1
|
Lu X, Ge LP, Liu Z, Zhu Y, Ye D, Chang Y. CXCR6 expression predicts prognosis and immunotherapeutic benefit in muscle-invasive bladder cancer. Front Oncol 2024; 14:1498579. [PMID: 39588301 PMCID: PMC11586233 DOI: 10.3389/fonc.2024.1498579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
Background Increasing evidence suggests that the CXC chemokine receptor 6 (CXCR6) is involved in tumor progression and the regulation of tumor immunity. However, its role in muscle-invasive bladder cancer (MIBC) remains largely unexplored. Methods Data from 391 MIBC patients in the TCGA, 212 patients from GEO, 131 patients from our center, 195 patients in the IMvigor210 cohort, and single-cell RNA sequencing (scRNA-seq) data from 9 bladder cancer patients (GSE222315) were analyzed. Additionally, data from the GEPIA 2, TISCH2, TIMER2.0, and UALCAN platforms were utilized to investigate the prognostic and immunotherapeutic significance of CXCR6 in MIBC. Results We observed that CXCR6 expression was significantly reduced in bladder cancer tumors and correlated with tumor stage and grade. Low CXCR6 expression was associated with poor recurrence-free survival (RFS) and overall survival (OS) in the TCGA cohort, a finding validated in both the meta-GEO dataset and our center's cohort. Multivariate analysis confirmed that low CXCR6 expression was an independent predictor of poor OS and RFS. A nomogram incorporating CXCR6 expression and other independent prognostic factors was developed to accurately predict 3- and 5-year OS. Gene set enrichment analysis indicated that immune activation-related pathways were significantly enriched in tumors with high CXCR6 expression. CIBERSORT analysis revealed that CXCR6 expression was positively correlated with CD8+ T cells, CD4+ T cells, activated NK cells, M1 macrophages, and activated dendritic cells in TCGA, findings further validated by TIMER2.0. scRNA-seq data showed that CXCR6 was predominantly expressed in T and NK cells and facilitated T/NK-myeloid interaction via the CXCR6-CXCL16 axis. Importantly, CXCL16+ macrophages and dendritic cells recruited CXCR6+ T and NK cells, which exhibited enhanced cytotoxicity, thereby amplifying anti-tumor immunity. Clinically, in the IMvigor210 immunotherapy cohort, higher CXCR6 expression was associated with improved anti-PD-L1 therapeutic outcomes. Conclusion Our findings highlight CXCR6 as a critical biomarker for predicting prognosis and immunotherapeutic response in MIBC.
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Ping Ge
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
He R, Jiang H, Zhang C, Chen Y, Liu W, Deng X, Zhu X, Liu Y, Zheng C, Zhang Y, Shao C, Duan Y, Xu J. CXCL16 promotes proliferation of head and neck squamous cell carcinoma by regulating GPX1-mediated antioxidant levels. J Zhejiang Univ Sci B 2024; 26:92-106. [PMID: 39815613 PMCID: PMC11735913 DOI: 10.1631/jzus.b2400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 01/18/2025]
Abstract
Numerous studies have demonstrated that the high expression of CXC motif chemokine ligand 16 (CXCL16) in cancer correlates with poor prognosis, as well as tumor cell proliferation, migration, and invasion. While CXCL16 can serve as a tumor biomarker, the underlying mechanism in modulating head and neck squamous cell carcinoma (HNSCC) remains unclear. In this study, the aimed was to investigate the CXCL16 expression in HNSCC and to uncover the potential underlying mechanism. Hereby, we determined the high expression of CXCL16 in The Cancer Genome Atlas (TCGA) database, as well as in tissue samples from patients with HNSCC at our central hospital and from HNSCC cell lines. The results showed that CXCL16 knockdown inhibited the proliferation, migration, and invasion of HNSCC cells. Mechanistically, transcriptome sequencing revealed that CXCL16 may affect HNSCC cell growth by regulating the antioxidant pathway of glutathione peroxidase 1 (GPX1). The reactive oxygen species (ROS) levels were elevated in small interfering CXCL16 (si-CXCL16) cells, which may contribute to the inhibition of cell proliferation, migration, and invasion. Moreover, treatment of cells with the GPX1 inhibitor eldecalcitol (ED-71) revealed that HNSCC cell growth was significantly inhibited in the synergistic group of si-CXCL16 and GPX1 inhibitor compared to the si-CXCL16 group. In conclusion, CXCL16 contributed to the development of HNSCC cells by modulating the GPX1-mediated antioxidant pathway. Thus, targeting cellular CXCL16 expression seems to be a promising strategy for treating HNSCC.
