1
|
Hirai H, Chen Q, Liu Y. Co-colonization and Co-culture of Lung Alveoli Epithelial Stem Cells and Their Endothelial Niche Cells. Methods Mol Biol 2025. [PMID: 40106143 DOI: 10.1007/7651_2025_607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The maintenance of lung function relies crucially on the homeostatic replacement and post-injury regeneration of the lung alveolar epithelium (Hogan et al., Cell Stem Cell 15(2):123-138, 2014). Dysfunctions in these processes contribute to the pathogenesis of numerous lung diseases (Hogan et al., Cell Stem Cell 15(2):123-138, 2014; Matthay et al., J Clin Invest 122(8):2731-2740, 2012). While identifying stem and progenitor cells in the lung epithelium has significantly enriched our understanding of endogenous replacement and regenerative mechanisms (Hogan et al., Cell Stem Cell 15(2):123-138, 2014), it is clear that epithelial cells interact closely with mesenchymal components which create a micro-environmental niche that is vital for regulating both homeostatic replacement and post-injury regeneration of epithelial cells. Specific subsets of alveolar type II cells (AT2) behave as epithelial stem cells of the distal lung. We have identified a CD44high subpopulation of AT2 cells that are preferentially located near macro-blood vessels and manifest stem cell characteristics (Chen et al., Stem Cell Rep 19(6):890-905, 2024; Am J Physiol Lung Cell Mol Physiol 313(1):L41-l51, 2017). In addition, the macro-blood vessels endothelial cells (ECs) function as niche components to support the CD44high AT2s. Here, we describe the method to identify the CD44high AT2 cells by immuno-fluorescence and co-culture of CD44high AT2 cells with lung endothelial cells-their potential niche component-in 3D organoid culture.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Qian Chen
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yuru Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Jin X, Lin T, Wang Y, Li X, Yang Y. Functions of p120-catenin in physiology and diseases. Front Mol Biosci 2024; 11:1486576. [PMID: 39498333 PMCID: PMC11532153 DOI: 10.3389/fmolb.2024.1486576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
p120-catenin (p120) plays a vital role in regulating cell-cell adhesion at adherens junctions, interacting with the juxtamembrane domain (JMD) core region of E-cadherin and regulates the stability of cadherin at the cell surface. Previous studies have shown significant functions of p120 in cell-cell adhesion, tumor progression and inflammation. In this review, we will discuss recent progress of p120 in physiological processes and diseases, and focus on the functions of p120 in the regulation of cancer and inflammation.
Collapse
Affiliation(s)
- Xin Jin
- The First Affiliated Hospital (The First School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunjuan Wang
- The First Affiliated Hospital (The First School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqian Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (The First School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Chen Q, Hirai H, Chan M, Zhang J, Cho M, Randell SH, Kadur Lakshminarasimha Murthy P, Rehman J, Liu Y. Characterization of perivascular alveolar epithelial stem cells and their niche in lung homeostasis and cancer. Stem Cell Reports 2024; 19:890-905. [PMID: 38759645 PMCID: PMC11390684 DOI: 10.1016/j.stemcr.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
Lung alveolar structure and function are maintained by subsets of alveolar type II stem cells (AT2s), but there is a need for characterization of these subsets and their associated niches. Here, we report a CD44high subpopulation of AT2s characterized by increased expression of genes that regulate immune signaling even during steady-state homeostasis. Disruption of one of these immune regulatory transcription factor STAT1 impaired the stem cell function of AT2s. CD44high cells were preferentially located near macro- blood vessels and a supportive niche constituted by LYVE1+ endothelial cells, adventitial fibroblasts, and accumulated hyaluronan. In this microenvironment, CD44high AT2 cells were more responsive to transformation by KRAS than general AT2 cells. Moreover, after bacterial lung injury, there was a significant increase of CD44high AT2s and niche components distributed throughout the lung parenchyma. Taken together, CD44high AT2 cells and their perivascular niche regulate tissue homeostasis and tumor formation.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Hiroyuki Hirai
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Manwai Chan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jilei Zhang
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Minsu Cho
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jalees Rehman
