1
|
Park J, Jin L, Song HC, Chen Y, Jang EY, Park GH, Yang CH, Ryter SW, Park JW, Zheng M, Joe Y, Chung HT. CO confers neuroprotection via activating the PERK-calcineurin pathway and inhibiting necroptosis. Cell Death Discov 2025; 11:254. [PMID: 40425550 PMCID: PMC12116729 DOI: 10.1038/s41420-025-02530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD), are marked by progressive neuronal loss. Regulated cell death programs (i.e., necroptosis) as well as homeostatic mechanisms (i.e., autophagy) can modulate disease pathogenesis. Low-dose carbon monoxide (CO) has been shown to activate cytoprotective responses in various models of tissue injury. Our study investigates the protective roles of CO in neurodegenerative disease through the modulation of necroptosis and autophagy programs. We found that CO activates the Protein kinase RNA (PKR)-like ER kinase (PERK) branch of the unfolded protein response (UPR) and the calcineurin pathway, leading to significant neuroprotective effects in cellular and mouse models of PD. CO-induced PERK activation promotes the nuclear translocation of transcription factor EB (TFEB). Subsequently, TFEB enhances autophagy through increased expression of autophagy-related genes and inhibits necroptosis by suppressing the phosphorylation and oligomerization of Mixed Lineage Kinase Domain-Like Pseudokinase (MLKL), a key necroptosis regulator. Furthermore, CO enhances the expression of Beclin 1, which inhibits necroptosis, independently of its autophagic function, by regulating MLKL oligomerization. Our findings suggest that modulation of the PERK-calcineurin pathway and downstream activation of cellular defense mechanisms by CO may serve as a promising therapeutic approach to mitigate neuronal loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - LiHua Jin
- School of Nursing, YanBian University, Yanji, China
| | - Hyun-Chul Song
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Yingqing Chen
- Department of Pharmacology, Dalian University Medical College, Dalian, China
| | - Eun Young Jang
- Center for Convergence Toxicology Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | | | - Jeong Woo Park
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Min Zheng
- Department of Neurology, Affiliated Hospital of YanBian University, Yanji, China
| | - Yeonsoo Joe
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea.
| | - Hun Taeg Chung
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea.
| |
Collapse
|
2
|
Pommier A, Bleuse S, Deletang K, Varilh J, Nadaud M, Boisguerin P, Bourdin A, Taulan-Cadars M. The RNA-Binding Protein Tristetraprolin Contributes to CFTR mRNA Stability in Cystic Fibrosis. Am J Respir Cell Mol Biol 2025; 72:320-331. [PMID: 39417720 DOI: 10.1165/rcmb.2023-0209oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cystic fibrosis (CF) is the most common inherited disorder and is characterized by an inflammatory phenotype. We found that in bronchial epithelium reconstituted form lung tissue biopsies from patients with CF, the RNA-binding protein tristetraprolin (TTP), a key regulator of inflammation, is dysregulated in cells that strongly express cytokines and ILs. TTP activity is regulated by extensive posttranslational modifications, particularly phosphorylation. We found that, in addition to mRNA downregulation, phosphorylated TTP (which cannot bind to mRNA) accumulated in CF cultures, suggesting that the imbalance in TTP phosphorylation status could contribute to the inflammatory phenotype in CF. We confirmed TTP's destabilizing role on IL8 mRNA through its 3' UTR sequence in CF cells. We next demonstrated that TTP phosphorylation is mainly regulated by MK2 through the activation of ERK, which also was hyperphosphorylated. TTP is considered a mRNA decay factor with some exception, and we present a new positive role of TTP in CF cultures. We determined that TTP binds to specific adenylate-uridylate-rich element motifs on the 3' UTR of mRNA sequences and also, for the first time to our knowledge, to the 3' UTR of the cystic fibrosis transmembrane conductance regulator (CFTR), where TTP binding stabilizes the mRNA level. This study identified new partners that can be targeted in CF and proposes a new way to control CFTR gene expression.
