1
|
Li P, Han M, Zhang R, Chen F, Li Y, Yuan J, Ma N, Li L, Wu J. Efficacy of Glucocorticoids in the Treatment of Retinal Detachment With Choroidal Detachment: Analysis by Proteomics. Proteomics Clin Appl 2025:e70008. [PMID: 40259541 DOI: 10.1002/prca.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
PURPOSE Glucocorticoids are widely used for their anti-inflammatory properties, but their specific molecular mechanisms in treating rhegmatogenous retinal detachment with choroidal detachment (RRDCD) remain unclear. This study aims to identify key regulatory factors in the vitreous humor of RRDCD patients and analyze protein changes after hormonal intervention. METHODS Vitreous fluid samples were collected during surgery from patients with rhegmatogenous retinal detachment (RRD, n = 40), non-glucocorticoid treated RRDCD (nT-RRDCD, n = 35), and glucocorticoid-treated RRDCD (T-RRDCD, n = 32). Primary outcomes were retinal reattachment status and best-corrected visual acuity (BCVA) at 6 months postoperatively. Proteomic analysis was performed using data-independent acquisition (DIA), with differentially expressed proteins validated by parallel reaction monitoring (PRM) and ELISA. RESULTS Between RRD and nT-RRDCD, 203 differentially expressed proteins were identified, while 295 proteins were differentially expressed between nT-RRDCD and T-RRDCD. These proteins were involved in complement activation, immune response, blood coagulation, and MAPK signaling. Apolipoprotein D (APOD) and vitronectin (VTN) positively correlated with postoperative BCVA. APOD, serum amyloid A-4 (SAA4), and ubiquitin-conjugating enzyme E2 variant emerged as potential diagnostic biomarkers for RRDCD. CONCLUSIONS RRDCD development involves multiple factors. Glucocorticoids mitigate retinal damage by suppressing inflammation, regulating oxidative stress, and promoting cell repair. APOD and VTN correlate with BCVA, while APOD, SAA4, and ubiquitin-conjugating enzyme E2 show promise as diagnostic biomarkers for RRDCD.
Collapse
Affiliation(s)
- Pingping Li
- Department of Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Mengyao Han
- Department of Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Rui Zhang
- Department of Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Fangyu Chen
- Department of Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Yanzi Li
- Department of Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Jing Yuan
- Department of Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Ning Ma
- Department of Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Lu Li
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhua Wu
- Department of Aier Eye Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Heiden R, Hannig L, Bernhard JS, Vallon M, Schlecht A, Hofmann N, Ergün S, Hoschek F, Wagner M, Neueder A, Förster CY, Braunger BM. Tissue origin of endothelial cells determines immune system modulation and regulation of HIF-1α-, TGF-β-, and VEGF signaling. iScience 2025; 28:111740. [PMID: 39925414 PMCID: PMC11804623 DOI: 10.1016/j.isci.2024.111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Tight junctions of vascular endothelial cells in the central nervous system form the blood-brain and inner blood-retinal barriers, the integrity of which are further influenced by neighboring cells such as pericytes, astrocytes/Müller glial processes, and immune cells. In addition, the retina is shielded from the fenestrated endothelium of the choriocapillaris by the epithelial barrier of the retinal pigment epithelium. Dysfunction of the blood retinal barriers and/or proliferation of retinal and choroidal endothelial cells are caused by late stages of diabetic retinopathy (DR) and neovascular age-related macular degeneration (nAMD), the main causes of blindness in western countries. To elucidate endothelial-derived pathomechanisms in DR and nAMD, we established immortalized mouse cell lines of retinal and choroidal endothelial cells and immortalized brain endothelial cells as CNS-derived controls. We then used immunofluorescence staining, state-of-the-art long-range RNA sequencing and monolayer permeability assays to compare the functional state of these cells depending on their tissue origin. We furthermore demonstrate that activation of the wingless-type MMTV integration site (Wnt)/β-catenin signaling pathway restored blood brain/retinal barrier properties in brain and retinal endothelial cells, but unexpectedly increased permeability of choroidal endothelial cells. Transcriptome profiling showed that depending on the tissue origin of endothelial cells, regulation of the immune system was altered and pathways such as hypoxia-inducible factor (HIF)-1/2α, transforming growth factor (TGF)-β, and vascular endothelial growth factor (VEGF) were differentially regulated, strongly indicating their contribution in the molecular pathogenesis of DR and nAMD. These findings significantly increase the understanding of the vascular biology of endothelial cells, highlighting the fact that depending on their tissue origin, their contribution to vascular pathologies varies.
Collapse
Affiliation(s)
- Robin Heiden
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Hannig
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jakob S. Bernhard
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Mario Vallon
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Anja Schlecht
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nico Hofmann
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Franziska Hoschek
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Maximilian Wagner
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Andreas Neueder
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Fukushima Y, Takahashi S, Nakamura M, Inoue T, Fujieda Y, Sato T, Noguchi S, Tsujikawa M, Sakaguchi H, Nishida K. An Association between HTRA1 and TGF-β 2 in the Vitreous Humor of Patients with Chorioretinal Vascular Diseases. J Clin Med 2024; 13:5073. [PMID: 39274287 PMCID: PMC11395711 DOI: 10.3390/jcm13175073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: The aim of this paper was to investigate the protein concentrations of high-temperature requirement A 1 (HTRA1) and transforming growth factor-β (TGF-β) in the vitreous humor of patients with chorioretinal vascular diseases. Methods: This study measured protein concentrations of HTRA1, TGF-β1-3, and vascular endothelial growth factor A (hereinafter called VEGF) in the vitreous humor from seven eyes of patients with chorioretinal vascular diseases (age-related macular degeneration, diabetic macular edema, and retinal vein occlusion) and six control eyes (idiopathic epiretinal membrane and macular hole). We analyzed the mutual relationship among the protein levels. Results: The protein levels of HTRA1 and VEGF were significantly increased in the chorioretinal vascular disease group compared with the control group (1.57 ± 0.79 ×10-9 mol/mL vs. 0.68 ± 0.79 ×10-9 mol/mL, p = 0.039; 3447.00 ± 3423.47 pg/mL vs. 35.33 ± 79.01 pg/mL, p = 0.046, respectively). TGF-β2 levels were not significantly different between groups (2222.71 ± 1151.25 pg/mL for the chorioretinal vascular disease group vs. 1918.83 ± 744.01 pg/mL for the control group, p = 0.62). The concentration of HTRA1 was strongly associated with TGF-β2 levels in the vitreous humor, independent of VEGF (r = 0.80, p = 0.0010). Conclusions: We revealed that vitreous HTRA1 was increased in patients with chorioretinal vascular diseases and strongly correlated with TGF-β2.
Collapse
Affiliation(s)
- Yoko Fukushima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Suita 565-0871, Osaka, Japan
| | - Shizuka Takahashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Department of Ophthalmology, Higashiosaka City Medical Center, Higashiosaka 578-8588, Osaka, Japan
| | | | - Tatsuya Inoue
- Daiichi Sankyo Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan
| | - Yusuke Fujieda
- Daiichi Sankyo Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan
| | - Toshiyuki Sato
- Daiichi Sankyo Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan
| | - Shingo Noguchi
- Daiichi Sankyo Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan
| | - Motokazu Tsujikawa
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Hirokazu Sakaguchi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu 501-1194, Gifu, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Suita 565-0871, Osaka, Japan
| |
Collapse
|
4
|
Zhang Q, Yan X, Han H, Wang Y, Sun J. Pericyte in retinal vascular diseases: A multifunctional regulator and potential therapeutic target. FASEB J 2024; 38:e23679. [PMID: 38780117 DOI: 10.1096/fj.202302624r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
5
|
Haase A, Miroschnikov N, Klein S, Doege A, Dünker N, Van Meenen D, Junker A, Göpferich A, Apaolaza PS, Busch MA. New retinoblastoma (RB) drug delivery approaches: anti-tumor effect of atrial natriuretic peptide (ANP)-conjugated hyaluronic-acid-coated gold nanoparticles for intraocular treatment of chemoresistant RB. Mol Oncol 2024; 18:832-849. [PMID: 38217258 PMCID: PMC10994242 DOI: 10.1002/1878-0261.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
Intraocular drug delivery is a promising approach for treatment of ocular diseases. Chemotherapeutic drugs used in retinoblastoma (RB) treatment often lead to side effects and drug resistances. Therefore, new adjuvant therapies are needed to treat chemoresistant RBs. Biocompatible gold nanoparticles (GNPs) have unique antiangiogenic properties and can inhibit cancer progression. The combination of gold and low-molecular-weight hyaluronan (HA) enhances the stability of GNPs and promotes the distribution across ocular barriers. Attached to HA-GNPs, the atrial natriuretic peptide (ANP), which diminishes neovascularization in the eye, is a promising new therapeutic agent for RB treatment. In the study presented, we established ANP-coupled HA-GNPs and investigated their effect on the tumor formation potential of chemoresistant RB cells in an in ovo chicken chorioallantoic membrane model and an orthotopic in vivo RB rat eye model. Treatment of etoposide-resistant RB cells with ANP-HA-GNPs in ovo resulted in significantly reduced tumor growth and angiogenesis compared with controls. The antitumorigenic effect could be verified in the rat eye model, including a noninvasive application form via eye drops. Our data suggest that ANP-HA-GNPs represent a new minimally invasive, adjuvant treatment option for RB.