Collapse
Affiliation(s)
- Ru He
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Hongyi Jiang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Chengchi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan Chen
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Wenshun Liu
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou 121000, China
| | - Xinyue Deng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaozheng Zhu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Yunye Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Chuanming Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Yining Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengying Shao
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanting Duan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China. ,
| |
Collapse
|
3
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Pro-inflammatory cytokines and CXC chemokines as game-changer in age-associated prostate cancer and ovarian cancer: Insights from preclinical and clinical studies' outcomes. Pharmacol Res 2024; 204:107213. [PMID: 38750677 DOI: 10.1016/j.phrs.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Prostate cancer (PC) and Ovarian cancer (OC) are two of the most common types of cancer that affect the reproductive systems of older men and women. These cancers are associated with a poor quality of life among the aged population. Therefore, finding new and innovative ways to detect, treat, and prevent these cancers in older patients is essential. Finding biomarkers for these malignancies will increase the chance of early detection and effective treatment, subsequently improving the survival rate. Studies have shown that the prevalence and health of some illnesses are linked to an impaired immune system. However, the age-associated changes in the immune system during malignancies such as PC and OC are poorly understood. Recent research has suggested that the excessive production of inflammatory immune mediators, such as interleukin-6 (IL-6), interleukin-8 (IL-8), transforming growth factor (TGF), tumor necrosis factor (TNF), CXC motif chemokine ligand 1 (CXCL1), CXC motif chemokine ligand 12 (CXCL12), and CXC motif chemokine ligand 13 (CXCL13), etc., significantly impact the development of PC and OC in elderly patients. Our review focuses on the latest functional studies of pro-inflammatory cytokines (interleukins) and CXC chemokines, which serve as biomarkers in elderly patients with PC and OC. Thus, we aim to shed light on how these biomarkers affect the development of PC and OC in elderly patients. We also examine the current status and future perspective of cytokines (interleukins) and CXC chemokines-based therapeutic targets in OC and PC treatment for elderly patients.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su Y, Lu M, Ma Y, Li Z, Wang L, Zhu N, Yang J. Cracking the code: Deciphering the role of the tumor microenvironment in osteosarcoma metastasis. Int Immunopharmacol 2023; 121:110422. [PMID: 37302370 DOI: 10.1016/j.intimp.2023.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. It is characterized by a rapid progression, poor prognosis, and early pulmonary metastasis. Over the past 30 years, approximately 85% of patients with osteosarcoma have experienced metastasis. The five-year survival of patients with lung metastasis during the early stages of treatment is less than 20%. The tumor microenvironment (TME) not only provides conditions for tumor cell growth but also releases a variety of substances that can promote the metastasis of tumor cells to other tissues and organs. Currently, there is limited research on the role of the TME in osteosarcoma metastasis. Therefore, to explore methods for regulating osteosarcoma metastasis, further investigations must be conducted from the perspective of the TME. This will help to identify new potential biomarkers for predicting osteosarcoma metastasis and assist in the discovery of new drugs that target regulatory mechanisms for clinical diagnosis and treatment. This paper reviews the research progress on the mechanism of osteosarcoma metastasis based on TME theory, which will provide guidance for the clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiamin Jin
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jiacheng Cong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin 541199, China
| | - Xinyi Zhong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yingying Su
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Mingchuan Lu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yifen Ma
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Zihe Li
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Liyan Wang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China
| | - Ningxia Zhu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| | - Jinfeng Yang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
7
|
Roussot N, Ghiringhelli F, Rébé C. Tumor Immunogenic Cell Death as a Mediator of Intratumor CD8 T-Cell Recruitment. Cells 2022; 11:cells11223672. [PMID: 36429101 PMCID: PMC9688834 DOI: 10.3390/cells11223672] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of anticancer treatments relies on a long-term response which can be mediated by the immune system. Thus, the concept of immunogenic cell death (ICD) describes the capacity of dying cancer cells, under chemotherapy or physical stress, to express or release danger-associated molecular patterns (DAMPs). These DAMPs are essential to activate dendritic cells (DCs) and to stimulate an antigen presentation to CD8 cytotoxic cells. Then, activated CD8 T cells exert their antitumor effects through cytotoxic molecules, an effect which is transitory due to the establishment of a feedback loop leading to T-cell exhaustion. This phenomenon can be reversed using immune checkpoint blockers (ICBs), such as anti-PD-1, PD-L1 or CTLA-4 Abs. However, the blockade of these checkpoints is efficient only if the CD8 T cells are recruited within the tumor. The CD8 T-cell chemoattraction is mediated by chemokines. Hence, an important question is whether the ICD can not only influence the DC activation and resulting CD8 T-cell activation but can also favor the chemokine production at the tumor site, thus triggering their recruitment. This is the aim of this review, in which we will decipher the role of some chemokines (and their specific receptors), shown to be released during ICD, on the CD8 T-cell recruitment and antitumor response. We will also analyze the clinical applications of these chemokines as predictive or prognostic markers or as new targets which should be used to improve patients' response.
Collapse
Affiliation(s)
- Nicolas Roussot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
- Genetic and Immunology Medical Institute, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| |
Collapse
|
8
|
Wise HM, Harris A, Kriplani N, Schofield A, Caldwell H, Arends MJ, Overton IM, Leslie NR. PTEN Protein Phosphatase Activity Is Not Required for Tumour Suppression in the Mouse Prostate. Biomolecules 2022; 12:1511. [PMID: 36291720 PMCID: PMC9599176 DOI: 10.3390/biom12101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Loss PTEN function is one of the most common events driving aggressive prostate cancers and biochemically, PTEN is a lipid phosphatase which opposes the activation of the oncogenic PI3K-AKT signalling network. However, PTEN also has additional potential mechanisms of action, including protein phosphatase activity. Using a mutant enzyme, PTEN Y138L, which selectively lacks protein phosphatase activity, we characterised genetically modified mice lacking either the full function of PTEN in the prostate gland or only lacking protein phosphatase activity. The phenotypes of mice carrying a single allele of either wild-type Pten or PtenY138L in the prostate were similar, with common prostatic intraepithelial neoplasia (PIN) and similar gene expression profiles. However, the latter group, lacking PTEN protein phosphatase activity additionally showed lymphocyte infiltration around PIN and an increased immune cell gene expression signature. Prostate adenocarcinoma, elevated proliferation and AKT activation were only frequently observed when PTEN was fully deleted. We also identify a common gene expression signature of PTEN loss conserved in other studies (including Nkx3.1, Tnf and Cd44). We provide further insight into tumour development in the prostate driven by loss of PTEN function and show that PTEN protein phosphatase activity is not required for tumour suppression.
Collapse
Affiliation(s)
- Helen M. Wise
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Adam Harris
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Nisha Kriplani
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Adam Schofield
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Helen Caldwell
- Edinburgh Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Nick R. Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| |
Collapse
|
9
|
Jing Y, Wang F, Zhang K, Chen Z. Comprehensive analysis of prognostic value and immune infiltration of CXC chemokines in pancreatic cancer. BMC Med Genomics 2022; 15:96. [PMID: 35468838 PMCID: PMC9040222 DOI: 10.1186/s12920-022-01246-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The prognosis of pancreatic cancer is poor, with a 5-year survival rate of less than 10%. Studies have shown that chemokines in the tumour microenvironment are often altered, which is associated with immune infiltration and the prognosis and survival of pancreatic cancer patients. METHODS Multiomics and bioinformatics tools were used to clarify CXC chemokine expression and its role in the pancreatic ductal adenocarcinoma (PDAC) immune microenvironment. RESULTS Most CXC chemokines were upregulated in pancreatic cancer and correlated with patient prognosis. CXC chemokines can activate cancer-related signalling pathways and affect immune infiltration. Furthermore, most CXC chemokines were significantly correlated with the abundance of macrophages, neutrophils and dendritic cells. CXCL5 was selected as a hub gene, and a variety of immune checkpoints, including PD-1/PD-L1 and CTLA-4, were identified. CONCLUSION Our study provides novel insights into CXC chemokine expression and its role in the PDAC immune microenvironment. These results can provide more data about prognostic biomarkers and therapeutic targets of PDAC.