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Yuru Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Zhang J, Liu Y. Epithelial stem cells and niches in lung alveolar regeneration and diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:17-26. [PMID: 38645714 PMCID: PMC11027191 DOI: 10.1016/j.pccm.2023.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Indexed: 04/23/2024]
Abstract
Alveoli serve as the functional units of the lungs, responsible for the critical task of blood-gas exchange. Comprising type I (AT1) and type II (AT2) cells, the alveolar epithelium is continuously subject to external aggressors like pathogens and airborne particles. As such, preserving lung function requires both the homeostatic renewal and reparative regeneration of this epithelial layer. Dysfunctions in these processes contribute to various lung diseases. Recent research has pinpointed specific cell subgroups that act as potential stem or progenitor cells for the alveolar epithelium during both homeostasis and regeneration. Additionally, endothelial cells, fibroblasts, and immune cells synergistically establish a nurturing microenvironment-or "niche"-that modulates these epithelial stem cells. This review aims to consolidate the latest findings on the identities of these stem cells and the components of their niche, as well as the molecular mechanisms that govern them. Additionally, this article highlights diseases that arise due to perturbations in stem cell-niche interactions. We also discuss recent technical innovations that have catalyzed these discoveries. Specifically, this review underscores the heterogeneity, plasticity, and dynamic regulation of these stem cell-niche systems. It is our aspiration that a deeper understanding of the fundamental cellular and molecular mechanisms underlying alveolar homeostasis and regeneration will open avenues for identifying novel therapeutic targets for conditions such as chronic obstructive pulmonary disease (COPD), fibrosis, coronavirus disease 2019 (COVID-19), and lung cancer.
Collapse
Affiliation(s)
- Jilei Zhang
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yuru Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Thota LNR, Lopez Rosales JE, Placencia I, Zemskov EA, Tonino P, Michael AN, Black SM, Chignalia AZ. The Pulmonary Endothelial Glycocalyx Modifications in Glypican 1 Knockout Mice Do Not Affect Lung Endothelial Function in Physiological Conditions. Int J Mol Sci 2023; 24:14568. [PMID: 37834029 PMCID: PMC10573009 DOI: 10.3390/ijms241914568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The endothelial glycocalyx is a dynamic signaling surface layer that is involved in the maintenance of cellular homeostasis. The glycocalyx has a very diverse composition, with glycoproteins, proteoglycans, and glycosaminoglycans interacting with each other to form a mesh-like structure. Due to its highly interactive nature, little is known about the relative contribution of each glycocalyx constituent to its overall function. Investigating the individual roles of the glycocalyx components to cellular functions and system physiology is challenging, as the genetic manipulation of animals that target specific glycocalyx components may result in the development of a modified glycocalyx. Thus, it is crucial that genetically modified animal models for glycocalyx components are characterized and validated before the development of mechanistic studies. Among the glycocalyx components, glypican 1, which acts through eNOS-dependent mechanisms, has recently emerged as a player in cardiovascular diseases. Whether glypican 1 regulates eNOS in physiological conditions is unclear. Herein, we assessed how the deletion of glypican 1 affects the development of the pulmonary endothelial glycocalyx and the impact on eNOS activity and endothelial function. Male and female 5-9-week-old wild-type and glypican 1 knockout mice were used. Transmission electron microscopy, immunofluorescence, and immunoblotting assessed the glycocalyx structure and composition. eNOS activation and content were assessed by immunoblotting; nitric oxide production was assessed by the Griess reaction. The pulmonary phenotype was evaluated by histological signs of lung injury, in vivo measurement of lung mechanics, and pulmonary ventilation. Glypican 1 knockout mice showed a modified glycocalyx with increased glycocalyx thickness and heparan sulfate content and decreased expression of syndecan 4. These alterations were associated with decreased phosphorylation of eNOS at S1177. The production of nitric oxides was not affected by the deletion of glypican 1, and the endothelial barrier was preserved in glypican 1 knockout mice. Pulmonary compliance was decreased, and pulmonary ventilation was unaltered in glypican 1 knockout mice. Collectively, these data indicate that the deletion of glypican 1 may result in the modification of the glycocalyx without affecting basal lung endothelial function, validating this mouse model as a tool for mechanistic studies that investigate the role of glypican 1 in lung endothelial function.