Collapse
Affiliation(s)
| | - Solenne Bleuse
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Karine Deletang
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Jessica Varilh
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Marion Nadaud
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Prisca Boisguerin
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Arnaud Bourdin
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
- Department of Respiratory Diseases, CHU Arnaud de Villeneuve, Montpellier, France
| | - Magali Taulan-Cadars
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| |
Collapse
|
3
|
Watabe Y, Giam Chuang VT, Sakai H, Ito C, Enoki Y, Kohno M, Otagiri M, Matsumoto K, Taguchi K. Carbon monoxide alleviates endotoxin-induced acute lung injury via NADPH oxidase inhibition in macrophages and neutrophils. Biochem Pharmacol 2025; 233:116782. [PMID: 39880317 DOI: 10.1016/j.bcp.2025.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Sepsis is a life-threatening condition caused by severe infection and often complicates acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) due to the collapse of the oxidative and inflammatory balance induced by microbial pathogens, including lipopolysaccharides (LPS). In sepsis-related ARDS/ALI, NADPH oxidase (NOX) and toll-like receptors (TLR) in neutrophils and macrophages are key players in initiating oxidative and inflammatory imbalances. Although NOX and TLR activation has been linked to carbon monoxide (CO), the mechanism by which CO affects sepsis-related ARDS/ALI through NOX and TLR remains unknown. Here, we demonstrate that CO reduces sepsis-related ARDS/ALI by inhibiting NOX in neutrophils and macrophages, which in turn suppresses the production of reactive oxygen species (ROS), TLR4-associated inflammatory responses, and macrophage polarization toward M1-like macrophages. CO-bound hemoglobin vesicle (CO-HbV) therapy, a hemoglobin-based CO donor, exerts a protective effect against LPS-induced ALI by suppressing exaggerated oxidative and inflammatory responses and neutrophil and M1-like macrophage infiltration in the bronchoalveolar lavage fluid (BALF). Through suppression of NOX activity, CO decreased ROS generation, the TLR4/NF-κB signaling pathway, and macrophage polarization toward M1-like macrophages, according to cellular experiments conducted with peripheral neutrophils, BALF cells, and Raw264.7 cells. Moreover, ALI was found to be more severe in Hmox1+/- mice (mice with decreased endogenous CO production) than in the wild-type mice. Our findings suggest that both endogenously generated and exogenously supplied CO inhibit NOX-associated ROS generation, the TLR4/NF-κB signaling pathway, and macrophage polarization, thereby eliciting antioxidant and anti-inflammatory responses that prevent the onset and progression of LPS-induced ALI.
Collapse
Affiliation(s)
- Yuki Watabe
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Victor Tuan Giam Chuang
- Discipline of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Nara, Japan
| | - Chihiro Ito
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| |
Collapse
|
4
|
Li X, Yang Y, Xu S, Gui Y, Chen J, Xu J. Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning. Neural Regen Res 2024; 19:2723-2734. [PMID: 38595290 PMCID: PMC11168503 DOI: 10.4103/1673-5374.391306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00028/figure1/v/2024-04-08T165401Z/r/image-tiff Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal cord injury. They can greatly affect nerve regeneration and functional recovery. However, there is still limited understanding of the peripheral immune inflammatory response in spinal cord injury. In this study, we obtained microRNA expression profiles from the peripheral blood of patients with spinal cord injury using high-throughput sequencing. We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus (GEO) database (GSE151371). We identified 54 differentially expressed microRNAs and 1656 differentially expressed genes using bioinformatics approaches. Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways, such as neutrophil extracellular trap formation pathway, T cell receptor signaling pathway, and nuclear factor-κB signal pathway, were abnormally activated or inhibited in spinal cord injury patient samples. We applied an integrated strategy that combines weighted gene co-expression network analysis, LASSO logistic regression, and SVM-RFE algorithm and identified three biomarkers associated with spinal cord injury: ANO10, BST1, and ZFP36L2. We verified the expression levels and diagnostic performance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve. Quantitative polymerase chain reaction results showed that ANO10 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients. We also constructed a small RNA-mRNA interaction network using Cytoscape. Additionally, we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal cord injury patients using the CIBERSORT tool. The proportions of naïve B cells, plasma cells, monocytes, and neutrophils were increased while the proportions of memory B cells, CD8+ T cells, resting natural killer cells, resting dendritic cells, and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects, and ANO10, BST1 and ZFP26L2 were closely related to the proportion of certain immune cell types. The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal cord injury and suggest that ANO10, BST1, and ZFP36L2 are potential biomarkers for spinal cord injury. The study was registered in the Chinese Clinical Trial Registry (registration No. ChiCTR2200066985, December 12, 2022).