Collapse
Affiliation(s)
- André Haase
- Department of Neuroanatomy, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Institute for Anatomy IIUniversity of Duisburg‐Essen, Medical FacultyGermany
| | - Natalia Miroschnikov
- Department of Neuroanatomy, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Institute for Anatomy IIUniversity of Duisburg‐Essen, Medical FacultyGermany
| | - Stefan Klein
- Department of Neuroanatomy, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Institute for Anatomy IIUniversity of Duisburg‐Essen, Medical FacultyGermany
| | - Annika Doege
- Department of Neuroanatomy, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Institute for Anatomy IIUniversity of Duisburg‐Essen, Medical FacultyGermany
| | - Nicole Dünker
- Department of Neuroanatomy, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Institute for Anatomy IIUniversity of Duisburg‐Essen, Medical FacultyGermany
| | - Dario Van Meenen
- Department of Neuroanatomy, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Institute for Anatomy IIUniversity of Duisburg‐Essen, Medical FacultyGermany
| | - Andreas Junker
- Institute of NeuropathologyUniversity of Duisburg‐Essen, Medical FacultyGermany
| | - Achim Göpferich
- Department of Pharmaceutical TechnologyUniversity of RegensburgGermany
| | - Paola Stephanie Apaolaza
- Type 1 Diabetes Pathology Research Unit, Institute of Diabetes ResearchHelmholtz Centre MunichGermany
| | - Maike Anna Busch
- Department of Neuroanatomy, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Institute for Anatomy IIUniversity of Duisburg‐Essen, Medical FacultyGermany
| |
Collapse
|
6
|
Callan A, Jha S, Valdez L, Baldado L, Tsin A. TGF-β Signaling Pathways in the Development of Diabetic Retinopathy. Int J Mol Sci 2024; 25:3052. [PMID: 38474297 PMCID: PMC10932130 DOI: 10.3390/ijms25053052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-β (TGF-β) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-β signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-β superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-β signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-β and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-β superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Tsin
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.C.); (S.J.); (L.V.); (L.B.)
| |
Collapse
|
7
|
Morimoto K, Tabata H, Takahashi R, Nakajima K. Interactions between neural cells and blood vessels in central nervous system development. Bioessays 2024; 46:e2300091. [PMID: 38135890 DOI: 10.1002/bies.202300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
The sophisticated function of the central nervous system (CNS) is largely supported by proper interactions between neural cells and blood vessels. Accumulating evidence has demonstrated that neurons and glial cells support the formation of blood vessels, which in turn, act as migratory scaffolds for these cell types. Neural progenitors are also involved in the regulation of blood vessel formation. This mutual interaction between neural cells and blood vessels is elegantly controlled by several chemokines, growth factors, extracellular matrix, and adhesion molecules such as integrins. Recent research has revealed that newly migrating cell types along blood vessels repel other preexisting migrating cell types, causing them to detach from the blood vessels. In this review, we discuss vascular formation and cell migration, particularly during development. Moreover, we discuss how the crosstalk between blood vessels and neurons and glial cells could be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keiko Morimoto
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tabata
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Rikuo Takahashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Gebert M, Heimbucher J, Gsell VK, Keimer K, Dillinger AE, Tamm ER. Induced Attenuation of Scleral TGF-β Signaling in Mutant Mice Increases Susceptibility to IOP-Induced Optic Nerve Damage. Invest Ophthalmol Vis Sci 2024; 65:48. [PMID: 38294803 PMCID: PMC10839816 DOI: 10.1167/iovs.65.1.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose Axonal optic nerve (ON) damage in glaucoma is characteristically associated with increased amounts of active transforming growth factor-beta 2 (TGF-β2) in the ON head. Here we investigated the functional role of scleral TGF-β signaling in glaucoma. Methods A deficiency of Tgfbr2, which encodes for TGF-β receptor type II (TGF-βRII), the essential receptor for canonical TGF-β signaling, was induced in fibroblasts (including those of the sclera) of mutant mice. To this end, 5-week-old mice were treated with tamoxifen eye drops. Experimental glaucoma was induced in 8-week-old mice using a magnetic microbead (MB) model. After 6 weeks of high intraocular pressure (IOP), the ON axons and their somata in the retina were labeled by paraphenylenediamine (PPD) and RNA-binding protein with multiple splicing (RBPMS) immunohistochemistry, respectively, and quantified. Results Tamoxifen treatment resulted in a significant decrease of TGF-βRII and its mRNA in the sclera. After 6 weeks of high IOP, reduced numbers of PPD-stained ON axons were seen in MB-injected eyes in comparison with not-injected contralateral eyes. Moreover, MB injection also led to a decrease of retinal ganglion cell (RGC) somata as seen in RBPMS-stained retinal wholemounts. Axon loss and RGC loss were significantly higher in mice with a fibroblast specific deficiency of TGF-βRII in comparison with control animals. Conclusions We conclude that the ablation of scleral TGF-β signaling increases the susceptibility to IOP-induced ON damage. Scleral TGF-β signaling in mutant mice appears to be beneficial for ON axon survival in experimentally induced glaucoma.
Collapse
Affiliation(s)
- Magdalena Gebert
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Johanna Heimbucher
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Valentina K. Gsell
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Kristof Keimer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Andrea E. Dillinger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Bohley M, Dillinger AE, Braunger BM, Tamm ER, Goepferich A. Intravenous injection of cyclosporin A loaded lipid nanocapsules fights inflammation and immune system activation in a mouse model of diabetic retinopathy. Drug Deliv Transl Res 2023; 13:2807-2818. [PMID: 37208562 PMCID: PMC10545584 DOI: 10.1007/s13346-023-01350-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Inflammation and immune system activation are key pathologic events in the onset and escalation of diabetic retinopathy (DR). Both are driven by cytokines and complement originating from the retinal pigment epithelium (RPE). Despite the RPE's pivotal role, there is no therapeutic tool to specifically interfere with the RPE-related pathomechanism. A therapy that addresses RPE cells and counteracts inflammation and immune response would be of paramount value for the early treatment of DR, where currently are no specific therapies available. Here, we utilized lipoprotein-mimetic lipid nanocapsules to deliver the anti-inflammatory and immunosuppressive drug cyclosporin A (CsA) to RPE cells. Using a mouse model of DR that mirrors all pathologic aspects of human DR, we demonstrate that intravenously applied CsA-loaded lipid nanocapsules comprehensively counteract inflammation and immune system activation. One single injection suppressed the expression of pro-inflammatory cytokines, dampened macrophage infiltration, and prevented macrophage and microglia activation in eyes with DR. This work shows that CsA-loaded lipid nanocapsules can offer new avenues for the treatment of DR.
Collapse
Affiliation(s)
- Marilena Bohley
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, 93053, Germany.
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
| | - Andrea E Dillinger
- Department of Human Anatomy and Embryology, University of Regensburg, Regensburg, 93053, Germany
| | - Barbara M Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Wuerzburg, Würzburg, 97070, Germany
| | - Ernst R Tamm
- Department of Human Anatomy and Embryology, University of Regensburg, Regensburg, 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
10
|
Chen C, Ding P, Yan W, Wang Z, Lan Y, Yan X, Li T, Han J. Pharmacological roles of lncRNAs in diabetic retinopathy with a focus on oxidative stress and inflammation. Biochem Pharmacol 2023; 214:115643. [PMID: 37315816 DOI: 10.1016/j.bcp.2023.115643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is a complication caused by abnormal glucose metabolism, which affects the vision and quality of life of patients and severely impacts the society at large.DR has a complex pathogenic process. Evidence from multiple studies have shown that oxidative stress and inflammation play pivotal roles in DR.Additionally, with the rapid development of various genetic detection methods, the abnormal expression of long non-coding RNAs (lncRNAs) have been confirmed to promote the development of DR.Research has demonstrated the potential of lncRNAs as ideal biomarkers and theranostic targets in DR. In this narrative review, we will focus on the research results on mechanisms underlying DR, list lncRNAs confirmed to be closely related to these mechanisms, and discuss their potential clinical application value and limitations.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China; Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| |
Collapse
|
11
|
Braunger BM, Gießl A, Schlötzer-Schrehardt U. The Blood-ocular Barriers and their Dysfunction: Anatomy, Physiology, Pathology. Klin Monbl Augenheilkd 2023; 240:650-661. [PMID: 37207638 DOI: 10.1055/a-2063-8957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Complex barriers comprise the blood-aqueous (BAB) and the blood-retinal barrier (BRB), and separate anterior and posterior eye chambers, vitreous body, and sensory retina from the circulation. They prevent pathogens and toxins from entering the eye, control movement of fluid, proteins, and metabolites, and contribute to the maintenance of the ocular immune status. Morphological correlates of blood-ocular barriers are tight junctions between neighboring endothelial and epithelial cells, which function as gatekeepers of the paracellular transport of molecules, thereby limiting their uncontrolled access to ocular chambers and tissues. The BAB is composed of tight junctions between endothelial cells of the iris vasculature, endothelial cells of Schlemm's canal inner wall, and cells of the nonpigmented ciliary epithelium. The BRB consists of tight junctions between endothelial cells of the retinal vessels (inner BRB) and epithelial cells of the retinal pigment epithelium (outer BRB). These junctional complexes respond rapidly to pathophysiological changes, thus enabling vascular leakage of blood-derived molecules and inflammatory cells into ocular tissues and chambers. Blood-ocular barrier function, which can be clinically measured by laser flare photometry or fluorophotometry, is compromised in traumatic, inflammatory, or infectious processes, but also frequently contributes to the pathophysiology of chronic diseases of the anterior eye segment and the retina, as exemplified by diabetic retinopathy and age-related macular degeneration.