Collapse
Affiliation(s)
- Lakshmi N. R. Thota
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Joaquin E. Lopez Rosales
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Ivan Placencia
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Evgeny A. Zemskov
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Paola Tonino
- Research, Innovation & Impact Cores Facilities, Imaging Cores-Electron, Life Sciences North, The University of Arizona, Tucson, AZ 85719, USA;
| | - Ashley N. Michael
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA
| | - Andreia Z. Chignalia
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
- Department of Physiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA
- Sarver Heart Center, The University of Arizona, Tucson, AZ 85724, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Tang J, Suo L, Li F, Yang C, Bian K, Wang Y. ITRAQ-based quantitative proteomics analysis of forest musk deer with pneumonia. Front Vet Sci 2022; 9:1012276. [DOI: 10.3389/fvets.2022.1012276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pneumonia can seriously threaten the life of forest musk deer (FMD, an endangered species). To gain a comprehensive understanding of pneumonia pathogenesis in FMD, iTRAQ-based proteomics analysis was performed in diseased (Pne group) lung tissues of FMD that died of pneumonia and normal lung tissues (Ctrl group) of FMD that died from fighting against each other. Results showed that 355 proteins were differentially expressed (fold change ≥ 1.2 and adjusted P-value < 0.05) in Pne vs. Ctrl. GO/KEGG annotation and enrichment analyses showed that dysregulated proteins might play vital roles in bacterial infection and immunity. Given the close association between bacterial infection and pneumonia, 32 dysregulated proteins related to Staphylococcus aureus infection, bacterial invasion of epithelial cells, and pathogenic Escherichia coli infection were screened out. Among these 32 proteins, 13 proteins were mapped to the bovine genome. Given the close phylogenetic relationships of FMD and bovine, the protein-protein interaction networks of the above-mentioned 13 proteins were constructed by the String database. Based on the node degree analysis, 5 potential key proteins related to pneumonia-related bacterial infection in FMD were filtered out. Moreover, 85 dysregulated proteins related to the immune system process were identified given the tight connection between immune dysregulation and pneumonia pathogenesis. Additionally, 12 proteins that might function as crucial players in pneumonia-related immune response in FMD were screened out using the same experimental strategies described above. In conclusion, some vital proteins, biological processes, and pathways in pneumonia development were identified in FMD.
Collapse
|
7
|
Alveolar Type II Cells or Mesenchymal Stem Cells: Comparison of Two Different Cell Therapies for the Treatment of Acute Lung Injury in Rats. Cells 2020; 9:cells9081816. [PMID: 32751857 PMCID: PMC7464506 DOI: 10.3390/cells9081816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The use of cell therapies has recently increased for the treatment of pulmonary diseases. Mesenchymal stem/stromal cells (MSCs) and alveolar type II cells (ATII) are the main cell-based therapies used for the treatment of acute respiratory distress syndrome (ARDS). Many pre-clinical studies have shown that both therapies generate positive outcomes; however, the differences in the efficiency of MSCs or ATII for reducing lung damage remains to be studied. We compared the potential of both cell therapies, administering them using the same route and dose and equal time points in a sustained acute lung injury (ALI) model. We found that the MSCs and ATII cells have similar therapeutic effects when we tested them in a hydrochloric acid and lipopolysaccharide (HCl-LPS) two-hit ALI model. Both therapies were able to reduce proinflammatory cytokines, decrease neutrophil infiltration, reduce permeability, and moderate hemorrhage and interstitial edema. Although MSCs and ATII cells have been described as targeting different cellular and molecular mechanisms, our data indicates that both cell therapies are successful for the treatment of ALI, with similar beneficial results. Understanding direct cell crosstalk and the factors released from each cell will open the door to more accurate drugs being able to target specific pathways and offer new curative options for ARDS.