Collapse
Affiliation(s)
- Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
10
|
Relationship between Circulating Lipids and Cytokines in Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13194964. [PMID: 34638448 PMCID: PMC8508038 DOI: 10.3390/cancers13194964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Lipids (fatty substances) and cytokines are molecules that affect how the immune response works. The measurement of the amounts of lipids and cytokines in blood might give clues about how prostate cancers grow or respond to treatment. This study looked at the blood levels of lipids and cytokines in men with advanced prostate cancer that was growing despite standard treatment (metastatic castration-resistant prostate cancer, mCRPC). We found that certain lipids were consistently associated with poorer clinical outcome, while cytokines were not. The levels of a type of lipid (ceramide) were associated with some cytokines. This lipid is known to activate the immune system and is associated with poor outcomes in mCRPC. A change in lipid profiles was associated with better response to treatment. Overall, our findings suggest that blood lipids might be more informative than cytokines, might influence the immune response, and might help predict treatment response. Abstract Circulating lipids or cytokines are associated with prognosis in metastatic castration-resistant prostate cancer (mCRPC). This study aimed to understand the interactions between lipid metabolism and immune response in mCRPC by investigating the relationship between the plasma lipidome and cytokines. Plasma samples from two independent cohorts of men with mCRPC (n = 146, 139) having life-prolonging treatments were subjected to lipidomic and cytokine profiling (290, 763 lipids; 40 cytokines). Higher baseline levels of sphingolipids, including ceramides, were consistently associated with shorter overall survival in both cohorts, whereas the associations of cytokines with overall survival were inconsistent. Increasing levels of IL6, IL8, CXCL16, MPIF1, and YKL40 correlated with increasing levels of ceramide in both cohorts. Men with a poor prognostic 3-lipid signature at baseline had a shorter time to radiographic progression (poorer treatment response) if their lipid profile at progression was similar to that at baseline, or their cytokine profile at progression differed to that at baseline. In conclusion, baseline levels of circulating lipids were more consistent as prognostic biomarkers than cytokines. The correlation between circulating ceramides and cytokines suggests the regulation of immune responses by ceramides. The association of treatment response with the change in lipid profiles warrants further research into metabolic interventions.
Collapse
|
11
|
Abstract
Today, cancer is one of the leading causes of death worldwide. Lately, cytokine and chemokine imbalances have gained attention amongst different involved pathways in cancer development and attracted much consideration in cancer research. CXCL16, as a member of the CXC subgroup of chemokines, has been attributed to be responsible for immune cell infiltration into the tumour microenvironment. The aberrant expression of CXCL16 has been observed in various cancers. This chemokine has been shown to play a conflicting role in tumour development through inducing pro-inflammatory conditions. The infiltration of various immune and non-immune cells such as lymphocytes, cancer-associated fibroblasts and myeloid-derived suppressor cells by CXCL16 into the tumour microenvironment has complicated the tumour fate. Given this diverse role of CXCL16 in cancer, a better understanding of its function might build-up our knowledge about tumour biology. Hence, this study aimed to review the impact of CXCL16 in cancer and explored its therapeutic application. Consideration of these findings might provide opportunities to achieve novel approaches in cancer treatment and its prognosis.
Collapse
|
12
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
13
|
Determination of Potential Therapeutic Targets and Prognostic Markers of Ovarian Cancer by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8883800. [PMID: 33829065 PMCID: PMC8004373 DOI: 10.1155/2021/8883800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
This study is to study the expression of CXCRs in ovarian cancer tissues and their value in prognosis. The expressions of CXCR1-CXCR7 mRNA between ovarian tumor tissues and normal tissues and in different pathological types of ovarian tumor tissues were compared by ONCOMINE online tool. The relationship between the expression of CXCRs and clinical pathological staging was studied by GEPIA. Kaplan-Meier plotter online tool was used to analyze prognosis. Finally, GO and KEGG analyses and protein interaction network analysis were performed for CXCRs by the DAVID software to predict their function, and cBioPortal was used to identify the key functional genes. The expression of CXCR3/4/7 mRNA in ovarian cancer tissues was higher than that in normal ovarian tissues, and the expression of CXCR4 was the highest (fold change = 306.413, P < 0.05). The expression of CXCR1/2/3/4/7 mRNA in different pathological types of ovarian tumors was significantly different (P < 0.05). Only CXCR5 expression level was associated with tumor staging. Survival analysis showed that high CXCR7 mRNA expression and low CXCR5/6 expression were associated with the shortening of overall survival. High CXCR4/7 expression and low CXCR5/6 expression were associated with the shortening of progression-free survival. High CXCR2/4 expression and low CXCR5/6 expression were closely related to the shortening of postprogressing survival. Protein interaction network analysis showed that GNB1, PTK2, MAPK1, PIK3CA, GNB4, GNA11, KNG1, and ARNT proteins were closely related to the CXC receptor family. CXCR3/4/7 are potential therapeutic targets, and CXCR2/4/5/6/7 are new markers for the prognosis of ovarian cancer.
Collapse
|
14
|
Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21124449. [PMID: 32585812 PMCID: PMC7352203 DOI: 10.3390/ijms21124449] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
The consequences of prostate cancer metastasis remain severe, with huge impact on the mortality and overall quality of life of affected patients. Despite the convoluted interplay and cross talk between various cell types and secreted factors in the metastatic process, cytokine and chemokines, along with their receptors and signaling axis, constitute important factors that help drive the sequence of events that lead to metastasis of prostate cancer. These proteins are involved in extracellular matrix remodeling, epithelial-mesenchymal-transition, angiogenesis, tumor invasion, premetastatic niche creation, extravasation, re-establishment of tumor cells in secondary organs as well as the remodeling of the metastatic tumor microenvironment. This review presents an overview of the main cytokines/chemokines, including IL-6, CXCL12, TGFβ, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, CXCL1, and CXCL16, that exert modulatory roles in prostate cancer metastasis. We also provide extensive description of their aberrant expression patterns in both advanced disease states and metastatic sites, as well as their functional involvement in the various stages of the prostate cancer metastatic process.