Collapse
Affiliation(s)
- Barbara M Braunger
- Institut für Anatomie und Zellbiologie, Julius-Maximilians-Universität Würzburg, Medizinische Fakultät, Deutschland
| | - Andreas Gießl
- Augenklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Medizinische Fakultät, Erlangen, Deutschland
| | - Ursula Schlötzer-Schrehardt
- Augenklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Medizinische Fakultät, Erlangen, Deutschland
| |
Collapse
|
12
|
Fu X, Feng S, Qin H, Yan L, Zheng C, Yao K. Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Front Mol Neurosci 2023; 16:1100254. [PMID: 36756614 PMCID: PMC9899825 DOI: 10.3389/fnmol.2023.1100254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Microglia are the primary resident retinal macrophages that monitor neuronal activity in real-time and facilitate angiogenesis during retinal development. In certain retinal diseases, the activated microglia promote retinal angiogenesis in hypoxia stress through neurovascular coupling and guide neovascularization to avascular areas (e.g., the outer nuclear layer and macula lutea). Furthermore, continuously activated microglia secrete inflammatory factors and expedite the loss of the blood-retinal barrier which causes irreversible damage to the secondary death of neurons. In this review, we support microglia can be a potential cellular therapeutic target in retinopathy. We briefly describe the relevance of microglia to the retinal vasculature and blood-retinal barrier. Then we discuss the signaling pathway related to how microglia move to their destinations and regulate vascular regeneration. We summarize the properties of microglia in different retinal disease models and propose that reducing the number of pro-inflammatory microglial death and conversing microglial phenotypes from pro-inflammatory to anti-inflammatory are feasible for treating retinal neovascularization and the damaged blood-retinal barrier (BRB). Finally, we suppose that the unique properties of microglia may aid in the vascularization of retinal organoids.
Collapse
Affiliation(s)
- Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Kai Yao,
| |
Collapse
|
13
|
Noh M, Kim Y, Zhang H, Kim H, Bae CR, Lee S, Kwon YG. Oral administration of CU06-1004 attenuates vascular permeability and stabilizes neovascularization in retinal vascular diseases. Eur J Pharmacol 2023; 939:175427. [PMID: 36509133 DOI: 10.1016/j.ejphar.2022.175427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Retinal vascular diseases are the leading cause of blindness worldwide. These diseases have common disease mechanisms including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation. Treatment of these diseases with laser therapy, anti-VEGF injections and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying cause of the pathology and may have harmful side effects. Pathological processes that damage retinal vessels result in vascular occlusion and impairment of the barrier properties of retinal endothelial cells, leading to excessive vascular leakage. Therefore, a new therapeutic approach is needed for the treatment of retinal vascular disease. We were able to confirm that oral administration of CU06-1004, an endothelial dysfunction blocker, inhibited retinal vascular leakage induced by vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang2). Interestingly, oral administration of CU06-1004 prevented excessive vascular leakage in the diabetic retinopathy model. In addition, CU06-1004 inhibited angiogenesis and confirmed vascular stabilization in the oxygen-induced retinopathy model and laser-induced CNV model. Taken together, CU06-1004 could be a potential therapeutic agent for the treatment of retinal vascular diseases.
Collapse
Affiliation(s)
- Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Haiying Zhang
- R&D Department, Curacle Co. Ltd, Seoul, 06694, Republic of Korea
| | - Hyejeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Cho-Rong Bae
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sunghye Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
14
|
Geranmayeh MH, Rahbarghazi R, Saeedi N, Farhoudi M. Metformin-dependent variation of microglia phenotype dictates pericytes maturation under oxygen-glucose deprivation. Tissue Barriers 2022; 10:2018928. [PMID: 34983297 PMCID: PMC9620990 DOI: 10.1080/21688370.2021.2018928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Blood-brain barrier resident cells are in the frontline of vascular diseases. To maintain brain tissue homeostasis, a series of cells are integrated regularly to form the neurovascular unit. It is thought that microglia can switch between M1/M2 phenotypes after the initiation of different pathologies. The existence of transition between maturity and stemness features in pericytes could maintain blood-brain barrier functionality against different pathologies. In the current study, the effect of metformin on the balance of the M1/M2 microglial phenotype under oxygen-glucose deprivation conditions and the impact of microglial phenotype changes on pericyte maturation have been explored. Both microglia and pericytes were isolated from the rat brain. Data showed that microglia treatment with metformin under glucose- and oxygen-free conditions suppressed microglia shifting into the M2 phenotype (CD206+ cells) compared to the control (p < .01) and metformin-treated groups (p < .05). Incubation of pericytes with microglia-conditioned media pretreated with metformin under glucose- and oxygen-free conditions or normal conditions increased pericyte maturity. These changes coincided with the reduction of the Sox2/NG2 ratio compared to the control pericytes (p < .05). Data revealed the close microglial-pericytic interplay under the ischemic and hypoxic conditions and the importance of microglial phenotype acquisition on pericyte maturation.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran,CONTACT Mohammad Hossein Geranmayeh ; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Daneshgah St., Tabriz5166614756, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Bohley M, Dillinger AE, Schweda F, Ohlmann A, Braunger BM, Tamm ER, Goepferich A. A single intravenous injection of cyclosporin A-loaded lipid nanocapsules prevents retinopathy of prematurity. SCIENCE ADVANCES 2022; 8:eabo6638. [PMID: 36149956 PMCID: PMC9506721 DOI: 10.1126/sciadv.abo6638] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Retinopathy of prematurity (ROP) is a retinal disease that threatens the vision of prematurely born infants. Severe visual impairment up to complete blindness is caused by neovascularization and inflammation, progressively destroying the immature retina. ROP primarily affects newborns in middle- and low-income countries with limited access to current standard treatments such as intraocular drug injections and laser- or cryotherapy. To overcome these limitations, we developed a nanotherapeutic that effectively prevents ROP development with one simple intravenous injection. Its lipid nanocapsules transport the antiangiogenic and anti-inflammatory cyclosporin A efficiently into disease-driving retinal pigment epithelium cells. In a mouse model of ROP, a single intravenous injection of the nanotherapeutic prevented ROP and led to normal retinal development by counteracting neovascularization and inflammation. This nanotherapeutic approach has the potential to bring about a change of paradigm in ROP therapy and prevent millions of preterm born infants from developing ROP.
Collapse
Affiliation(s)
- Marilena Bohley
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea E. Dillinger
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Frank Schweda
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Ernst R. Tamm
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany
- Corresponding author.
| |
Collapse
|
16
|
Zhang C, Qin S, Xie H, Qiu Q, Wang H, Zhang J, Luo D, Zhang J. RO4929097, a Selective γ-Secretase Inhibitor, Inhibits Subretinal Fibrosis Via Suppressing Notch and ERK1/2 Signaling in Laser-Induced Mouse Model. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 36155746 PMCID: PMC9526367 DOI: 10.1167/iovs.63.10.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aimed to explore whether RO4929097 (RO), a specific γ-secretase inhibitor, could inhibit the subretinal fibrosis in laser-induced mouse model and the relevant molecular mechanisms. Methods Male C57BL/6J mice were used to produce choroidal neovascularization (CNV) and subretinal fibrosis by laser photocoagulation, and RO was administered intravitreally 1 day after laser induction. The sizes of CNV and subretinal fibrosis were measured and quantified in both 2D and 3D constructions. The ARPE-19 cell line and primary human RPE (phRPE) cells were treated with TGFβ1, in combination with or without RO, to examine Notch related molecules, epithelial mesenchymal transition (EMT), cell viability, migration, and contractile function, as well as the crosstalk between Notch and other EMT relevant signaling pathways. Results Intravitreal injection of RO reduced the sizes of both CNV and subretinal fibrosis in laser-induced young and old mice at day 7 and day 14 after laser induction. Moreover, EMT and Notch activation in RPE-choroid complexes from laser-induced mice were significantly attenuated by RO. In vitro, TGFβ1 activated Notch signaling and induced EMT in ARPE-19 cells, accompanied by enhanced EMT-related function, which were inhibited by RO. The inhibition of RO on EMT was further confirmed in TGFβ1-treated phRPE cells. Blockage of Notch signaling by RO could inhibit ERK1/2 signaling; whereas ERK1/2 inhibition had no effect on Notch. The action of RO was independent of Smad2/3 or p38, and co-inhibition of Notch and Smad2/3 showed synergistic effect on EMT inhibition. Conclusions RO exerts its antifibrotic effect by directly inhibiting Notch signaling and indirectly suppressing ERK1/2 signaling. Targeting Notch signaling might provide a therapeutic strategy in prevention and treatment of subretinal fibrosis in neovascular age-related macular degeneration (nAMD).
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shiyue Qin
- Department of Ophthalmology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shigatse People's Hospital, Xizang, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
17
|
Usui‐Ouchi A, Eade K, Giles S, Ideguchi Y, Ouchi Y, Aguilar E, Wei G, Marra KV, Berlow RB, Friedlander M. Deletion of Tgfβ signal in activated microglia prolongs hypoxia-induced retinal neovascularization enhancing Igf1 expression and retinal leukostasis. Glia 2022; 70:1762-1776. [PMID: 35611927 PMCID: PMC9540888 DOI: 10.1002/glia.24218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
Retinal neovascularization (NV) is the major cause of severe visual impairment in patients with ischemic eye diseases. While it is known that retinal microglia contribute to both physiological and pathological angiogenesis, the molecular mechanisms by which these glia regulate pathological NV have not been fully elucidated. In this study, we utilized a retinal microglia-specific Transforming Growth Factor-β (Tgfβ) receptor knock out mouse model and human iPSC-derived microglia to examine the role of Tgfβ signaling in activated microglia during retinal NV. Using a tamoxifen-inducible, microglia-specific Tgfβ receptor type 2 (Tgfβr2) knockout mouse [Tgfβr2 KO (ΔMG)] we show that Tgfβ signaling in microglia actively represses leukostasis in retinal vessels. Furthermore, we show that Tgfβ signaling represses expression of the pro-angiogenic factor, Insulin-like growth factor 1 (Igf1), independent of Vegf regulation. Using the mouse model of oxygen-induced retinopathy (OIR) we show that Tgfβ signaling in activated microglia plays a role in hypoxia-induced NV where a loss in Tgfβ signaling microglia exacerbates and prolongs retinal NV in OIR. Using human iPSC-derived microglia cells in an in vitro assay, we validate the role of Transforming Growth Factor-β1 (Tgfβ1) in regulating Igf1 expression in hypoxic conditions. Finally, we show that Tgfβ signaling in microglia is essential for microglial homeostasis and that the disruption of Tgfβ signaling in microglia exacerbates retinal NV in OIR by promoting leukostasis and Igf1 expression.