Collapse
|
8
|
Seiler CL, Song JUM, Kotandeniya D, Chen J, Kono TJY, Han Q, Colwell M, Auch B, Sarver AL, Upadhyaya P, Ren Y, Faulk C, De Flora S, La Maestra S, Chen Y, Kassie F, Tretyakova NY. Inhalation exposure to cigarette smoke and inflammatory agents induces epigenetic changes in the lung. Sci Rep 2020; 10:11290. [PMID: 32647312 PMCID: PMC7347915 DOI: 10.1038/s41598-020-67502-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
Smoking-related lung tumors are characterized by profound epigenetic changes including scrambled patterns of DNA methylation, deregulated histone acetylation, altered gene expression levels, distorted microRNA profiles, and a global loss of cytosine hydroxymethylation marks. Here, we employed an enhanced version of bisulfite sequencing (RRBS/oxRRBS) followed by next generation sequencing to separately map DNA epigenetic marks 5-methyl-dC and 5-hydroxymethyl-dC in genomic DNA isolated from lungs of A/J mice exposed whole-body to environmental cigarette smoke for 10 weeks. Exposure to cigarette smoke significantly affected the patterns of cytosine methylation and hydroxymethylation in the lungs. Differentially hydroxymethylated regions were associated with inflammatory response/disease, organismal injury, and respiratory diseases and were involved in regulation of cellular development, function, growth, and proliferation. To identify epigenetic changes in the lung associated with exposure to tobacco carcinogens and inflammation, A/J mice were intranasally treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the inflammatory agent lipopolysaccharide (LPS), or both. NNK alone caused minimal epigenetic alterations, while exposure either to LPS or NNK/LPS in combination led to increased levels of global cytosine methylation and formylation, reduced cytosine hydroxymethylation, decreased histone acetylation, and altered expression levels of multiple genes. Our results suggest that inflammatory processes are responsible for epigenetic changes contributing to lung cancer development.
Collapse
Affiliation(s)
- Christopher L Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - J Ung Min Song
- Department of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Delshanee Kotandeniya
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Jianji Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Benjamin Auch
- Genomics Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Aaron L Sarver
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Yanan Ren
- Biostatistics Core, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | | | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fekadu Kassie
- Department of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA.