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ye Yang
- Department of Rehabilitation Medicine, Guilin People’s Hospital, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Senming Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Park J, Rah SY, An HS, Lee JY, Roh GS, Ryter SW, Park JW, Yang CH, Surh YJ, Kim UH, Chung HT, Joe Y. Metformin-induced TTP mediates communication between Kupffer cells and hepatocytes to alleviate hepatic steatosis by regulating lipophagy and necroptosis. Metabolism 2023; 141:155516. [PMID: 36773805 DOI: 10.1016/j.metabol.2023.155516] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE Emerging evidence suggests that crosstalk between Kupffer cells (KCs) and hepatocytes protects against non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms that lead to the reduction of steatosis in NAFLD remain obscure. METHODS Ttp+/+ and Ttp-/- mice were fed with a high-fat diet. Hepatic steatosis was analyzed by Nile Red staining and measurement of inflammatory cytokines. Lipid accumulation and cell death were evaluated in co-culture systems with primary hepatocytes and KCs derived from either Ttp+/+ or Ttp-/- mice. RESULTS Tristetraprolin (TTP), an mRNA binding protein, was essential for the protective effects of metformin in NAFLD. Metformin activated TTP via the AMPK-Sirt1 pathway in hepatocytes and KCs. TTP inhibited TNF-α production in KCs, which in turn decreased hepatocyte necroptosis. Downregulation of Rheb expression by TTP promoted hepatocyte lipophagy via mTORC1 inhibition and increased nuclear translocation of transcription factor-EB (TFEB). Consistently, TTP-deficient NAFLD mice failed to respond to metformin with respect to alleviation of hepatic steatosis, protection of hepatocyte necroptosis, or induction of lipophagy. CONCLUSIONS TTP, which is essential for the protective effects of metformin, may represent a novel primary therapeutic target in NAFLD.
Collapse
Affiliation(s)
- Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - So-Young Rah
- National Creative Research Laboratory for Ca(2+) signaling Network, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | | | - Jeong Woo Park
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Uh-Hyun Kim
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea.
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea.
| |
Collapse
|
6
|
Chen Z, Fan N, Shen G, Yang J. Silencing lncRNA CDKN2B-AS1 Alleviates Childhood Asthma Progression Through Inhibiting ZFP36 Promoter Methylation and Promoting NR4A1 Expression. Inflammation 2023; 46:700-717. [PMID: 36422840 DOI: 10.1007/s10753-022-01766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
LncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) was found to be upregulated in plasma of patients with bronchial asthma. This study aimed to explore the roles and mechanisms of CDKN2B-AS1 in childhood asthma. We found that CDKN2B-AS1 was upregulated and zinc finger protein 36 (ZFP36) mRNA was downregulated in blood samples of children with asthma compared with healthy controls as measured by RT-qPCR. Human bronchial epithelial cell line BEAS-2B was treated with LPS to induce inflammation model. Small interfering RNA against CDKN2B-AS1 (si-CDKN2B-AS1) was transfected into LPS-treated BEAS-2B cells, and we observed that CDKN2B-AS1 silencing increased cell viability and inhibited apoptosis and inflammation cytokine levels in LPS-treated BEAS-2B cells. Methylation-specific PCR, ChIP, and RIP assays indicated that CDKN2B-AS1 inhibited ZFP36 expression by recruiting DNMT1 to promote ZFP36 promoter methylation. Co-immunoprecipitation (Co-IP) assay verified the interaction between ZFP36 and nuclear receptor subfamily 4 group A member 1 (NR4A1) proteins. Then rescue experiments revealed that ZFP36 knockdown reversed the effects of CDKN2B-AS1 silencing on BEAS-2B cell functions. ZFP36 overexpression facilitated apoptosis, inflammation, and p-p65 expression in BEAS-2B cells, while NR4A1 knockdown reversed these effects. Additionally, CDKN2B-AS1 silencing alleviated airway hyperresponsiveness and inflammation in ovalbumin (OVA)-induced asthma mice. In conclusion, silencing lncRNA CDKN2B-AS1 enhances BEAS-2B cell viability, reduces apoptosis and inflammation in vitro, and alleviated asthma symptoms in OVA-induced asthma mice in vivo through inhibiting ZFP36 promoter methylation and NR4A1-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhixin Chen
- Department of Pediatrics, Nanyang Central Hospital, No. 312, Gongnong Road, Henan Province, 473000, China.