Collapse
Affiliation(s)
- Ayumi Usui‐Ouchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of OphthalmologyJuntendo University Urayasu HospitalChibaJapan
| | - Kevin Eade
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| | - Sarah Giles
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| | - Yoichiro Ideguchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Yasuo Ouchi
- Gene Expression LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Department of Regenerative MedicineChiba University Graduate School of MedicineChibaJapan
| | - Edith Aguilar
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Guoqin Wei
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Kyle V. Marra
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Rebecca B. Berlow
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Martin Friedlander
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
18
|
Shityakov S, Nagai M, Ergün S, Braunger BM, Förster CY. The Protective Effects of Neurotrophins and MicroRNA in Diabetic Retinopathy, Nephropathy and Heart Failure via Regulating Endothelial Function. Biomolecules 2022; 12:biom12081113. [PMID: 36009007 PMCID: PMC9405668 DOI: 10.3390/biom12081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.
Collapse
Affiliation(s)
- Sergey Shityakov
- Division of Chemoinformatics, Infochemistry Scientific Center, Lomonosova Street 9, 191002 Saint-Petersburg, Russia
| | - Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, 2-1-1 Kabeminami, Aaskita-ku, Hiroshima 731-0293, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| |
Collapse
|
19
|
Avramovic D, Archaimbault SA, Kemble AM, Gruener S, Lazendic M, Westenskow PD. TGFβ1 Induces Senescence and Attenuated VEGF Production in Retinal Pericytes. Biomedicines 2022; 10:biomedicines10061404. [PMID: 35740425 PMCID: PMC9219633 DOI: 10.3390/biomedicines10061404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disease of the retina and a serious complication of type I and type II diabetes mellitus. DR affects working-age populations and can cause permanent vision loss if left untreated. The standard of care for proliferative DR is inhibiting VEGF. However, the mechanisms that induce excessive VEGF production in the retina remain elusive, although some evidence links elevated VEGF in the diabetic retina with local and systemic TGFβ1 upexpression. Here, we present evidence from animal models of disease suggesting that excessive TGFβ1 production in the early DR is correlated with VEGF mRNA and protein production by senescent pericytes and other retinal cells. Collectively, these results confirm that TGFβ1 is strongly implicated in the vascular complications of DR.
Collapse
Affiliation(s)
- Dragana Avramovic
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
- Correspondence: (D.A.); (P.D.W.)
| | - Sébastien A. Archaimbault
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Alicia M. Kemble
- Neuroscience and Rare Disease, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Sabine Gruener
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Mirjana Lazendic
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Peter D. Westenskow
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
- Correspondence: (D.A.); (P.D.W.)
| |
Collapse
|
20
|
Deficiency in Retinal TGFβ Signaling Aggravates Neurodegeneration by Modulating Pro-Apoptotic and MAP Kinase Pathways. Int J Mol Sci 2022; 23:ijms23052626. [PMID: 35269767 PMCID: PMC8910086 DOI: 10.3390/ijms23052626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Transforming growth factor β (TGFβ) signaling has manifold functions such as regulation of cell growth, differentiation, migration, and apoptosis. Moreover, there is increasing evidence that it also acts in a neuroprotective manner. We recently showed that TGFβ receptor type 2 (Tgfbr2) is upregulated in retinal neurons and Müller cells during retinal degeneration. In this study we investigated if this upregulation of TGFβ signaling would have functional consequences in protecting retinal neurons. To this end, we analyzed the impact of TGFβ signaling on photoreceptor viability using mice with cell type-specific deletion of Tgfbr2 in retinal neurons and Müller cells (Tgfbr2ΔOC) in combination with a genetic model of photoreceptor degeneration (VPP). We examined retinal morphology and the degree of photoreceptor degeneration, as well as alterations of the retinal transcriptome. In summary, retinal morphology was not altered due to TGFβ signaling deficiency. In contrast, VPP-induced photoreceptor degeneration was drastically exacerbated in double mutant mice (Tgfbr2ΔOC; VPP) by induction of pro-apoptotic genes and dysregulation of the MAP kinase pathway. Therefore, TGFβ signaling in retinal neurons and Müller cells exhibits a neuroprotective effect and might pose promising therapeutic options to attenuate photoreceptor degeneration in humans.
Collapse
|
21
|
De Rossi G, Da Vitoria Lobo ME, Greenwood J, Moss SE. LRG1 as a novel therapeutic target in eye disease. Eye (Lond) 2022; 36:328-340. [PMID: 34987199 PMCID: PMC8807626 DOI: 10.1038/s41433-021-01807-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Retinal and choroidal diseases are major causes of blindness and visual impairment in the developed world and on the rise due to an ageing population and diabetes epidemic. Standard of care is centred around blockade of vascular endothelial growth factor (VEGF), but despite having halved the number of patients losing sight, a high rate of patient non-response and loss of efficacy over time are key challenges. Dysregulation of vascular homoeostasis, coupled with fibrosis and inflammation, are major culprits driving sight-threatening eye diseases. Improving our knowledge of these pathological processes should inform the development of new drugs to address the current clinical challenges for patients. Leucine-rich α-2 glycoprotein 1 (LRG1) is an emerging key player in vascular dysfunction, inflammation and fibrosis. Under physiological conditions, LRG1 is constitutively expressed by the liver and granulocytes, but little is known about its normal biological function. In pathological scenarios, such as diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD), its expression is ectopically upregulated and it acquires a much better understood pathogenic role. Context-dependent modulation of the transforming growth-factor β (TGFβ) pathway is one of the main activities of LRG1, but additional roles have recently been emerging. This review aims to highlight the clinical and pre-clinical evidence for the pathogenic contribution of LRG1 to vascular retinopathies, as well as extrapolate from other diseases, functions which may be relevant to eye disease. Finally, we will provide a current update on the development of anti-LRG1 therapies for the treatment of nvAMD.
Collapse
Affiliation(s)
- Giulia De Rossi
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
22
|
Maurissen TL, Pavlou G, Bichsel C, Villaseñor R, Kamm RD, Ragelle H. Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature. J Pers Med 2022; 12:jpm12020148. [PMID: 35207637 PMCID: PMC8876566 DOI: 10.3390/jpm12020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood–brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules can be accompanied by neurodegeneration. Therefore, pre-clinical research requires human in vitro models that elucidate pathophysiological mechanisms and support drug discovery, to add to animal in vivo modeling that poorly predict patient responses. Advanced cellular models such as microphysiological systems (MPS) recapitulate tissue organization and function in many organ-specific contexts, providing physiological relevance, potential for customization to different population groups, and scalability for drug screening purposes. While human-based MPS have been developed for tissues such as lung, gut, brain and tumors, few comprehensive models exist for ocular tissues and iBRB modeling. Recent BBB in vitro models using human cells of the neurovascular unit (NVU) showed physiological morphology and permeability values, and reproduced brain neurological disorder phenotypes that could be applicable to modeling the iBRB. Here, we describe similarities between iBRB and BBB properties, compare existing neurovascular barrier models, propose leverage of MPS-based strategies to develop new iBRB models, and explore potentials to personalize cellular inputs and improve pre-clinical testing.
Collapse
Affiliation(s)
- Thomas L. Maurissen
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
| | - Colette Bichsel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Roche Pharma Research and Early Development, Institute for Translational Bioengineering, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA
- Correspondence: (R.D.K.); (H.R.)
| | - Héloïse Ragelle
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Correspondence: (R.D.K.); (H.R.)
| |
Collapse
|
23
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
24
|
Ocular TGF- β, Matrix Metalloproteinases, and TIMP-1 Increase with the Development and Progression of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Mediators Inflamm 2021; 2021:9811361. [PMID: 34257518 PMCID: PMC8257377 DOI: 10.1155/2021/9811361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
Diabetic retinopathy (DR) is a sight-threatening late complication of diabetes mellitus (DM). Even though its pathophysiology has not been fully elucidated, several studies suggested a role for transforming growth factor- (TGF-) β, matrix metalloproteinases (MMPs), and tissue inhibitors of matrix metalloproteinase (TIMP) in the onset and progression of the disease. Consequently, the aim of this study was to analyze the concentrations of TGF-β1, TGF-β2, TGF-β3, MMP-3, MMP-9, and TIMP-1 in patients with different stages of DR in order to identify stage-specific changes in their concentrations during the progression of the disease. Serum and aqueous humor (AH) samples were collected during intraocular surgery, and eyes were classified into the following groups: healthy controls (n = 17), diabetic patients with non-apparent DR (n = 23), mild/moderate nonproliferative DR (NPDR) (n = 13), and advanced NPDR/proliferative DR (PDR) without vitreal hemorrhage (n = 14). None of the patients had been under anti-VEGF or laser treatment within six months prior to surgery. In the AH, TGF-β1 levels increased in advanced NPDR/PDR by a factor of 5.5 compared to the control group. Similarly, an increase in MMP-3 and TIMP-1 levels in the AH was evident in the later stages of DR, corresponding to a 7.7- and 2.4-fold increase compared to the control group, respectively, whereas serum levels of the studied proteins remained similar. In conclusion, increased concentrations of TGF-β1, MMP-3, and TIMP-1 in the AH, but not in the serum, in advanced NPDR/PDR indicate that the intraocular regulation for these cytokines is independent of the systemic one and suggest their involvement in the progression of DR.
Collapse
|
25
|
Bielmeier CB, Roth S, Schmitt SI, Boneva SK, Schlecht A, Vallon M, Tamm ER, Ergün S, Neueder A, Braunger BM. Transcriptional Profiling Identifies Upregulation of Neuroprotective Pathways in Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22126307. [PMID: 34208383 PMCID: PMC8231189 DOI: 10.3390/ijms22126307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-β regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-β, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and Müller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-β, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.