| |
Collapse
|
9
|
Zhang H, Cui Y, Zhou Z, Ding Y, Nie H. Alveolar Type 2 Epithelial Cells as Potential Therapeutics for Acute Lung Injury/Acute Respiratory Distress Syndrome. Curr Pharm Des 2020; 25:4877-4882. [PMID: 31801451 DOI: 10.2174/1381612825666191204092456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome is a common clinical illness with high morbidity and mortality, which is still one of the medical problems urgently needed to be solved. Alveolar type 2 epithelial cells are an important component of lung epithelial cells and as a kind of stem cells, they can proliferate and differentiate into alveolar type 1 epithelial cells, thus contributing to lung epithelial repairment. In addition, they synthesize and secrete all components of the surfactant that regulates alveolar surface tension in the lungs. Moreover, alveolar type 2 epithelial cells play an active role in enhancing alveolar fluid clearance and reducing lung inflammation. In recent years, as more advanced approaches appear in the field of stem and progenitor cells in the lung, many preclinical studies have shown that the cell therapy of alveolar type 2 epithelial cells has great potential effects for acute lung injury/acute respiratory distress syndrome. We reviewed the recent progress on the mechanisms of alveolar type 2 epithelial cells involved in the damaged lung repairment, aiming to explore the possible therapeutic targets in acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Finn J, Sottoriva K, Pajcini KV, Kitajewski JK, Chen C, Zhang W, Malik AB, Liu Y. Dlk1-Mediated Temporal Regulation of Notch Signaling Is Required for Differentiation of Alveolar Type II to Type I Cells during Repair. Cell Rep 2020; 26:2942-2954.e5. [PMID: 30865885 PMCID: PMC6464111 DOI: 10.1016/j.celrep.2019.02.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/15/2019] [Accepted: 02/12/2019] [Indexed: 01/26/2023] Open
Abstract
Lung alveolar type I cells (AT1) and alveolar type II cells (AT2) regulate the structural integrity and function of alveoli. AT1, covering ∼95% of the surface area, are responsible for gas exchange, whereas AT2 serve multiple functions, including alveolar repair through proliferation and differentiation into AT1. However, the signaling mechanisms for alveolar repair remain unclear. Here, we demonstrate, in Pseudomonas aeruginosa-induced acute lung injury in mice, that non-canonical Notch ligand Dlk1 (delta-like 1 homolog) is essential for AT2-to-AT1 differentiation. Notch signaling was activated in AT2 at the onset of repair but later suppressed by Dlk1. Deletion of Dlk1 in AT2 induced persistent Notch activation, resulting in stalled transition to AT1 and accumulation of an intermediate cell population that expressed low levels of both AT1 and AT2 markers. Thus, Dlk1 expression leads to precisely timed inhibition of Notch signaling and activates AT2-to-AT1 differentiation, leading to alveolar repair.
Collapse
Affiliation(s)
- Johanna Finn
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612, USA; The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kilian Sottoriva
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kostandin V Pajcini
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Chang Chen
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Asrar B Malik
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612, USA; The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yuru Liu
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612, USA; The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Chen Z, Haus JM, Chen L, Wu SC, Urao N, Koh TJ, Minshall RD. CCL28-induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB J 2020; 34:5838-5850. [PMID: 32124475 DOI: 10.1096/fj.201902060r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/25/2022]
Abstract
Chemokines and their receptors play important roles in vascular homeostasis, development, and angiogenesis. Little is known regarding the molecular signaling mechanisms activated by CCL28 chemokine via its primary receptor CCR10 in endothelial cells (ECs). Here, we test the hypothesis that CCL28/CCR10 signaling plays an important role in regulating skin wound angiogenesis through endothelial nitric oxide synthase (eNOS)-dependent Src, PI3K, and MAPK signaling. We observed nitric oxide (NO) production in human primary ECs stimulated with exogenous CCL28, which also induced direct binding of CCR10 and eNOS resulting in inhibition of eNOS activity. Knockdown of CCR10 with siRNA lead to reduced eNOS expression and tube formation suggesting the involvement of CCR10 in EC angiogenesis. Based on this interaction, we engineered a myristoylated 7 amino acid CCR10-binding domain (Myr-CBD7) peptide and showed that this can block eNOS interaction with CCR10, but not with calmodulin, resulting in upregulation of eNOS activity. Importantly, topical administration of Myr-CBD7 peptide on mouse dermal wounds not only blocked CCR10-eNOS interaction, but also enhanced expression of eNOS, CD31, and IL-4 with reduction of CCL28 and IL-6 levels associated with improved wound healing. These results point to a potential therapeutic strategy to upregulate NO bioavailability, enhance angiogenesis, and improve wound healing by disrupting CCL28-activated CCR10-eNOS interaction.