Collapse
|
15
|
Luo R, Yang Y, Cheng YC, Chang D, Liu TT, Li YQ, Dai W, Zuo MY, Xu YL, Zhang CX, Ge SW, Xu G. Plasma chemokine CXC motif-ligand 16 as a predictor of renal prognosis in immunoglobulin A nephropathy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:381. [PMID: 32355825 PMCID: PMC7186753 DOI: 10.21037/atm.2020.02.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background There are few non-invasive biomarkers that have been identified to improve the risk stratification of patients with IgA nephropathy (IgAN). CXCL16 has been shown to play a key role as a chemoattractant, adhesion, and fibrosis factor in inflammatory disease. This study evaluated the potential for CXCL16 plasma as a potential biomarker in patients with IgAN. Methods Plasma CXCL16 was measured in 230 patients with renal biopsied IgAN enrolled from 2012 to 2014. The patients were followed for 41.3 months, with a 50% reduction in estimated glomerular filtration rate or end-stage renal disease as endpoints. Results The plasma CXCL16 levels in IgAN patients were strongly correlated with the uric acid, estimated glomerular filtration rate and tubular atrophy/interstitial fibrosis score in multivariate analysis. Furthermore, counts of CD4+ T cells, CD8+ T cells, and CD20+ B cells in renal biopsies of IgAN patients were significantly correlated with the plasma CXCL16 levels, but not CD68+ macrophage. Lastly, we concluded that patients with higher levels of plasma CXCL16 had an increased risk of poor renal outcome compared to those with lower levels. There was no association between the polymorphisms and clinical parameters of CXCL16, including the levels and prognosis of plasma CXCL16. Conclusions Plasma CXCL16 levels were associated with clinical parameters; pathological damage; CD4+ T cell, CD8+ T cell, and CD20+ B cell infiltration in renal tissue; and renal outcome in IgAN patients. Plasma CXCL16 might be a potential prognosis predictor in Chinese IgAN patients.
Collapse
Affiliation(s)
- Ran Luo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Yang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi-Chun Cheng
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Chang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Liu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue-Qiang Li
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Dai
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei-Ying Zuo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Lin Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun-Xiu Zhang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu-Wang Ge
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
16
|
Shibata Y, Kobayashi N, Sato T, Nakashima K, Kaneko T. The clinical significance of CXCL16 in the treatment of advanced non-small cell lung cancer. Thorac Cancer 2020; 11:1258-1264. [PMID: 32163231 PMCID: PMC7180569 DOI: 10.1111/1759-7714.13387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bevacizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF)-A, has shown efficacy in patients with advanced nonsquamous non-small cell lung cancer (NSCLC). There are no identified or clinically validated biomarkers to determine the efficacy of bevacizumab. In this study, we assessed the adequacy of chemokine (C-X-C motif) ligand 16 (CXCL16) as a biomarker for patients treated with bevacizumab-containing chemotherapy regimen. METHODS Patients diagnosed histologically with NSCLC were enrolled. Serial serum CXCL16 levels during treatment were measured by enzyme-linked immunosorbent assay. The relationship between serum CXCL16 levels before and after treatment, progression-free survival, and overall survival were analyzed. CXCL16 and VEGF-A expressions in lung cancer tissue were also evaluated by immunohistochemical tests. RESULTS The median serum level of CXCL16 in these patients was 3.4 ng/mL, which was significantly higher than that in age-matched healthy adults (2.2 ng/mL). Immunohistochemistry results showed that CXCL16 was predominantly localized in the tumor stroma, whereas VEGF was expressed in tumor cells. Including bevacizumab with chemotherapy led to lower CXCL16 levels post-chemotherapy, which correlated with better response rates. In addition, evaluation of differences in serum CXCL16 levels before and after the first-line chemotherapy showed that longer overall survival was achieved in patients who showed a larger decrease in serum CXCL16 levels. CONCLUSIONS According to our findings, serum CXCL16 level was identified as a potential biomarker for the efficacy of therapy, including anti-VEGF. KEY POINTS Significant findings of the study Patients with NSCLC whose serum CXCL16 levels decreased below 0.07 ng/mL after chemotherapy, showed longer overall survival than those without this decrease. Moreover, low CXCL16 levels corresponded to better response rates among patients with advanced NSCLC treated with bevacizumab-containing chemotherapy. What this study adds Previously there were no identifiable predictive biomarkers to determine the efficacy of bevacizumab. Data from our findings identified serum CXCL16 level as a potential biomarker for the efficacy of bevacizumab-containing chemotherapy.
Collapse
Affiliation(s)
- Yuji Shibata
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Sato
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Institute for Biomedical Sciences, Shinshu University, Kamiina, Japan
| | - Kentaro Nakashima
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
17
|
Eggener SE, Rumble RB, Armstrong AJ, Morgan TM, Crispino T, Cornford P, van der Kwast T, Grignon DJ, Rai AJ, Agarwal N, Klein EA, Den RB, Beltran H. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. J Clin Oncol 2019; 38:1474-1494. [PMID: 31829902 DOI: 10.1200/jco.19.02768] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This guideline provides recommendations for available tissue-based prostate cancer biomarkers geared toward patient selection for active surveillance, identification of clinically significant disease, choice of postprostatectomy adjuvant versus salvage radiotherapy, and to address emerging questions such as the relative value of tissue biomarkers compared with magnetic resonance imaging. METHODS An ASCO multidisciplinary Expert Panel, with representatives from the European Association of Urology, American Urological Association, and the College of American Pathologists, conducted a systematic literature review of localized prostate cancer biomarker studies between January 2013 and January 2019. Numerous tissue-based molecular biomarkers were evaluated for their prognostic capabilities and potential for improving management decisions. Here, the Panel makes recommendations regarding the clinical use and indications of these biomarkers. RESULTS Of 555 studies identified, 77 were selected for inclusion plus 32 additional references selected by the Expert Panel. Few biomarkers had rigorous testing involving multiple cohorts and only 5 of these tests are commercially available currently: Oncotype Dx Prostate, Prolaris, Decipher, Decipher PORTOS, and ProMark. With various degrees of value and validation, multiple biomarkers have been shown to refine risk stratification and can be considered for select men to improve management decisions. There is a paucity of prospective studies assessing short- and long-term outcomes of patients when these markers are integrated into clinical decision making. RECOMMENDATIONS Tissue-based molecular biomarkers (evaluating the sample with the highest volume of the highest Gleason pattern) may improve risk stratification when added to standard clinical parameters, but the Expert Panel endorses their use only in situations in which the assay results, when considered as a whole with routine clinical factors, are likely to affect a clinical decision. These assays are not recommended for routine use as they have not been prospectively tested or shown to improve long-term outcomes-for example, quality of life, need for treatment, or survival. Additional information is available at www.asco.org/genitourinary-cancer-guidelines.