Collapse
Affiliation(s)
- Christina B. Bielmeier
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Saskia Roth
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Sabrina I. Schmitt
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany; (S.I.S.); (E.R.T.)
| | - Stefaniya K. Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, D-79078 Freiburg, Germany;
| | - Anja Schlecht
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Mario Vallon
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany; (S.I.S.); (E.R.T.)
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Andreas Neueder
- Department of Neurology, University of Ulm, D-89069 Ulm, Germany;
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
- Correspondence: ; Tel.: +49-931-31-84387; Fax: +49-931-31-82087
| |
Collapse
|
26
|
Mitra MS, Lancaster K, Adedeji AO, Palanisamy GS, Dave RA, Zhong F, Holdren MS, Turley SJ, Liang WC, Wu Y, Meng YG, Vernes JM, Schutten MM. A Potent Pan-TGFβ Neutralizing Monoclonal Antibody Elicits Cardiovascular Toxicity in Mice and Cynomolgus Monkeys. Toxicol Sci 2021; 175:24-34. [PMID: 32077954 DOI: 10.1093/toxsci/kfaa024] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor β (TGFβ) signaling has been recently shown to reduce antitumor response to PD-L1 blockade, leading to a renewed enthusiasm in developing anti-TGFβ therapies for potential combination with cancer immunotherapy agents. Inhibition of TGFβ signaling in nonclinical toxicology species is associated with serious adverse toxicities including cardiac valvulopathies and anemia. Previously, cardiovascular toxicities have been thought to be limited to small molecule inhibitors of TGFβ receptor and not considered to be a liability associated with pan-TGFβ neutralizing monoclonal antibodies (mAbs). Here, we report the toxicity findings associated with a potent pan-TGFβ neutralizing mAb (pan-TGFβ mAb; neutralizes TGFβ1, 2, and 3) after 5 weekly intravenous doses of 10, 30, and 100 mg/kg, followed by a 4-week recovery period, in mice and cynomolgus monkeys. Mortality was observed due to acute bleeding and cardiovascular toxicity in mice at ≥ 30 mg/kg and prolonged menstruation in female monkeys at 100 mg/kg. Additional findings considered to be on-target exaggerated pharmacology included generalized bleeding and cardiovascular toxicity in mice and monkeys; histopathologic changes in the teeth, tongue, and skin in mice; and abnormal wound healing and microscopic pathology in the bone in monkeys. Importantly, our data indicate that the cardiovascular toxicities associated with the inhibition of TGFβ signaling are not limited to small molecule inhibitors but are also observed following administration of a potent pan-TGFβ inhibiting mAb.
Collapse
Affiliation(s)
- Mayur S Mitra
- Genentech Inc, South San Francisco, California 94080
| | | | | | | | - Rutwij A Dave
- Genentech Inc, South San Francisco, California 94080
| | - Fiona Zhong
- Genentech Inc, South San Francisco, California 94080
| | | | | | | | - Yan Wu
- Genentech Inc, South San Francisco, California 94080
| | - Y Gloria Meng
- Genentech Inc, South San Francisco, California 94080
| | | | | |
Collapse
|
27
|
Wu D, Kanda A, Liu Y, Noda K, Murata M, Ishida S. Involvement of Müller Glial Autoinduction of TGF-β in Diabetic Fibrovascular Proliferation Via Glial-Mesenchymal Transition. Invest Ophthalmol Vis Sci 2021; 61:29. [PMID: 33369638 PMCID: PMC7774059 DOI: 10.1167/iovs.61.14.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Müller glial–mesenchymal transition (GMT) is reported as the fibrogenic mechanism promoted by TGF-β–SNAIL axis in Müller cells transdifferentiated into myofibroblasts. Here we show the multifaceted involvement of TGF-β in diabetic fibrovascular proliferation via Müller GMT and VEGF-A production. Methods Surgically excised fibrovascular tissues from the eyes of patients with proliferative diabetic retinopathy were processed for immunofluorescence analyses of TGF-β downstream molecules. Human Müller glial cells were used to evaluate changes in gene and protein expression with real-time quantitative PCR and ELISA, respectively. Immunoblot analyses were performed to detect TGF-β signal activation. Results Müller glial cells in patient fibrovascular tissues were immunopositive for GMT-related molecular markers, including SNAIL and smooth muscle protein 22, together with colocalization of VEGF-A and TGF-β receptors. In vitro administration of TGF-β1/2 upregulated TGFB1 and TGFB2, both of which were suppressed by inhibitors for nuclear factor-κB, glycogen synthase kinase-3, and p38 mitogen-activated protein kinase. Of the various profibrotic cytokines, TGF-β1/2 application exclusively induced Müller glial VEGFA mRNA expression, which was decreased by pretreatment with small interfering RNA for SMAD2 and inhibitors for p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Supporting these findings, TGF-β1/2 stimulation to Müller cells increased the phosphorylation of these intracellular signaling molecules, all of which were also activated in Müller glial cells in patient fibrovascular tissues. Conclusions This study underscored the significance of Müller glial autoinduction of TGF-β as a pathogenic cue to facilitate diabetic fibrovascular proliferation via TGF-β–driven GMT and VEGF-A–driven angiogenesis.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ye Liu
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Miyuki Murata
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
García-Bermúdez MY, Freude KK, Mouhammad ZA, van Wijngaarden P, Martin KK, Kolko M. Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets. Front Neurol 2021; 12:624983. [PMID: 33796062 PMCID: PMC8007906 DOI: 10.3389/fneur.2021.624983] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide, affecting ~80 million people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial disease, and lowering intraocular pressure (IOP) is the only treatment that has been shown to slow the progression of the condition. However, a significant number of glaucoma patients continue to go blind despite intraocular pressure-lowering treatment (2). Thus, the need for alternative treatment strategies is indisputable. Accumulating evidence suggests that glial cells play a significant role in supporting RGC function and that glial dysfunction may contribute to optic nerve disease. Here, we review recent advances in understanding the role of glial cells in the pathophysiology of glaucoma. A particular focus is on the dynamic and essential interactions between glial cells and RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.
Collapse
Affiliation(s)
| | - Kristine K Freude
- Department for Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab A Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Keith K Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
29
|
Dillinger AE, Kuespert S, Froemel F, Tamm ER, Fuchshofer R. CCN2/CTGF promotor activity in the developing and adult mouse eye. Cell Tissue Res 2021; 384:625-641. [PMID: 33512643 PMCID: PMC8211604 DOI: 10.1007/s00441-020-03332-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022]
Abstract
CCN2/CTGF is a matricellular protein that is known to enhance transforming growth factor-β signaling and to induce a myofibroblast-like phenotype in a variety of cell types. Here, we investigated Ccn2/Ctgf promotor activity during development and in the adult mouse eye, using CTGFLacZ/+ mice in which the β-galactosidase reporter gene LacZ had been inserted into the open reading frame of Ccn2/Ctgf. Promotor activity was assessed by staining for β-galactosidase activity and by immunolabeling using antibodies against β-galactosidase. Co-immunostaining using antibodies against glutamine synthetase, glial fibrillary acidic protein, choline acetyltransferase, and CD31 was applied to identify specific cell types. Ccn2/Ctgf promotor activity was intense in neural crest-derived cells differentiating to corneal stroma and endothelium, and to the stroma of choroid, iris, ciliary body, and the trabecular meshwork during development. In the adult eye, a persistent and very strong promotor activity was present in the trabecular meshwork outflow pathways. In addition, endothelial cells of Schlemm’s canal, and of retinal and choroidal vessels, retinal astrocytes, Müller glia, and starburst amacrine cells were stained. Very strong promoter activity was seen in the astrocytes of the glial lamina at the optic nerve head. We conclude that CCN2/CTGF signaling is involved in the processes that govern neural crest morphogenesis during ocular development. In the adult eye, CCN2/CTGF likely plays an important role for the trabecular meshwork outflow pathways and the glial lamina of the optic nerve head.
Collapse
Affiliation(s)
- Andrea E Dillinger
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Sabrina Kuespert
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Franziska Froemel
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
30
|
Pericyte-Endothelial Interactions in the Retinal Microvasculature. Int J Mol Sci 2020; 21:ijms21197413. [PMID: 33049983 PMCID: PMC7582747 DOI: 10.3390/ijms21197413] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Retinal microvasculature is crucial for the visual function of the neural retina. Pericytes and endothelial cells (ECs) are the two main cellular constituents in the retinal microvessels. Formation, maturation, and stabilization of the micro-vasculatures require pericyte-endothelial interactions, which are perturbed in many retinal vascular disorders, such as retinopathy of prematurity, retinal vein occlusion, and diabetic retinopathy. Understanding the cellular and molecular mechanisms of pericyte-endothelial interaction and perturbation can facilitate the design of therapeutic intervention for the prevention and treatment of retinal vascular disorders. Pericyte-endothelial interactions are indispensable for the integrity and functionality of retinal neurovascular unit (NVU), including vascular cells, retinal neurons, and glial cells. The essential autocrine and paracrine signaling pathways, such as Vascular endothelial growth factor (VEGF), Platelet-derived growth factor subunit B (PDGFB), Notch, Angipointein, Norrin, and Transforming growth factor-beta (TGF-β), have been well characterized for the regulation of pericyte-endothelial interactions in the neo-vessel formation processes (vasculogenesis and angiogenesis) during embryonic development. They also play a vital role in stabilizing and remodeling mature vasculature under pathological conditions. Awry signals, aberrant metabolisms, and pathological conditions, such as oxidative stress and inflammation, can disrupt the communication between pericytes and endothelial cells, thereby resulting in the breakdown of the blood-retinal barrier (BRB) and other microangiopathies. The emerging evidence supports extracellular exosomes' roles in the (mis)communications between the two cell types. This review summarizes the essential knowledge and updates about new advancements in pericyte-EC interaction and communication, emphasizing the retinal microvasculature.