| | - Nuandong Fan
- Department of Pathology, Nanyang Traditional Chinese Medicine Hospital, Henan Province, 473000, China
| | - Guangsheng Shen
- Department of Pediatrics, Nanyang Central Hospital, No. 312, Gongnong Road, Henan Province, 473000, China
| | - Jing Yang
- Department of Pediatrics, Nanyang Central Hospital, No. 312, Gongnong Road, Henan Province, 473000, China
| |
Collapse
|
7
|
Cao Y, Huang W, Wu F, Shang J, Ping F, Wang W, Li Y, Zhao X, Zhang X. ZFP36 protects lungs from intestinal I/R-induced injury and fibrosis through the CREBBP/p53/p21/Bax pathway. Cell Death Dis 2021; 12:685. [PMID: 34238924 PMCID: PMC8266850 DOI: 10.1038/s41419-021-03950-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
Acute lung injury induced by ischemia-reperfusion (I/R)-associated pulmonary inflammation is associated with high rates of morbidity. Despite advances in the clinical management of lung disease, molecular therapeutic options for I/R-associated lung injury are limited. Zinc finger protein 36 (ZFP36) is an AU-rich element-binding protein that is known to suppress the inflammatory response. A ZFP36 binding site occurs in the 3' UTR of the cAMP-response element-binding protein (CREB) binding protein (CREBBP) gene, which is known to interact with apoptotic proteins to promote apoptosis. In this study, we investigate the involvement of ZFP36 and CREBBP on I/R-induced lung injury in vivo and in vitro. Intestinal ischemia/reperfusion (I/R) activates inflammatory responses, resulting in injury to different organs including the lung. Lung tissues from ZFP36-knockdown mice and mouse lung epithelial (MLE)-2 cells were subjected to either Intestinal I/R or hypoxia/reperfusion, respectively, and then analyzed by Western blotting, immunohistochemistry, and real-time PCR. Silico analyses, pull down and RIP assays were used to analyze the relationship between ZFP36 and CREBBP. ZFP36 deficiency upregulated CREBBP, enhanced I/R-induced lung injury, apoptosis, and inflammation, and increased I/R-induced lung fibrosis. In silico analyses indicated that ZFP36 was a strong negative regulator of CREBBP mRNA stability. Results of pull down and RIP assays confirmed that ZFP36 direct interacted with CREBBP mRNA. Our results indicated that ZFP36 can mediate the level of inflammation-associated lung damage following I/R via interactions with the CREBBP/p53/p21/Bax pathway. The downregulation of ZFP36 increased the level of fibrosis.
Collapse
Affiliation(s)
- Yongmei Cao
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600, Yishan Rd, Xuhui District, Shanghai, 201499, China
| | - Weifeng Huang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600, Yishan Rd, Xuhui District, Shanghai, 201499, China
| | - Fang Wu
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600, Yishan Rd, Xuhui District, Shanghai, 201499, China
| | - Jiawei Shang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600, Yishan Rd, Xuhui District, Shanghai, 201499, China
| | - Feng Ping
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600, Yishan Rd, Xuhui District, Shanghai, 201499, China
| | - Wei Wang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600, Yishan Rd, Xuhui District, Shanghai, 201499, China
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600, Yishan Rd, Xuhui District, Shanghai, 201499, China.
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tongji University Affiliated Tenth People's Hospital, No. 301, Middle Yanchang Road, Shanghai, 200072, China.
| | - Xiaoping Zhang
- Department of Interventional Vascular, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
- Shanghai Center of Thyroid Diseases, Tongji University School of Medicine, Shanghai, 200072, China.