Collapse
Affiliation(s)
| | | | | | - Todd M Morgan
- University of Michigan School of Medicine, Ann Arbor, MI
| | | | - Philip Cornford
- Royal Liverpool University Hospital, Liverpool, United Kingdom
| | | | | | - Alex J Rai
- Columbia University Irving Medical Center, New York, NY
| | | | | | | | | |
Collapse
|
18
|
CXCL16 positively correlated with M2-macrophage infiltration, enhanced angiogenesis, and poor prognosis in thyroid cancer. Sci Rep 2019; 9:13288. [PMID: 31527616 PMCID: PMC6746802 DOI: 10.1038/s41598-019-49613-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Although various chemokines have pro-tumorigenic actions in cancers, the effects of CXCL16 remain controversial. The aim of this study was to investigate the molecular characteristics of CXCL16-expressing papillary thyroid cancers (PTCs). CXCL16 expressions were significantly higher in PTCs than benign or normal thyroid tissues. In the TCGA dataset for PTCs, a higher CXCL16 expression was associated with M2 macrophage- and angiogenesis-related genes and poor prognostic factors including a higher TNM staging and the BRAFV600E mutation. PTCs with a higher expression of 3-gene panel including CXCL16, AHNAK2, and THBS2 showed poor recurrence-free survivals than that of the lower expression group. Next, shCXCL16 was introduced into BHP10-3SCp cells to deplete the endogenous CXCL16, and then, the cells were subcutaneously injected to athymic mice. Tumors from the BHP10-3SCpshCXCL16 exhibited a delayed tumor growth with decreased numbers of ERG+ endothelial cells and F4/80+ macrophages than those from the BHP10-3SCpcontrol. CXCL16-related genes including AHNAK2 and THBS2 were downregulated in the tumors from the BHP10-3SCpshCXCL16 compared with that from the BHP10-3SCpcontrol. In conclusion, a higher CXCL16 expression was associated with macrophage- and angiogenesis-related genes and aggressive phenotypes in PTC. Targeting CXCL16 may be a good therapeutic strategy for advanced thyroid cancer.
Collapse
|
19
|
Chen Z, Dai W, Yang L, Yang H, Ding L, He Y, Song X, Cui J. Elevated expression of CXCL16 correlates with poor prognosis in patients with colorectal cancer. Cancer Manag Res 2019; 11:4691-4697. [PMID: 31191026 PMCID: PMC6536133 DOI: 10.2147/cmar.s197354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
Aims: To examine the expression of CXCL16 in colorectal cancer (CRC) tissue and to clarify the relationships between CXCL16 and clinicopathological features and survival in CRC. Methods: A total of 142 consecutive CRC patients undergoing colorectal surgery at the Department of Gastrointestinal Center, First Affiliated Hospital, Sun Yat-sen University, between January 2010 and December 2010 were enrolled in this study. CXCL16 was measured by immunohistochemical staining in CRC tissue. Association between CXCL16 expression and clinicopathologic parameters was analyzed with a chi-square test. Survival curves were calculated by the Kaplan–Meier method, and the differences between CXCL16 high- and low-expression groups were analyzed using the log-rank test. Cox univariate and multivariate analyses were used to determine risk factors for overall survival (OS). Results: CXCL16 expression was elevated in CRC. CXCL16-positive expression was significantly related to tumor size (P=0.043), tumor differentiation (P=0.046) and distant metastasis (P=0.038), and there was a trend toward lymph node metastasis (P=0.070). CXCL16 expression, together with differentiation, depth of invasion, lymph node metastasis, and distant metastasis, was a significant independent prognostic factor for OS of patients with CRC (HR 2.026, 95% CI 1.128–3.640, P=0.018). Conclusion: CXCL16 expression was enhanced in CRC tissue and was negatively correlated with survival in CRC patients. Furthermore, CXCL16-positive expression was an independent prognostic factor for CRC patients, whilst the underlying mechanisms remain unclear; thus, further studies are needed.
Collapse
Affiliation(s)
- Zhihui Chen
- Department of Gastrointestinal Surgery Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Weigang Dai
- Department of Gastrointestinal Surgery Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Liang Yang
- Department of Gastrointestinal Surgery Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Hong Yang
- Operating Department, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Li Ding
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Yulong He
- Department of Gastrointestinal Surgery Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xinming Song
- Department of Gastrointestinal Surgery Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Ji Cui
- Department of Gastrointestinal Surgery Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
20
|
Effects of VEGFR1 + hematopoietic progenitor cells on pre-metastatic niche formation and in vivo metastasis of breast cancer cells. J Cancer Res Clin Oncol 2018; 145:411-427. [PMID: 30483898 PMCID: PMC6373264 DOI: 10.1007/s00432-018-2802-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The pre-metastatic niche has been shown to play a critical role in tumor metastasis, and its formation is closely related to the tumor microenvironment. However, the underlying molecular mechanisms remain unclear. In the present study, we successfully established a mouse model of lung metastasis using luciferase-expressing MDA-MB-435s cells. In this model, recruitment of vascular endothelial growth factor receptor-1 (VEGFR1)+CD133+ hematopoietic progenitor cells (HPCs) was gradually increased in lung but gradually decreased after the formation of tumor colonies in lung. We also established a highly metastatic MDA-MB-435s (MDA-MB-435s-HM) cell line from the mouse model. Changes in protein profiles in different culture conditions were investigated by protein microarray analysis. The levels of CXC chemokine ligand 16, interleukin (IL)-2Rα, IL-2Rγ, matrix metalloproteinase (MMP)-1, MMP-9, platelet-derived growth factor receptor (PDGFR)-α, stromal cell-derived factor (SDF)-1α, transforming growth factor (TGF)-β, platelet endothelial cell adhesion molecule (PECAM)-1 and vascular endothelial (VE)-cadherin were significantly greater (> fivefold) in the culture medium from MDA-MB-435s-HM cells than in that from MDA-MB-435s cells. Moreover, the levels of MMP-9, PDGFR-α, and PECAM-1 were significantly greater in the co-culture medium of MDA-MB-435s-HM cells and CD133+ HPCs than in that from MDA-MB-435s-HM cells. Differentially expressed proteins were validated by enzyme-linked immunosorbent assay, and expression of their transcripts was confirmed by quantitative real-time polymerase chain reaction. Moreover, inhibition of MMP-9, PDGFR-α, and PECAM-1 by their specific inhibitors or antibodies significantly decreased cell migration, delayed lung metastasis, and decreased recruitment of VEGFR1+CD133+ HPCs into lung. Intra-hepatic growth of HPCs enhanced the invasive growth of MDA-MB-435s-HM cells in the liver. Our data indicate that VEGFR1+CD133+ HPCs contribute to lung metastasis.