Collapse
|
31
|
Inducers of the endothelial cell barrier identified through chemogenomic screening in genome-edited hPSC-endothelial cells. Proc Natl Acad Sci U S A 2020; 117:19854-19865. [PMID: 32759214 DOI: 10.1073/pnas.1911532117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The blood-retina barrier and blood-brain barrier (BRB/BBB) are selective and semipermeable and are critical for supporting and protecting central nervous system (CNS)-resident cells. Endothelial cells (ECs) within the BRB/BBB are tightly coupled, express high levels of Claudin-5 (CLDN5), a junctional protein that stabilizes ECs, and are important for proper neuronal function. To identify novel CLDN5 regulators (and ultimately EC stabilizers), we generated a CLDN5-P2A-GFP stable cell line from human pluripotent stem cells (hPSCs), directed their differentiation to ECs (CLDN5-GFP hPSC-ECs), and performed flow cytometry-based chemogenomic library screening to measure GFP expression as a surrogate reporter of barrier integrity. Using this approach, we identified 62 unique compounds that activated CLDN5-GFP. Among them were TGF-β pathway inhibitors, including RepSox. When applied to hPSC-ECs, primary brain ECs, and retinal ECs, RepSox strongly elevated barrier resistance (transendothelial electrical resistance), reduced paracellular permeability (fluorescein isothiocyanate-dextran), and prevented vascular endothelial growth factor A (VEGFA)-induced barrier breakdown in vitro. RepSox also altered vascular patterning in the mouse retina during development when delivered exogenously. To determine the mechanism of action of RepSox, we performed kinome-, transcriptome-, and proteome-profiling and discovered that RepSox inhibited TGF-β, VEGFA, and inflammatory gene networks. In addition, RepSox not only activated vascular-stabilizing and barrier-establishing Notch and Wnt pathways, but also induced expression of important tight junctions and transporters. Taken together, our data suggest that inhibiting multiple pathways by selected individual small molecules, such as RepSox, may be an effective strategy for the development of better BRB/BBB models and novel EC barrier-inducing therapeutics.
Collapse
|
32
|
Apaolaza PS, Busch M, Asin-Prieto E, Peynshaert K, Rathod R, Remaut K, Dünker N, Göpferich A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp Eye Res 2020; 198:108151. [PMID: 32721426 DOI: 10.1016/j.exer.2020.108151] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Due to the unique anatomical structure of the eye, ocular drug delivery is a promising delivery route for the treatment of several ocular diseases, such as the ocular neovascularization that contributes to diabetic retinopathy. This disease is triggered by inflammation, retinal ischemia, and/or deposits of advanced-glycation end-products (AGEs), as well as increased levels of vascular endothelial growth factor (VEGF), interleukins, or reactive oxygen species (ROS). Gold has unique antioxidant and antiangiogenic properties and can inhibit angiogenic molecules. Furthermore, gold nanoparticles (GNPs) are not only biocompatible, they are easy to synthesize, they absorb and scatter visible light, and they can be made with precise control over size and shape. GNPs are an excellent candidate for ocular drug delivery because they can be conjugated to an extraordinarily diverse array of different biomolecules, and surface functionalization can improve the mobility of GNPs across the physiological barriers of the eye, such as the vitreous humour or the inner limiting membrane. For this purpose, we employed low molecular weight hyaluronan (HA) to increase the mobility of the nanoparticles as well as target them to HA receptors that are expressed in different cells of the eye. In this study, the combination of gold and HA enhanced the stability of the whole carrier and promoted their distribution across ocular tissues and barriers to reach the retina. Moreover, analysis in vitro, ex vivo, and in ovo revealed the protective and antiangiogenic effect of GNPs as inhibitors of AGEs-mediated- retinal pigment epithelial cell death and neovascularization. We demonstrated that conjugation with HA enhances GNP stability and distribution due to a specific CD44 receptor interaction. The capacity of HA-GNPs to distribute through the vitreous humour and their avidity for the deeper retinal layers ex vivo, suggest that HA-GNPs are a promising delivery system for the treatment of ocular neovascularization and related disorders.
Collapse
Affiliation(s)
- P S Apaolaza
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany
| | - M Busch
- Medical Faculty, Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Hufelandstraße. 55, D-45122, Essen, Germany
| | - E Asin-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea s/n, 31008, Pamplona, Spain
| | - K Peynshaert
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - R Rathod
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany
| | - K Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - N Dünker
- Medical Faculty, Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Hufelandstraße. 55, D-45122, Essen, Germany
| | - A Göpferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany.
| |
Collapse
|
33
|
Role of TGF-Beta1/SMAD2/3 Pathway in Retinal Outer Deep Vascular Plexus and Photoreceptor Damage in Rat 50/10 Oxygen-Induced Retinopathy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4072319. [PMID: 31240212 PMCID: PMC6556365 DOI: 10.1155/2019/4072319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/28/2019] [Accepted: 04/28/2019] [Indexed: 11/25/2022]
Abstract
In retinopathy of prematurity (ROP), outer deep vascular plexus (oDVP) was the emerging field, and the mechanisms of photoreceptor dysfunction remained to be explored. ODVP and photoreceptors were related, with oDVP being part of the supplier of oxygen and nutrients to photoreceptors, while their possible relationship in ROP was not clear. TGF-beta1 has been reported indispensable in oDVP development and altered in ROP patients and animal models. We hypothesized that the TGF-beta1 alteration in rat 50/10 oxygen-induced retinopathy (OIR) model contributed to oDVP malformation and exerted consequent effects on photoreceptor development. We first explored the profile of oDVP development in rat after birth and compared the expression of TGF-beta1 and pSMAD2/3 in Normoxia and OIR groups. Afterwards, the inhibitor of the pathway, LY364947, was used to establish the OIR, OIR+LY364947, Normoxia, and Normoxia+LY364947 groups. The oDVP and photoreceptor were examined by Isolectin B4 staining, western-blot of CD31 and Rho, and electron microscopy. ODVP sprouted at postnatal day 10 (D10) and reached the edge of retina at D14. The TGF-beta1/SMAD2/3 pathway was compromised during the critical period of oDVP development. The inhibitor simulated the oDVP retardation, pericyte, and photoreceptor malformation in the Normoxia+LY364947 group and might further compromise the development of oDVP and photoreceptor in the OIR+LY364947 group. The inhibition of the TGF-beta1/SMAD2/3 pathway indicated its critical role in oDVP malformation and photoreceptor damage, suggesting a possible therapeutic target of ROP treatment.
Collapse
|
34
|
Vähätupa M, Nättinen J, Jylhä A, Aapola U, Kataja M, Kööbi P, Järvinen TAH, Uusitalo H, Uusitalo-Järvinen H. SWATH-MS Proteomic Analysis of Oxygen-Induced Retinopathy Reveals Novel Potential Therapeutic Targets. Invest Ophthalmol Vis Sci 2019; 59:3294-3306. [PMID: 30025079 DOI: 10.1167/iovs.18-23831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Oxygen-induced retinopathy (OIR) is the most widely used model for ischemic retinopathies such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). The purpose of this study was to perform the most comprehensive characterization of OIR by a recently developed technique, sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics. Methods Control and OIR retina samples collected from various time points were subjected to SWATH-MS and detailed data analysis. Immunohistochemistry from mouse retinas as well as neovascular membranes from human PDR and RVO patients were used for the detection of the localization of the proteins showing altered expression in the retina and to address their relevance to human ischemic retinopathies. Results We report the most extensive proteomic profiling of OIR to date by quantifying almost 3000 unique proteins and their expression differences between control and OIR retinas. Crystallins were the most prominent proteins induced by hypoxia in the retina, while angiogenesis related proteins such as Filamin A and nonmuscle myosin IIA stand out at the peak of angiogenesis. Majority of the changes in protein expression return to normal at P42, but there is evidence to suggest that proteins involved in neurotransmission remain at reduced level. Conclusions The results reveal new potential therapeutic targets to address hypoxia-induced pathological angiogenesis taking place in number of retinal diseases. The extensive proteomic profiling combined with pathway analysis also identifies novel molecular networks that could contribute to the pathogenesis of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland
| | - Janika Nättinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Antti Jylhä
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Ulla Aapola
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Marko Kataja
- Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Peeter Kööbi
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tero A H Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Department of Musculoskeletal Disorders, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
35
|
Ma W, Silverman SM, Zhao L, Villasmil R, Campos MM, Amaral J, Wong WT. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. eLife 2019; 8:42049. [PMID: 30666961 PMCID: PMC6342522 DOI: 10.7554/elife.42049] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Constitutive TGFβ signaling is important in maintaining retinal neurons and blood vessels and is a factor contributing to the risk for age-related macular degeneration (AMD), a retinal disease involving neurodegeneration and microglial activation. How TGFβ signaling to microglia influences pathological retinal neuroinflammation is unclear. We discovered that ablation of the TGFβ receptor, TGFBR2, in retinal microglia of adult mice induced abnormal microglial numbers, distribution, morphology, and activation status, and promoted a pathological microglial gene expression profile. TGFBR2-deficient retinal microglia induced secondary gliotic changes in Müller cells, neuronal apoptosis, and decreased light-evoked retinal function reflecting abnormal synaptic transmission. While retinal vasculature was unaffected, TGFBR2-deficient microglia demonstrated exaggerated responses to laser-induced injury that was associated with increased choroidal neovascularization, a hallmark of advanced exudative AMD. These findings demonstrate that deficiencies in TGFβ-mediated microglial regulation can drive neuroinflammatory contributions to AMD-related neurodegeneration and neovascularization, highlighting TGFβ signaling as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Sean M Silverman
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Maria M Campos
- Section on Histopathology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Juan Amaral
- Unit on Ocular Stem Cell and Translational Research, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
36
|
Wang K, Li H, Sun R, Liu C, Luo Y, Fu S, Ying Y. Emerging roles of transforming growth factor β signaling in wet age-related macular degeneration. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1-8. [PMID: 30496406 DOI: 10.1093/abbs/gmy145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the major causes of irreversible blindness among aging populations in developed countries and can be classified as dry or wet according to its progression. Wet AMD, which is characterized by angiogenesis on the choroidal membrane, is uncommonly seen but more severe. Controlling or completely inhibiting the factors that contribute to the progression of events that lead to angiogenesis may be an effective strategy for treating wet AMD. Emerging evidence has shown that transforming growth factor-β (TGF-β) signaling plays a significant role in the progression of wet AMD. In this review, we described the roles of and changes in TGF-β signaling in the development of AMD and discussed the mechanisms of the TGF-β superfamily in choroidal neovascularization (CNV) and wet AMD, including the modulation of angiogenesis-related factors, inflammation, vascular fibrosis, and immune responses, as well as cross-talk with other signaling pathways. These remarkable findings indicate that TGF-β signaling is a potential target for wet AMD treatment.