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, P.R. China.
| |
Collapse
|
8
|
Wu F, Huang W, Tan Q, Guo Y, Cao Y, Shang J, Ping F, Wang W, Li Y. ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1. Cell Death Dis 2021; 12:614. [PMID: 34131106 PMCID: PMC8206151 DOI: 10.1038/s41419-021-03876-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
Among several leading cardiovascular disorders, ischemia–reperfusion (I/R) injury causes severe manifestations including acute heart failure and systemic dysfunction. Recently, there has been increasing evidence suggesting that alterations in mitochondrial morphology and dysfunction also play an important role in the prognosis of cardiac disorders. Long non-coding RNAs (lncRNAs) form major regulatory networks altering gene transcription and translation. While the role of lncRNAs has been extensively studied in cancer and tumor biology, their implications on mitochondrial morphology and functions remain to be elucidated. In this study, the functional roles of Zinc finger protein 36-like 2 (ZFP36L2) and lncRNA PVT1 were determined in cardiomyocytes under hypoxia/reoxygenation (H/R) injury in vitro and myocardial I/R injury in vivo. Western blot and qRT-PCR analysis were used to assess the levels of ZFP36L2, mitochondrial fission and fusion markers in the myocardial tissues and cardiomyocytes. Cardiac function was determined by immunohistochemistry, H&E staining, and echocardiogram. Ultrastructural analysis of mitochondrial fission was performed using transmission electron microscopy. The mechanistic model consisting of PVT1 with ZFP36L2 and microRNA miR-21-5p with E3 ubiquitin ligase MARCH5 was assessed by subcellular fraction, RNA pull down, FISH, and luciferase reporter assays. These results identified a novel regulatory axis involving PVT1, miR-21-5p, and MARCH5 that alters mitochondrial morphology and function during myocardial I/R injury. Using an in vivo I/R injury mouse model and in vitro cardiomyocytes H/R model, we demonstrated that ZFP36L2 directly associates with PVT1 and alters mitochondrial fission and fusion. PVT1 also interactes with miR-21-5p and suppresses its expression and activity. Furthermore, we identified MARCH5 as a modifier of miR-21-5p, and its effect on mitochondrial fission and fusion are directly proportional to PVT1 expression during H/R injury. Our findings show that manipulation of PVT1-miR-21-5p-MARCH5-mediated mitochondrial fission and fusion via ZFP36L2 may be a novel therapeutic approach to regulate myocardial I/R injury.
Collapse
Affiliation(s)
- Fang Wu
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Weifeng Huang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Qin Tan
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Yong Guo
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Yongmei Cao
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Jiawei Shang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Feng Ping
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Wei Wang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| |
Collapse
|
9
|
Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y, Xin Y, Wang XP. CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol 2021; 341:113683. [PMID: 33711325 DOI: 10.1016/j.expneurol.2021.113683] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) induced the gastrointestinal inflammation that is associated with TBI-related morbidity and mortality. Carbon monoxide-releasing molecule (CORM)-3 is a water-soluble exogenous carbon monoxide that exerts protective effects against inflammation-induced pyroptosis. We investigated the gastrointestinal inflammation in a rodent model of traumatic brain injury (TBI) with subsequent hemorrhagic shock and resuscitation (HSR), as well as effects of CORM-3 using an intestinal injection on both gut and brain. METHODS Following exposure to TBI plus HSR, rats were administrated with CORM-3 (8 mg/kg) through an intestinal injection after resuscitation immediately. The pathological changes and pyroptosis in the gut were measured at 24 h and 30 day post-trauma. We also assessed the intestinal and cortical CO content, as well as IL-1β and IL-18 levels in the serum within 48 h after trauma. We then explored pathological changes in the ventromedial prefrontal cortex (vmPFC) and neurological behavior deficits on 30 day post-trauma. RESULTS After TBI + HSR exposure, CORM-3-treated rats presented significantly decreased pyroptosis, more CO content in the jejunum, and lower IL-1β, IL-18 levels in the serum at 24 h after trauma. Moreover, the rats treated with CORM-3 exerted ameliorated jejunal and vmPFC injury, enhanced learning/memory ability and exploratory activity, improved anxiety-like behaviors than the TBI + HSR-treated rats on 30 day post-trauma. CONCLUSION These experimental data demonstrated and bidirectional gut-brain interactions after TBI, anti-inflammatory effects of CORM-3, which may improve late outcomes after brain injury.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jin-Shu Hu
- Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
10
|
Chen S, Hu Y, Zhang J, Zhang P. Anti‑inflammatory effect of salusin‑β knockdown on LPS‑activated alveolar macrophages via NF‑κB inhibition and HO‑1 activation. Mol Med Rep 2020; 23:127. [PMID: 33300078 PMCID: PMC7751479 DOI: 10.3892/mmr.2020.11766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation of alveolar macrophages is the primary pathological factor leading to acute lung injury (ALI), and NF-κB activation and HO-1 inhibition are widely involved in inflammation. Salusin-β has been reported to contribute to the progression of the inflammatory response, but whether salusin-β could regulate inflammation in lipopolysaccharide (LPS)-induced ALI remains unknown. The present study aimed to investigate the role of salusin-β in LPS-induced ALI and to uncover the potential underlying mechanisms. Sprague-Dawley rats were subjected to LPS administration, and then pathological manifestations of lung tissues, inflammatory cytokines levels in bronchoalveolar lavage fluid (BALF) and expression of salusin-β in macrophages of lung tissues were assessed. NR8383 cells with or without salusin-β knockdown were treated with LPS, and then the concentration of inflammatory cytokines, and the expression of high mobility group box-1 (HMGB1), NF-κB signaling molecules and heme oxygenase-1 (HO-1) levels were detected. The results showed that LPS caused injury of lung tissues, increased the levels of proinflammatory cytokines in BALF, and led to higher expression of salusin-β or macrophages in lung tissues of rats. In vitro experiments, LPS also upregulated salusin-β expression in NR8383 cells. Knockdown of salusin-β using short hairpin (sh)RNA inhibited the LPS-induced generation of inflammatory cytokines. LPS also enhanced HMGB1, phosphorylated (p)-IκB and p-p65 expression, but reduced HO-1 expression in both lung tissues and NR8383 cells, which were instead inhibited by the transfection of sh-salusin-β. In addition, knockdown of HO-1 using shRNA reversed the inhibitory effect of sh-salusin-β on the LPS-induced generation of inflammatory cytokines, activation of NF-κB signaling and inactivation of HO-1. In conclusion, this study suggested that knockdown of salusin-β may inhibit LPS-induced inflammation in alveolar macrophages by blocking NF-κB signaling and upregulating HO-1 expression.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yunnan Hu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jiaxin Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Pengyu Zhang
- Department of Emergency, Jilin Central General Hospital, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
11
|
Joe Y, Chen Y, Park J, Kim HJ, Rah SY, Ryu J, Cho GJ, Choi HS, Ryter SW, Park JW, Kim UH, Chung HT. Cross-talk between CD38 and TTP Is Essential for Resolution of Inflammation during Microbial Sepsis. Cell Rep 2020; 30:1063-1076.e5. [PMID: 31995750 DOI: 10.1016/j.celrep.2019.12.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/12/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The resolution phase of acute inflammation is essential for tissue homeostasis, yet the underlying mechanisms remain unclear. We demonstrate that resolution of inflammation involves interactions between CD38 and tristetraprolin (TTP). During the onset of acute inflammation, CD38 levels are increased, leading to the production of Ca2+-signaling messengers, nicotinic acid adenine dinucleotide phosphate (NAADP), ADP ribose (ADPR), and cyclic ADPR (cADPR) from NAD(P)+. To initiate the onset of resolution, TTP expression is increased by the second messengers, NAADP and cADPR, which downregulate CD38 expression. The activation of TTP by Sirt1-dependent deacetylation, in response to increased NAD+ levels, suppresses the acute inflammatory response and decreases Rheb expression, inhibits mTORC1, and induces autophagolysosomes for bacterial clearance. TTP may represent a mechanistic target of anti-inflammatory agents, such as carbon monoxide. TTP mediates crosstalk between acute inflammation and autophagic clearance of bacteria from damaged tissue in the resolution of inflammation during sepsis.