Collapse
Affiliation(s)
- Zhenlong Chen
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Chen
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie C Wu
- Center for Lower Extremity Ambulatory Research (CLEAR), Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
P120-catenin regulates pulmonary fibrosis and TGF-β induced lung fibroblast differentiation. Life Sci 2019; 230:35-44. [DOI: 10.1016/j.lfs.2019.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
|
13
|
Differential expression of p120-catenin 1 and 3 isoforms in epithelial tissues. Sci Rep 2019; 9:90. [PMID: 30643202 PMCID: PMC6331582 DOI: 10.1038/s41598-018-36889-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
P120 catenin (p120) is a non-redundant master regulatory protein of cadherin-based cell-cell junctions, intracellular signaling, and tissue homeostasis and repair. Alternative splicing can generate p120 isoforms 1 and 3 (p120-1 and p120-3), which are implicated in non-overlapping functions by differential expression regulation and unique interactions in different cell types, with often predominant expression of p120-1 in mesenchymal cells, and p120-3 generally prevalent in epithelial cells. However, the lack of specific p120-3 protein detection has precluded analysis of their relative abundance in tissues. Here, we have developed a p120-3 isoform-specific antibody and analyzed the p120-3 localization relative to p120-1 in human tissues. p120-3 but not p120-1 is highly expressed in cell-cell junctions of simple gastrointestinal epithelia such as colon and stomach, and the acini of salivary glands and the pancreas. Conversely, the basal layer of the epidermis and hair follicles expressed p120-1 with reduced p120-3, whereas most other epithelia co-expressed p120-3 and p120-1, including bronchial epithelia and mammary luminal epithelial cells. These data provide an inventory of tissue-specific p120 isoform expression and suggest a link between p120 isoform expression and epithelial differentiation.
Collapse
|
14
|
Chignalia AZ, Isbatan A, Patel M, Ripper R, Sharlin J, Shosfy J, Borlaug BA, Dull RO. Pressure-dependent NOS activation contributes to endothelial hyperpermeability in a model of acute heart failure. Biosci Rep 2018; 38:BSR20181239. [PMID: 30355657 PMCID: PMC6250809 DOI: 10.1042/bsr20181239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/11/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Aims: Acute increases in left ventricular end diastolic pressure (LVEDP) can induce pulmonary edema (PE). The mechanism(s) for this rapid onset edema may involve more than just increased fluid filtration. Lung endothelial cell permeability is regulated by pressure-dependent activation of nitric oxide synthase (NOS). Herein, we demonstrate that pressure-dependent NOS activation contributes to vascular failure and PE in a model of acute heart failure (AHF) caused by hypertension.Methods and results: Male Sprague-Dawley rats were anesthetized and mechanically ventilated. Acute hypertension was induced by norepinephrine (NE) infusion and resulted in an increase in LVEDP and pulmonary artery pressure (Ppa) that were associated with a rapid fall in PaO2, and increases in lung wet/dry ratio and injury scores. Heart failure (HF) lungs showed increased nitrotyrosine content and ROS levels. L-NAME pretreatment mitigated the development of PE and reduced lung ROS concentrations to sham levels. Apocynin (Apo) pretreatment inhibited PE. Addition of tetrahydrobiopterin (BH4) to AHF rats lung lysates and pretreatment of AHF rats with folic acid (FA) prevented ROS production indicating endothelial NOS (eNOS) uncoupling.Conclusion: Pressure-dependent NOS activation leads to acute endothelial hyperpermeability and rapid PE by an increase in NO and ROS in a model of AHF. Acute increases in pulmonary vascular pressure, without NOS activation, was insufficient to cause significant PE. These results suggest a clinically relevant role of endothelial mechanotransduction in the pathogenesis of AHF and further highlights the concept of active barrier failure in AHF. Therapies targetting the prevention or reversal of endothelial hyperpermeability may be a novel therapeutic strategy in AHF.