Collapse
Affiliation(s)
- Kai Wang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
- Nanchang Joint Program, Queen Mary University of London, London, UK
| | - Haoran Li
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
- Nanchang Joint Program, Queen Mary University of London, London, UK
| | - Ruipu Sun
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
- Nanchang Joint Program, Queen Mary University of London, London, UK
| | - Chaxian Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
- The Second Clinical Department, School of Medicine, Nanchang University, Nanchang, China
| | - Yunfei Luo
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
- Department of Pathophysiology, School of Medicine, Nanchang University, Nanchang, China
| | - Shuhua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
- Department of Pathophysiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Sweeney M, Foldes G. It Takes Two: Endothelial-Perivascular Cell Cross-Talk in Vascular Development and Disease. Front Cardiovasc Med 2018; 5:154. [PMID: 30425990 PMCID: PMC6218412 DOI: 10.3389/fcvm.2018.00154] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
The formation of new blood vessels is a crucial step in the development of any new tissue both during embryogenesis and in vitro models as without sufficient perfusion the tissue will be unable to grow beyond the size where nutrition and oxygenation can be managed by diffusion alone. Endothelial cells are the primary building block of blood vessels and are capable of forming tube like structures independently however they are unable to independently form functional vasculature which is capable of conducting blood flow. This requires support from other structures including supporting perivascular cells and the extracellular matrix. The crosstalk between endothelial cells and perivascular cells is vital in regulating vasculogenesis and angiogenesis and the consequences when this is disrupted can be seen in a variety of congenital and acquired disease states. This review details the mechanisms of vasculogenesis in vivo during embryogenesis and compares this to currently employed in vitro techniques. It also highlights clinical consequences of defects in the endothelial cell-pericyte cross-talk and highlights therapies which are being developed to target this pathway. Improving the understanding of the intricacies of endothelial-pericyte signaling will inform pathophysiology of multiple vascular diseases and allow the development of effective in vitro models to guide drug development and assist with approaches in tissue engineering to develop functional vasculature for regenerative medicine applications.
Collapse
Affiliation(s)
- Mark Sweeney
- Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gabor Foldes
- Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
38
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
39
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
40
|
Norrin protects optic nerve axons from degeneration in a mouse model of glaucoma. Sci Rep 2017; 7:14274. [PMID: 29079753 PMCID: PMC5660254 DOI: 10.1038/s41598-017-14423-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022] Open
Abstract
Norrin is a secreted signaling molecule activating the Wnt/β-catenin pathway. Since Norrin protects retinal neurons from experimental acute injury, we were interested to learn if Norrin attenuates chronic damage of retinal ganglion cells (RGC) and their axons in a mouse model of glaucoma. Transgenic mice overexpressing Norrin in the retina (Pax6-Norrin) were generated and crossed with DBA/2J mice with hereditary glaucoma and optic nerve axonal degeneration. One-year old DBA/2J/Pax6-Norrin animals had significantly more surviving optic nerve axons than their DBA/2J littermates. The protective effect correlated with an increase in insulin-like growth factor (IGF)-1 mRNA and an enhanced Akt phosphorylation in DBA/2J/Pax6-Norrin mice. Both mouse strains developed an increase in intraocular pressure during the second half of the first year and marked degenerative changes in chamber angle, ciliary body and iris structure. The degenerations were slightly attenuated in the chamber angle of DBA/2J/Pax6-Norrin mice, which showed a β-catenin increase in the trabecular meshwork. We conclude that high levels of Norrin and the subsequent constitutive activation of Wnt/β-catenin signaling in RGC protect from glaucomatous axonal damage via IGF-1 causing increased activity of PI3K-Akt signaling. Our results identify components of a protective signaling network preventing degeneration of optic nerve axons in glaucoma.
Collapse
|
41
|
Schlecht A, Leimbeck SV, Jägle H, Feuchtinger A, Tamm ER, Braunger BM. Deletion of Endothelial Transforming Growth Factor-β Signaling Leads to Choroidal Neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2570-2589. [PMID: 28823871 DOI: 10.1016/j.ajpath.2017.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
The molecular pathogenesis of choroidal neovascularization (CNV), an angiogenic process that critically contributes to vision loss in age-related macular degeneration, is unclear. Herein, we analyzed the role of transforming growth factor (TGF)-β signaling for CNV formation by generating a series of mutant mouse models with induced conditional deletion of TGF-β signaling in the entire eye, the retinal pigment epithelium (RPE), or the vascular endothelium. Deletion of TGF-β signaling in the eye caused CNV, irrespectively if it was ablated in newborn or 3-week-old mice. Areas of CNV showed photoreceptor degeneration, multilayered RPE, basal lamina deposits, and accumulations of monocytes/macrophages. The changes progressed, leading to marked structural and functional alterations of the retina. Although the specific deletion of TGF-β signaling in the RPE caused no obvious changes, specific deletion in vascular endothelial cells caused CNV and a phenotype similar to that observed after the deletion in the entire eye. We conclude that impairment of TGF-β signaling in the vascular endothelium of the eye is sufficient to trigger CNV formation. Our findings highlight the importance of TGF-β signaling as a key player in the development of ocular neovascularization and indicate a fundamental role of TGF-β signaling in the pathogenesis of age-related macular degeneration.
Collapse
Affiliation(s)
- Anja Schlecht
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Sarah V Leimbeck
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Herbert Jägle
- Department of Ophthalmology, University Clinic Regensburg, Regensburg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, Munich, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| | - Barbara M Braunger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
42
|
Schäfer N, Grosche A, Schmitt SI, Braunger BM, Pauly D. Complement Components Showed a Time-Dependent Local Expression Pattern in Constant and Acute White Light-Induced Photoreceptor Damage. Front Mol Neurosci 2017; 10:197. [PMID: 28676742 PMCID: PMC5476694 DOI: 10.3389/fnmol.2017.00197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
Background: Photoreceptor cell death due to extensive light exposure and induced oxidative-stress are associated with retinal degeneration. A correlated dysregulation of the complement system amplifies the damaging effects, but the local and time-dependent progression of this mechanism is not thoroughly understood. Methods: Light-induced photoreceptor damage (LD) was induced in Balb/c mice with white light illumination either for 24 h with 1000 lux (constant model) or 0.5 h with 5000 lux (acute model). Complement protein and mRNA expression levels were compared at 1 and 3 days post-LD for C1s, complement factor B (CFB), mannose binding lectin A, mannose-binding protein-associated serine protease 1 (MASP-1), C3, C4, C9, and complement factor P in retina and RPE/choroid. Histological analyses visualized apoptosis, microglia/macrophage migration, gliosis and deposition of the complement activation marker C3d. Systemic anaphylatoxin serum concentrations were determined using an ELISA. Results: Apoptosis, gliosis and microglia/macrophage migration into the outer nuclear layer showed similar patterns in both models. Local complement factor expression revealed an early upregulation of complement factor mRNA in the acute and constant light regimen at 1 day post-treatment for c1s, cfb, masp-1, c3, c4 and c9 in the RPE/choroid. However, intraretinal complement mRNA expression for c1s, cfb, c3 and c4 was increased at 1 day in the constant and at 3 days in the acute model. A corresponding regulation on protein level in the retina following both LD models was observed for C3, which was upregulated at 1 day and correlated with increased C3d staining in the ganglion cell layer and at the RPE. In the RPE/choroid C1s-complex protein detection was increased at 3 days after LD irrespectively of the light intensities used. Conclusion: LD in mouse eyes is correlated with local complement activity. The time-dependent local progression of complement regulation on mRNA and protein levels were equivalent in the acute and constant LD model, except for the intraretinal, time-dependent mRNA expression. Knowing the relative time courses of local complement expression and cellular activity can help to elucidate novel therapeutic options in retinal degeneration indicating at which time point of disease complement has to be rebalanced.
Collapse
Affiliation(s)
- Nicole Schäfer
- Department of Ophthalmology, University Hospital RegensburgRegensburg, Germany
| | - Antje Grosche
- Institute of Human Genetics, University RegensburgRegensburg, Germany
| | - Sabrina I Schmitt
- Institute of Human Anatomy and Embryology, University RegensburgRegensburg, Germany
| | - Barbara M Braunger
- Institute of Human Anatomy and Embryology, University RegensburgRegensburg, Germany
| | - Diana Pauly
- Department of Ophthalmology, University Hospital RegensburgRegensburg, Germany
| |
Collapse
|
43
|
SMAD7 deficiency stimulates Müller progenitor cell proliferation during the development of the mammalian retina. Histochem Cell Biol 2017; 148:21-32. [PMID: 28258388 DOI: 10.1007/s00418-017-1549-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 12/24/2022]
Abstract
The transforming growth factor-β (TGF-β) pathway contributes to maintain the quiescence of adult neural stem and progenitor cells in the brain. In the retina, Müller cells are discussed to represent a glial cell population with progenitor-like characteristics. Here, we aimed to investigate if elevated TGF-β signaling modulates the proliferation of Müller cells during retinal development. We generated mutant mice with a systemic, heterozygous up-regulation of TGF-β signaling by deleting its inhibitor SMAD7. We investigated apoptosis, proliferation, and differentiation of Müller cells in the developing retina. We show that a heterozygous deletion of SMAD7 results in an increased proliferation of Müller cell progenitors in the central retina at postnatal day 4, the time window when Müller cells differentiate in the mouse retina. This in turn results in a thickened retina and inner nuclear layer and a higher number of differentiated Müller cells in the more developed retina. Müller cells in mutant mice contain higher amounts of nestin than those of control animals which indicates that the increase in TGF-β signaling activity during retinal development contribute to maintain some progenitor-like characteristics in Müller cells even after their differentiation period. We conclude that TGF-β signaling influences Müller cell proliferation and differentiation during retinal development.