Collapse
|
21
|
Owusu-Afriyie O, Owiredu WKBA, Owusu-Danquah K, Larsen-Reindorf R, Donkor P, Acheampong E, Quayson SE. Expression of immunohistochemical markers in non-oropharyngeal head and neck squamous cell carcinoma in Ghana. PLoS One 2018; 13:e0202790. [PMID: 30138436 PMCID: PMC6107249 DOI: 10.1371/journal.pone.0202790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/09/2018] [Indexed: 01/08/2023] Open
Abstract
Background Head and neck cancers include carcinomas of the oral cavity, larynx, sinonasal tract and nasopharynx. Studies on molecular expression of prognostic tumour markers in Ghana are scarce. The purpose of this study was to determine the expression of p53, p16, EGFR, Cyclin-D1 and HER2 among patients with non-oropharyngeal head and neck squamous cell carcinoma (HNSCC). Methodology Tissue microarrays from 154 histologically confirmed non-oropharyngeal HNSCC at the Komfo Anokye Teaching Hospital from 2006–2014 were constructed using duplicate cores of representative and viable areas from tumours. Expression of EGFR, p53, p16, Cyclin-D1 and HER2 was evaluated using immunohistochemistry. Results For non-oropharyngeal HNSCC, majority of the cases (66.2%; 102/154) had stage IV disease. EGFR was the most expressed molecular marker (29.4%; 25/85) followed by p53 (24.0%; 29/121), p16 (18.3%; 23/126) and Cyclin-D1 (10.0%; 12/120). HER2 was not expressed in any of the cases. There was a significantly (p = 0.022) higher expression of Cyclin-D1 in tumours of the oral cavity (19.6%; 9/46) than in those of the larynx (4.7%; 2/43) and nose (3.2%; 1/31). Tumours in stages I–III were more frequently positive for p16 (28.6%; 12/42) than tumours in stage IV (13.1%; 11/84). Conclusion Expression of p53, EGFR, p16 and Cyclin-D1 in non-oropharyngeal HNSCC in Ghana is largely similar to what has been reported in published studies from other countries.
Collapse
Affiliation(s)
- Osei Owusu-Afriyie
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Pathology, School of Medical Sciences Komfo Anokye Teaching Hospital, Kumasi, Ghana
- * E-mail:
| | - W. K. B. A. Owiredu
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwabena Owusu-Danquah
- Department of Medical laboratory technology, Faculty of Allied Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rita Larsen-Reindorf
- Directorate of Dental, Eye, Ear, Nose & Throat, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Peter Donkor
- Department of Maxillofacial Surgery, Dental School, KNUST, Kumasi, Ghana
| | - Emmanuel Acheampong
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Solomon E. Quayson
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
22
|
Evaluation of the proliferation marker Ki-67 in a large prostatectomy cohort. PLoS One 2017; 12:e0186852. [PMID: 29141018 PMCID: PMC5687762 DOI: 10.1371/journal.pone.0186852] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/09/2017] [Indexed: 12/01/2022] Open
Abstract
The tumor proliferation index marker Ki-67 is strongly associated with tumor cell proliferation, growth and progression, and is widely used in routine clinicopathological investigation. Prostate cancer is a complex multifaceted and biologically heterogeneous disease, and overtreatment of localized, low volume indolent tumors, is evident. Here, we aimed to assess Ki-67 expression and related outcomes of 535 patients treated with radical prostatectomy. The percentage of tumor epithelial cells expressing Ki-67 was determined by immunohistochemical assay, both digital image analysis and visual scoring by light microscope were used for quantification. The association of Ki-67 and prostate cancer was evaluated, as well as its prognostic value. There was a positive correlation between high expression of Ki-67 and Gleason score > 7 (p < 0.001) as well as tumor size (≥ 20 mm, p = 0.03). In univariate analyses, a high expression of Ki-67 in tumor epithelium was significantly associated with biochemical failure (BF) (digital scoring, p = 0.014) and (visual scoring, p = 0.004). In the multivariate analyses, a high level of Ki-67 was an independent poor prognostic factor for biochemical failure-free survival (BFFS) (Visual scoring, Ki67, p = 0.012, HR:1.50, CI95% 1.10–2.06). In conclusion, high Ki-67 expression is an independent negative prognostic marker for biochemical failure. Our findings support the role of Ki-67 as a significant, poor prognostic factor for in prostate cancer outcome.
Collapse
|
23
|
Huang R, Liao X, Li Q. Identification and validation of potential prognostic gene biomarkers for predicting survival in patients with acute myeloid leukemia. Onco Targets Ther 2017; 10:5243-5254. [PMID: 29138577 PMCID: PMC5679677 DOI: 10.2147/ott.s147717] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Molecular analysis is a promising source of clinically useful prognostic biomarkers. The aim of this investigation was to identify prognostic biomarkers for patients with acute myeloid leukemia (AML) by using the gene expression profile dataset from public database. Methods The gene expression profile dataset and corresponding overall survival (OS) information of three cohorts of AML patients from GSE12417 and The Cancer Genome Atlas AML project (TCGA-LAML) were included in the present study. Prognostic gene screening was performed by using a survival package, whereas time-dependent receiver operating characteristic (ROC) curve analysis was performed using the survivalROC package. Results In the three cohorts, 11 genes were identified that were significantly associated with AML OS. A linear prognostic model of the 11 genes was constructed and weighted by regression coefficient (β) from the multivariate Cox regression analyses of GSE12417 HG-U133A cohort to divide patients into high- and low-risk groups. GSE12417 HG-U133 plus 2.0 and TCGA-LAML were validation cohorts. Patients assigned to the high-risk group exhibited poor OS compared to patients in the low-risk group. The 11-gene signature is a prognostic marker of AML and demonstrates good performance for predicting 1-, 3-, and 5-year OS as evaluated by survivalROC in the three cohorts. Conclusion Our study has identified an mRNA signature including 11 genes, which may serve as a potential prognostic marker of AML.