Collapse
Affiliation(s)
- Andreia Z Chignalia
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A.
| | - Ayman Isbatan
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Milan Patel
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Richard Ripper
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
- Research and Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S Damen Ave., Chicago, IL 60612, U.S.A
| | - Jordan Sharlin
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Joelle Shosfy
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic and Foundation, 200 First St SW, Rochester, MN 55905, U.S.A
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
- Department of Anesthesiology, University of Arizona College of Medicine and Banner-University Medical Center, Tucson, AZ 85724, U.S.A
| |
Collapse
|
15
|
Escobar N, Valdes ID, Keizer EM, Ordonez SR, Ohm RA, Wösten HAB, de Cock H. Expression profile analysis reveals that Aspergillus fumigatus but not Aspergillus niger makes type II epithelial lung cells less immunological alert. BMC Genomics 2018; 19:534. [PMID: 30005605 PMCID: PMC6044037 DOI: 10.1186/s12864-018-4895-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
Background Aspergillus fumigatus is the main causative agent of aspergillosis. Infections rarely occur in immunocompetent individuals, indicating efficient clearance of conidia by pulmonary defense mechanisms. Other aspergilli like Aspergillus niger also cause infections but to a much lesser extent. Our previous studies showed that A. fumigatus and A. niger have different behavior in the presence of type II alveolar A549 epithelial cells. A. fumigatus conidia are more efficiently internalized by these cells and germination is delayed when compared to A. niger. In addition, hyphae that have escaped the epithelial cells grow parallel to the epithelium, while A. niger grows away from this cell layer. Results Here it is shown that global gene expression of A. fumigatus and A. niger is markedly different upon contact with A549 cells. A total of 545 and 473 genes of A. fumigatus and A. niger, respectively, were differentially expressed when compared to growth in the absence of A549 cells. Notably, only 53 genes (approximately 10%) were shared in these gene sets. The different response was also illustrated by the fact that only 4 out of 75 GO terms were shared that were enriched in the differentially expressed gene sets. The orthologues of A. fumigatus genes involved in hypoxia regulation and heat shock were also up-regulated in A. niger, whereas thioredoxin reductase and allergen genes were found up-regulated in A. fumigatus but down-regulated in A. niger. Infection with A. fumigatus resulted in only 62 up and 47 down-regulated genes in A549. These numbers were 17 and 34 in the case of A. niger. GO terms related with immune response were down-regulated upon exposure to A. fumigatus but not in the case of A. niger. This indicates that A. fumigatus reprograms A549 to be less immunologically alert. Conclusions Our dual transcriptomic analysis supports earlier observations of a marked difference in life style between A. fumigatus and A. niger when grown in the presence of type II epithelial cells. The results indicate important differences in gene expression, amongst others down regulation of immune response genes in lung epithelial cells by A. fumigatus but not by A niger. Electronic supplementary material The online version of this article (10.1186/s12864-018-4895-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Escobar
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ivan D Valdes
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Esther M Keizer
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Soledad R Ordonez
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Robin A Ohm
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hans de Cock
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, Israf DA. The Protective Effects of a Synthetic Geranyl Acetophenone in a Cellular Model of TNF-α-Induced Pulmonary Epithelial Barrier Dysfunction. Molecules 2018; 23:molecules23061355. [PMID: 29874809 PMCID: PMC6100020 DOI: 10.3390/molecules23061355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 01/19/2023] Open
Abstract
Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
Collapse
Affiliation(s)
- Tee Yee Sim
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Natural Products Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Integrated Omics Analysis of Pathogenic Host Responses during Pandemic H1N1 Influenza Virus Infection: The Crucial Role of Lipid Metabolism. Cell Host Microbe 2016; 19:254-66. [PMID: 26867183 DOI: 10.1016/j.chom.2016.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 11/23/2022]
Abstract
Pandemic influenza viruses modulate proinflammatory responses that can lead to immunopathogenesis. We present an extensive and systematic profiling of lipids, metabolites, and proteins in respiratory compartments of ferrets infected with either 1918 or 2009 human pandemic H1N1 influenza viruses. Integrative analysis of high-throughput omics data with virologic and histopathologic data uncovered relationships between host responses and phenotypic outcomes of viral infection. Proinflammatory lipid precursors in the trachea following 1918 infection correlated with severe tracheal lesions. Using an algorithm to infer cell quantity changes from gene expression data, we found enrichment of distinct T cell subpopulations in the trachea. There was also a predicted increase in inflammatory monocytes in the lung of 1918 virus-infected animals that was sustained throughout infection. This study presents a unique resource to the influenza research community and demonstrates the utility of an integrative systems approach for characterization of lipid metabolism alterations underlying respiratory responses to viruses.