Collapse
|
44
|
Dagher Z, Gerhardinger C, Vaz J, Goodridge M, Tecilazich F, Lorenzi M. The Increased Transforming Growth Factor-β Signaling Induced by Diabetes Protects Retinal Vessels. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:627-638. [PMID: 28162229 PMCID: PMC5397667 DOI: 10.1016/j.ajpath.2016.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
The roles of transforming growth factor (TGF)-β in extracellular matrix production and vascular remodeling, coupled with increased TGF-β expression and signaling in diabetes, suggest TGF-β as an important contributor to the microangiopathy of diabetic retinopathy and nephropathy. To investigate whether increased TGF-β signaling could be a therapeutic target for preventing retinopathy, we used a pharmacologic approach (SM16, a selective inhibitor of the type 1 TGF-β receptor activin receptor-like kinase 5, orally active) to inhibit the increased, but not the basal, Tgf-β signaling in retinal vessels of diabetic rats. At the level of vascular gene expression, 3.5 months' diabetes induced minimal changes. Diabetes + SM16 for 3 weeks caused widespread changes in gene expression poised to enhance vascular inflammation, thrombosis, leakage, and wall instability; these changes were not observed in control rats given SM16. The synergy of diabetes and SM16 in altering gene expression was not observed in the lung. At the level of vascular network morphology, 7 months' diabetes induced no detectable changes. Diabetes + SM16 for 3 weeks caused instead distorted morphology and decreased density. Thus, in diabetes, retinal vessels become dependent on a small increase in TGF-β signaling via activin receptor-like kinase 5 to maintain early integrity. The increased TGF-β signaling may protect against rapid retinopathy progression and should not be a target of inhibitory interventions.
Collapse
Affiliation(s)
- Zeina Dagher
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Chiara Gerhardinger
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Joseph Vaz
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Michael Goodridge
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Francesco Tecilazich
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Mara Lorenzi
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
45
|
Therapeutic Effect of Novel Single-Stranded RNAi Agent Targeting Periostin in Eyes with Retinal Neovascularization. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 6:279-289. [PMID: 28325294 PMCID: PMC5363510 DOI: 10.1016/j.omtn.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 01/14/2017] [Accepted: 01/21/2017] [Indexed: 12/13/2022]
Abstract
Retinal neovascularization (NV) due to retinal ischemia remains one of the principal causes of vision impairment in patients with ischemic retinal diseases. We recently reported that periostin (POSTN) may play a role in the development of preretinal fibrovascular membranes, but its role in retinal NV has not been determined. The purpose of this study was to examine the expression of POSTN in the ischemic retinas of a mouse model of oxygen-induced retinal NV. We also studied the function of POSTN on retinal NV using Postn KO mice and human retinal endothelial cells (HRECs) in culture. In addition, we used a novel RNAi agent, NK0144, which targets POSTN to determine its effect on the development of retinal NV. Our results showed that the expression of POSTN was increased in the vascular endothelial cells, pericytes, and M2 macrophages in ischemic retinas. POSTN promoted the ischemia-induced retinal NV by Akt phosphorylation through integrin αvβ3. NK0144 had a greater inhibitory effect than canonical double-stranded siRNA on preretinal pathological NV in vivo and in vitro. These findings suggest a causal relationship between POSTN and retinal NV, and indicate a potential therapeutic role of intravitreal injection of NK0144 for retinal neovascular diseases.
Collapse
|
46
|
Madonna R, Balistreri CR, Geng YJ, De Caterina R. Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol 2017; 90:1-7. [PMID: 28137665 DOI: 10.1016/j.vph.2017.01.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
Diabetic microangiopathy, including retinopathy, is characterized by abnormal growth and leakage of small blood vessels, resulting in local edema and functional impairment of the depending tissues. Mechanisms leading to the impairment of microcirculation in diabetes are multiple and still largely unclear. However, a dysregulated vascular regeneration appears to play a key role. In addition, oxidative and hyperosmolar stress, as well as the activation of inflammatory pathways triggered by advanced glycation end-products and toll-like receptors, have been recognized as key underlying events. Here, we review recent knowledge on cellular and molecular pathways of microvascular disease in diabetes. We also highlight how new insights into pathogenic mechanisms of vascular damage in diabetes may indicate new targets for prevention and treatment.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Excellence on Aging (CesiMet), Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; The Texas Heart Institute, Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Yong-Jian Geng
- The Texas Heart Institute, Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Raffaele De Caterina
- Center of Excellence on Aging (CesiMet), Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
47
|
Stem Cells as a Promising Tool for the Restoration of Brain Neurovascular Unit and Angiogenic Orientation. Mol Neurobiol 2016; 54:7689-7705. [DOI: 10.1007/s12035-016-0286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
48
|
Warmke N, Griffin KJ, Cubbon RM. Pericytes in diabetes-associated vascular disease. J Diabetes Complications 2016; 30:1643-1650. [PMID: 27592245 DOI: 10.1016/j.jdiacomp.2016.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
Abstract
Pericytes are mural cells that support and stabilise the microvasculature, and are present in all vascular beds. Pericyte-endothelial cell crosstalk is essential in both remodelling and quiescent vasculature, and this complex interaction is often disrupted in disease states. Pericyte loss is believed to be an early hallmark of diabetes-associated microvascular disease, including retinopathy and nephropathy. Here we review the current literature defining pericyte biology in the context of diabetes-associated vascular disease, with a particular focus on whether pericytes contribute actively to disease progression. We also speculate regarding the role of pericytes in the recovery from macrovascular complications, such as critical limb ischaemia. It becomes clear that dysfunctional pericytes are likely to actively induce disease progression by causing vasoconstriction and basement membrane thickening, resulting in tissue ischaemia. Moreover, their altered interactions with endothelial cells are likely to cause abnormal and inadequate neovascularisation in diverse vascular beds. Further research is needed to identify mechanisms by which pericyte function is altered by diabetes, with a view to developing therapeutic approaches that normalise vascular function and remodelling.
Collapse
Affiliation(s)
- Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT laboratories, The University of Leeds, Clarendon Way, Leeds, LS2 9JT, United Kingdom
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT laboratories, The University of Leeds, Clarendon Way, Leeds, LS2 9JT, United Kingdom
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT laboratories, The University of Leeds, Clarendon Way, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
49
|
Wheeler SE, Lee NY. Emerging Roles of Transforming Growth Factor β Signaling in Diabetic Retinopathy. J Cell Physiol 2016; 232:486-489. [DOI: 10.1002/jcp.25506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Sarah E. Wheeler
- Division of Pharmacology; College of Pharmacy; The Ohio State University; Columbus Ohio
| | - Nam Y. Lee
- Division of Pharmacology; College of Pharmacy; The Ohio State University; Columbus Ohio
- Davis Heart Lung Research Institute; The Ohio State University; Columbus Ohio
- James Comprehensive Cancer Center; The Ohio State University; Columbus Ohio
| |
Collapse
|
50
|
Epithelial-mesenchymal transition of the retinal pigment epithelium causes choriocapillaris atrophy. Histochem Cell Biol 2016; 146:769-780. [PMID: 27372654 DOI: 10.1007/s00418-016-1461-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is commonly observed at sites of choroidal neovascularization in patients suffering from age-related macular degeneration. To learn in an experimental model how RPE EMT affects the biology of the choroidal vasculature, we studied transgenic mice (βB1-TGF-β1) with ocular overexpression of transforming growth factor-β1 (TGF-β1). RPE EMT was detectable at postnatal day (P)1 and included marked structural and functional alterations such as loss of the outer blood-retina barrier and reduced mRNA expression of the RPE-characteristic molecules Rlbp1, Rpe65, Rbp1 and Vegfa. Moreover, vascular endothelial growth factor (VEGF) was not detectable by immunohistochemistry at the RPE/choroid interface, while RPE cells stained intensely for α-smooth muscle actin. The choriocapillaris, the characteristic choroidal capillary network adjacent to the RPE, developed normally and was not obviously changed in embryonic transgenic eyes but was absent at P1 indicating its atrophy. At around the same time, photoreceptors stopped to differentiate and photoreceptor apoptosis was abundant in the second week of life. Structural changes were also seen in the retinal vasculature of transgenic animals, which did not form intraretinal vessels, and the hyaloid vasculature, which did not regress. In addition, the amounts of retinal HIF-1α and its mRNA were markedly reduced. We conclude that high amounts of active TGF-β1 in the mouse eye cause transdifferentiation of the RPE to a mesenchymal phenotype. The loss of epithelial differentiation leads to the diminished synthesis of RPE-characteristic molecules including that of VEGF. Lack of RPE-derived VEGF causes atrophy of the choriocapillaris, a scenario that disrupts photoreceptor differentiation and finally results in photoreceptor apoptosis. Lack of retinal vessel formation and of hyaloid vessel regression might be caused by the decrease in the metabolic requirements of the neuroretina leading to low amounts of retinal HIF-1α. In summary, our data indicate that failure of RPE differentiation may well precede and cause atrophy of the choriocapillaris. In contrast, RPE EMT is not sufficient to cause choroidal neovascularization.
Collapse
|