Collapse
Affiliation(s)
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | |
Collapse
|
24
|
Papillary renal cell carcinoma-derived chemerin, IL-8, and CXCL16 promote monocyte recruitment and differentiation into foam-cell macrophages. J Transl Med 2017; 97:1296-1305. [PMID: 28759013 PMCID: PMC5668481 DOI: 10.1038/labinvest.2017.78] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
Papillary renal cell carcinoma (pRCC) is the second most common type of renal cell carcinoma. The only curative treatment available for pRCC is radical surgery. If the disease becomes widespread, neither chemo- nor radiotherapy will have therapeutic effect, hence further research on pRCC is of utmost importance. Histologically, pRCC is characterized by a papillary growth pattern with focal aggregation of macrophages of the foam cell phenotype. In other forms of cancer, a clear role for tumor-associated macrophages during cancer growth and progression has been shown. Although the presence of foamy macrophages is a histological hallmark of pRCC tumors, little is known regarding their role in pRCC biology. In order to study the interaction between pRCC tumor and myeloid cells, we established primary cultures from pRCC tissue. We show that human pRCC cells secrete the chemokines IL-8, CXCL16, and chemerin, and that these factors attract primary human monocytes in vitro. RNAseq data from The Cancer Genome Atlas confirmed a high expression of these factors in pRCC tissue. Conditioned medium from pRCC cultures induced a shift in human monocytes toward the M2 macrophage phenotype. In extended cultures, these macrophages became enlarged and loaded with lipids, adopting the foam cell morphology found in pRCC tissue. These results show for the first time that pRCC primary tumor cells secrete factors that attract and differentiate monocytes into anti-inflammatory tumor-associated macrophages with foam cell histology.
Collapse
|
25
|
Chang Y, Zhou L, Xu L, Fu Q, Yang Y, Lin Z, Xu J. High expression of CXC chemokine receptor 6 associates with poor prognosis in patients with clear cell renal cell carcinoma. Urol Oncol 2017; 35:675.e17-675.e24. [PMID: 28918166 DOI: 10.1016/j.urolonc.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Accumulating evidence indicates that CXC chemokine receptor 6 (CXCR6) has a crucial role in cancer development and progression, however, its role in clear cell renal cell carcinoma (ccRCC) remains obscure. The aim of this study is to investigate the prognostic value of CXCR6 expression in patients with ccRCC following surgery. MATERIALS AND METHODS This study retrospectively included 239 patients with ccRCC who underwent nephrectomy and had paraffin tissue available at a single center. CXCR6 expression in tumor tissue was evaluated by immunohistochemistry and its associations with overall survival (OS) and recurrence-free survival (RFS) were investigated. RESULTS A total of 47.3% tumors were considered as high expression of CXCR6, which was significantly associated with the male sex (P = 0.003) and high Fuhrman grade (P<0.001). A high expression of CXCR6 indicated a reduced OS (P<0.001) and RFS (P = 0.007). Multivariate analysis demonstrated that CXCR6 expression was an independent prognostic factor of OS (hazard ratio = 2.604; 95% CI: 1.338-5.068; P = 0.005) and RFS (hazard ratio = 1.957; 95% CI: 1.065-3.595; P = 0.031). Subgroup analysis found that CXCR6 expression could differentiate survival risks among patients with high-risk disease. Moreover, a nomogram integrating CXCR6 expression and traditional clinical and pathologic features was established and predicted postsurgical recurrence-risk well at 3- and 5-year. CONCLUSIONS The expression of CXCR6 in tumor tissue may serve as a potential prognostic biomarker to refine clinical prognosis prediction combined with traditional clinical and pathological analysis for patients with ccRCC after surgery.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Zhou
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuanfeng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongming Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Equine Arteritis Virus Has Specific Tropism for Stromal Cells and CD8 + T and CD21 + B Lymphocytes but Not for Glandular Epithelium at the Primary Site of Persistent Infection in the Stallion Reproductive Tract. J Virol 2017; 91:JVI.00418-17. [PMID: 28424285 DOI: 10.1128/jvi.00418-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV) has a global impact on the equine industry as the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of equids. A distinctive feature of EAV infection is that it establishes long-term persistent infection in 10 to 70% of infected stallions (carriers). In these stallions, EAV is detectable only in the reproductive tract, and viral persistence occurs despite the presence of high serum neutralizing antibody titers. Carrier stallions constitute the natural reservoir of the virus as they continuously shed EAV in their semen. Although the accessory sex glands have been implicated as the primary sites of EAV persistence, the viral host cell tropism and whether viral replication in carrier stallions occurs in the presence or absence of host inflammatory responses remain unknown. In this study, dual immunohistochemical and immunofluorescence techniques were employed to unequivocally demonstrate that the ampulla is the main EAV tissue reservoir rather than immunologically privileged tissues (i.e., testes). Furthermore, we demonstrate that EAV has specific tropism for stromal cells (fibrocytes and possibly tissue macrophages) and CD8+ T and CD21+ B lymphocytes but not glandular epithelium. Persistent EAV infection is associated with moderate, multifocal lymphoplasmacytic ampullitis comprising clusters of B (CD21+) lymphocytes and significant infiltration of T (CD3+, CD4+, CD8+, and CD25+) lymphocytes, tissue macrophages, and dendritic cells (Iba-1+ and CD83+), with a small number of tissue macrophages expressing CD163 and CD204 scavenger receptors. This study suggests that EAV employs complex immune evasion mechanisms that warrant further investigation.IMPORTANCE The major challenge for the worldwide control of EAV is that this virus has the distinctive ability to establish persistent infection in the stallion's reproductive tract as a mechanism to ensure its maintenance in equid populations. Therefore, the precise identification of tissue and cellular tropism of EAV is critical for understanding the molecular basis of viral persistence and for development of improved prophylactic or treatment strategies. This study significantly enhances our understanding of the EAV carrier state in stallions by unequivocally identifying the ampullae as the primary sites of viral persistence, combined with the fact that persistence involves continuous viral replication in fibrocytes (possibly including tissue macrophages) and T and B lymphocytes in the presence of detectable inflammatory responses, suggesting the involvement of complex viral mechanisms of immune evasion. Therefore, EAV persistence provides a powerful new natural animal model to study RNA virus persistence in the male reproductive tract.