Collapse
|
18
|
Hendley AM, Wang YJ, Polireddy K, Alsina J, Ahmed I, Lafaro KJ, Zhang H, Roy N, Savidge SG, Cao Y, Hebrok M, Maitra A, Reynolds AB, Goggins M, Younes M, Iacobuzio-Donahue CA, Leach SD, Bailey JM. p120 Catenin Suppresses Basal Epithelial Cell Extrusion in Invasive Pancreatic Neoplasia. Cancer Res 2016; 76:3351-63. [PMID: 27032419 DOI: 10.1158/0008-5472.can-15-2268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/14/2016] [Indexed: 01/01/2023]
Abstract
Aberrant regulation of cellular extrusion can promote invasion and metastasis. Here, we identify molecular requirements for early cellular invasion using a premalignant mouse model of pancreatic cancer with conditional knockout of p120 catenin (Ctnnd1). Mice with biallelic loss of p120 catenin progressively develop high-grade pancreatic intraepithelial neoplasia (PanIN) lesions and neoplasia accompanied by prominent acute and chronic inflammatory processes, which is mediated, in part, through NF-κB signaling. Loss of p120 catenin in the context of oncogenic Kras also promotes remarkable apical and basal epithelial cell extrusion. Abundant single epithelial cells exit PanIN epithelium basally, retain epithelial morphology, survive, and display features of malignancy. Similar extrusion defects are observed following p120 catenin knockdown in vitro, and these effects are completely abrogated by the activation of S1P/S1pr2 signaling. In the context of oncogenic Kras, p120 catenin loss significantly reduces expression of genes mediating S1P/S1pr2 signaling in vivo and in vitro, and this effect is mediated at least, in part, through activation of NF-κB. These results provide insight into mechanisms controlling early events in the metastatic process and suggest that p120 catenin and S1P/S1pr2 signaling enhance cancer progression by regulating epithelial cell invasion. Cancer Res; 76(11); 3351-63. ©2016 AACR.
Collapse
Affiliation(s)
- Audrey M Hendley
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland. Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yue J Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kishore Polireddy
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Janivette Alsina
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ishrat Ahmed
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kelly J Lafaro
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. The David Rubenstein Pancreatic Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nilotpal Roy
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Samuel G Savidge
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yanna Cao
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Anirban Maitra
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland. The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Goggins
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland. The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mamoun Younes
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas
| | - Christine A Iacobuzio-Donahue
- The David Rubenstein Pancreatic Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland. The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven D Leach
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland. The David Rubenstein Pancreatic Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jennifer M Bailey
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland. Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
19
|
Scully EP, Lockhart A, Garcia-Beltran W, Palmer CD, Musante C, Rosenberg E, Allen TM, Chang JJ, Bosch RJ, Altfeld M. Innate immune reconstitution with suppression of HIV-1. JCI Insight 2016; 1:e85433. [PMID: 27158667 DOI: 10.1172/jci.insight.85433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4+ T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.
Collapse
Affiliation(s)
- Eileen P Scully
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ainsley Lockhart
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Wilfredo Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Christine D Palmer
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Chelsey Musante
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Eric Rosenberg
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Todd M Allen
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - J Judy Chang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Ronald J Bosch
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Marcus Altfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA; Heinrich-Pette-Institut, Hamburg, Germany
| |
Collapse
|