; Research Foundation, Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Nan Wu
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Julie Venter
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Heather Francis
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Lindsey Kennedy
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Francesca Bernuzzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Kelly McDaniel
- Research Foundation, Baylor Scott & White Health, Temple, Texas
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas; Research Foundation, Baylor Scott & White Health, Temple, Texas.
| | - Shannon Glaser
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
| |
Collapse
|
13
|
Hall C, Sato K, Wu N, Zhou T, Kyritsi K, Meng F, Glaser S, Alpini G. Regulators of Cholangiocyte Proliferation. Gene Expr 2017; 17:155-171. [PMID: 27412505 PMCID: PMC5494439 DOI: 10.3727/105221616x692568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, a small population of cells within the normal liver, have been the focus of a significant amount of research over the past two decades because of their involvement in cholangiopathies such as primary sclerosing cholangitis and primary biliary cholangitis. This article summarizes landmark studies in the field of cholangiocyte physiology and aims to provide an updated review of biliary pathogenesis. The historical approach of rodent extrahepatic bile duct ligation and the relatively recent utilization of transgenic mice have led to significant discoveries in cholangiocyte pathophysiology. Cholangiocyte physiology is a complex system based on heterogeneity within the biliary tree and a number of signaling pathways that serve to regulate bile composition. Studies have expanded the list of neuropeptides, neurotransmitters, and hormones that have been shown to be key regulators of proliferation and biliary damage. The peptide histamine and hormones, such as melatonin and angiotensin, angiotensin, as well as numerous sex hormones, have been implicated in cholangiocyte proliferation during cholestasis. Numerous pathways promote cholangiocyte proliferation during cholestasis, and there is growing evidence to suggest that cholangiocyte proliferation may promote hepatic fibrosis. These pathways may represent significant therapeutic potential for a subset of cholestatic liver diseases that currently lack effective therapies.
Collapse
Affiliation(s)
- Chad Hall
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- †Baylor Scott & White Digestive Disease Research Center, Temple, TX, USA
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Keisaku Sato
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Nan Wu
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Tianhao Zhou
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | | | - Fanyin Meng
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Shannon Glaser
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Gianfranco Alpini
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
14
|
Peng B, Klausen C, Campbell L, Leung PCK, Horne AW, Bedaiwy MA. Gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor are expressed at tubal ectopic pregnancy implantation sites. Fertil Steril 2016; 105:1620-1627.e3. [PMID: 26920257 DOI: 10.1016/j.fertnstert.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate whether gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) are expressed at tubal ectopic pregnancy sites, and to study the potential role of GnRH signaling in regulating immortalized human trophoblast cell viability. DESIGN Immunohistochemical and experimental studies. SETTING Academic research laboratory. PATIENT(S) Fallopian tube implantation sites (n = 25) were collected from women with ectopic pregnancy. First-trimester human placenta biopsies (n = 5) were obtained from elective terminations of pregnancy. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) GnRH and GnRHR expression was examined by means of immunohistochemistry and histoscoring. Trophoblastic BeWo choriocarcinoma and immortalized extravillous trophoblast (HTR-8/SVneo) cell viability was examined by means of cell counting after incubation with GnRH and/or GnRH antagonist (Antide). RESULT(S) GnRH and GnRHR immunoreactivity was detected in cytotrophoblast, syncytiotrophoblast, and extravillous trophoblast in all women with tubal pregnancy. GnRH immunoreactivity was higher and GnRHR immunoreactivity lower in syncytiotrophoblast compared with cytotrophoblast. GnRH and GnRHR immunoreactivity was detected in adjacent fallopian tube epithelium. Whereas neither GnRH nor Antide altered HTR-8/SVneo cell viability, treatment with GnRH significantly increased the overall cell viability of BeWo cells at 48 and 72 hours, and these effects were abolished by pretreatment with Antide. CONCLUSION(S) GnRH and GnRHR are expressed in trophoblast cell populations and fallopian tube epithelium at tubal ectopic pregnancy sites. GnRH increases BeWo cell viability, an effect mediated by the GnRHR. Further work is required to investigate the potential role of GnRH signaling in ectopic pregnancy.
Collapse
Affiliation(s)
- Bo Peng
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Campbell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew W Horne
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mohamed A Bedaiwy
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
15
|
Abstract
Cholangiocytes are the epithelial cells that line the bile ducts. Along the biliary tree, two different kinds of cholangiocytes exist; small and large cholangiocytes. Each type has important differences in their biological role in physiological and pathological conditions. In response to injury, cholangiocytes become reactive and acquire a neuroendocrine-like phenotype with the secretion of a number of peptides. These molecules act in an autocrine/paracrine fashion to modulate cholangiocyte biology and determine the evolution of biliary damage. The failure of such mechanisms is believed to influence the progression of cholangiopathies, a group of diseases that selectively target biliary cells. Therefore, the understanding of mechanisms regulating cholangiocyte response to injury is expected to foster the development of new therapeutic options to treat biliary diseases. In the present review, we will discuss the most recent findings in the mechanisms driving cholangiocyte adaptation to damage, with particular emphasis on molecular pathways that are susceptible of therapeutic intervention. Morphogenic pathways (Hippo, Notch, Hedgehog), which have been recently shown to regulate biliary ontogenesis and response to injury, will also be reviewed. In addition, the results of ongoing clinical trials evaluating new drugs for the treatment of cholangiopathies will be discussed.
Collapse
|