Collapse
|
27
|
Immune Characterization of the Programmed Death Receptor Pathway in High Risk Prostate Cancer. Clin Genitourin Cancer 2017; 15:577-581. [PMID: 28461179 DOI: 10.1016/j.clgc.2017.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/26/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Programmed cell death-1 (PD-1), a T-cell inhibitory receptor, and its ligand, PD-L1, have been reported to be expressed in many tumor types, and this expression has led to the development of many drugs targeting the PD-1 pathway. The objective of this study was to determine the expression of PD-1 and PD-L1 in high-grade prostate cancer tissues, and correlate the expression with disease and patient characteristics. MATERIALS AND METHODS Immunohistochemistry for PD-1 (CD279), PD-L1 (B7-H1), and CD3 was performed and scored from 0 to 5 on prostatectomy/biopsy tissue samples taken from 25 men with high-grade prostate cancer. Charts were then retrospectively reviewed for numerous patient and disease characteristics. Statistical analyses were done to investigate the association of these patient and disease characteristics with PD-1, PD-L1, and CD3 expression. RESULTS A score of 3 to 5 on the semiquantitative 0 to 5 score was deemed "high" expression whereas a score of 0 to 2 was deemed "low" expression. Of the 25 samples, 2 (8%) scored high for PD-1 expression, 2 (8%) scored high for PD-L1 expression, and 18 (72%) scored high for CD3 expression. There was no statistically significant difference between high and low expression groups of PD-1, PD-L1, or CD3 for any of the variables we collected. CONCLUSION An overall low expression of PD-1 and PD-L1, and a concurrent high expression of CD3+ T cells was found in high-risk prostate cancer tissue. No significant association was found between expression of PD-1, PD-L1, or CD3, and patient or disease characteristics. Because of this, one might be able to question the role of PD-L1 in local immune suppression in prostate cancer.
Collapse
|
28
|
Ferrari D, Malavasi F, Antonioli L. A Purinergic Trail for Metastases. Trends Pharmacol Sci 2016; 38:277-290. [PMID: 27989503 DOI: 10.1016/j.tips.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
Nucleotides and nucleosides have emerged as important modulators of tumor biology. Recently acquired evidence shows that, when these molecules are released by cancer cells or surrounding tissues, they act as potent prometastatic factors, favoring tumor cell migration and tissue colonization. Therefore, nucleotides and nucleosides should be considered as a new class of prometastatic factors. In this review, we focus on the prometastatic roles of nucleotides and discuss future applications of purinergic signaling modulation in view of antimetastatic therapies.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Fabio Malavasi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Wilop S, Chou WC, Jost E, Crysandt M, Panse J, Chuang MK, Brümmendorf TH, Wagner W, Tien HF, Kharabi Masouleh B. A three-gene expression-based risk score can refine the European LeukemiaNet AML classification. J Hematol Oncol 2016; 9:78. [PMID: 27585840 PMCID: PMC5009640 DOI: 10.1186/s13045-016-0308-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Background Risk stratification based on cytogenetics of acute myeloid leukemia (AML) remains imprecise. The introduction of novel genetic and epigenetic markers has helped to close this gap and increased the specificity of risk stratification, although most studies have been conducted in specific AML subpopulations. In order to overcome this limitation, we used a genome-wide approach in multiple AML populations to develop a robust prediction model for AML survival. Methods We conducted a genome-wide expression analysis of two data sets from AML patients enrolled into the AMLCG-1999 trial and from the Tumor Cancer Genome Atlas (TCGA) to develop a prognostic score to refine current risk classification and performed a validation on two data sets of the National Taiwan University Hospital (NTUH) and an independent AMLCG cohort. Results In our training set, using a stringent multi-step approach, we identified a small three-gene prognostic scoring system, named Tri-AML score (TriAS) which highly correlated with overall survival (OS). Multivariate analysis revealed TriAS to be an independent prognostic factor in all tested training and additional validation sets, even including age, current cytogenetic-based risk stratification, and three other recently developed expression-based scoring models for AML. Conclusions The Tri-AML score allows robust and clinically practical risk stratification for the outcome of AML patients. TriAS substantially refined current ELN risk stratification assigning 44.5 % of the patients into a different risk category. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0308-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Wilop
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wen-Chien Chou
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ming-Kai Chuang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular, Engineering, University Hospital of the RWTH Aachen, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of the RWTH, Aachen, Germany
| | - Hwei-Fang Tien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
30
|
Liu J, Chen S, Wang W, Ning BF, Chen F, Shen W, Ding J, Chen W, Xie WF, Zhang X. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett 2016; 379:49-59. [DOI: 10.1016/j.canlet.2016.05.022] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
|
31
|
Liang H, Ma Z, Peng H, He L, Hu Z, Wang Y. CXCL16 Deficiency Attenuates Renal Injury and Fibrosis in Salt-Sensitive Hypertension. Sci Rep 2016; 6:28715. [PMID: 27353044 PMCID: PMC4926114 DOI: 10.1038/srep28715] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of hypertensive kidney disease. However, the molecular mechanisms underlying the induction of inflammation are not completely understood. We have found that CXCL16 is induced in the kidney in deoxycorticosterone acetate (DOCA)-salt hypertension. Here we examined whether CXCL16 is involved in DOCA-salt-induced renal inflammation and fibrosis. Wild-type and CXCL16 knockout mice were subjected to uninephrectomy and DOCA-salt treatment for 3 weeks. There was no difference in blood pressure at baseline between wild-type and CXCL16 knockout mice. DOCA-salt treatment resulted in significant elevation in blood pressure that was comparable between wild-type and CXCL16 knockout mice. CXCL16 knockout mice exhibited less severe renal dysfunction, proteinuria, and fibrosis after DOCA-salt treatment compared with wild-type mice. CXCL16 deficiency attenuated extracellular matrix protein production and suppressed bone marrow–derived fibroblast accumulation and myofibroblast formation in the kidneys following DOCA-salt treatment. Furthermore, CXCL16 deficiency reduced macrophage and T cell infiltration into the kidneys in response to DOCA-salt hypertension. Taken together, our results indicate that CXCL16 plays a key role in the pathogenesis of renal injury and fibrosis in salt-sensitive hypertension through regulation of bone marrow–derived fibroblast accumulation and macrophage and T cell infiltration.
Collapse
Affiliation(s)
- Hua Liang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Zhiheng Ma
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Hui Peng
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Section of Nephrology, Department of Internal Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liqun He
- Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Zhaoyong Hu
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|