Collapse
Affiliation(s)
- Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Yingqing Chen
- National Creative Research Laboratory for Ca(2+) signaling Network, Chonbuk National University Medical School, Jeonju 54907, Korea; Dalian University Medical College, Dalian 116622, China
| | - Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Hyo Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - So-Young Rah
- National Creative Research Laboratory for Ca(2+) signaling Network, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Jinhyun Ryu
- Department of Anatomy, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52728, Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52728, Korea
| | - Hye-Seon Choi
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Jeong Woo Park
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca(2+) signaling Network, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.
| |
Collapse
|
12
|
Sun X, Zhang H, Xie L, Qian C, Ye Y, Mao H, Wang B, Zhang H, Zhang Y, He X, Zhang S. Tristetraprolin destabilizes NOX2 mRNA and protects dopaminergic neurons from oxidative damage in Parkinson's disease. FASEB J 2020; 34:15047-15061. [PMID: 32954540 DOI: 10.1096/fj.201902967r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
Tristetraprolin (TTP), an RNA-binding protein encoded by the ZFP36 gene, is vital for neural differentiation; however, its involvement in neurodegenerative diseases such as Parkinson's disease (PD) remains unclear. To explore the role of TTP in PD, an in vitro 1-methyl-4-phenylpyridinium (MPP+ ) cell model and an in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of PD were used. Transfection of small interfering (si)-TTP RNA upregulated pro-oxidative NOX2 expression and ROS formation, downregulated anti-oxidative GSH and SOD activity;si-TTP upregulated pro-apoptotic cleaved-caspase-3 expression, and downregulated antiapoptotic Bcl-2 expression; while overexpression (OE)-TTP lentivirus caused opposite effects. Through database prediction, luciferase experiment, RNA immunoprecipitation (RIP), and mRNA stability analysis, we evaluated the potential binding sites of TTP to 3'-untranslated regions (3'-UTR) of NOX2 mRNA. TTP affected the NOX2 luciferase activity by binding to two sites in the NOX2 3'-UTR. RIP-qPCR confirmed TTP binding to both sites, with a higher affinity for site-2. In addition, TTP reduced the NOX2 mRNA stability. si-NOX2 and antioxidant N-acetyl cysteine (NAC) reversed si-TTP-induced cell apoptosis. In MPTP-treated mice, TTP expression increased and was co-located with dopaminergic neurons. TTP also inhibited NOX2 and decreased the oxidative stress in vivo. In conclusion, TTP protects against dopaminergic oxidative injury by promoting NOX2 mRNA degradation in the MPP+ /MPTP model of PD, suggesting that TTP could be a potential therapeutic target for regulating the oxidative stress in PD.
Collapse
Affiliation(s)
- Xiang Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linghai Xie
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Qian
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyi Ye
- Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhou Zhang
- Tarbut V'Torah Community Day School, Irvine, CA, USA
| | - Xiaozheng He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Zhang LM, Zhang DX, Fu L, Li Y, Wang XP, Qi MM, Li CC, Song PP, Wang XD, Kong XJ. Carbon monoxide-releasing molecule-3 protects against cortical pyroptosis induced by hemorrhagic shock and resuscitation via mitochondrial regulation. Free Radic Biol Med 2019; 141:299-309. [PMID: 31265876 DOI: 10.1016/j.freeradbiomed.2019.06.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Carbon monoxide (CO) releasing molecule (CORM)-3, a water-soluble CORM, has protective effects against inflammatory and ischemia/reperfusion injury. We determined the effect of CORM-3 against neuronal pyroptosis in a model of hemorrhagic shock and resuscitation (HSR) in rats via mitochondrial regulation. METHODS Rats were treated with CORM-3 (4 mg/kg) in vitro after HSR. We measured cortical CO content 3-24 h after HSR; assessed neuronal pyroptosis, mitochondrial morphology, ROS production, and mitochondrial membrane potential at 12 h after HSR; and evaluated brain magnetic resonance imaging at 24 h after HSR and learning ability 30 days after HSR. We also measured soluble guanylate-cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling pathway activity using a blocker of sGC, NS2028, and 125I-cGMP assay. RESULTS Among rats that underwent HSR, CORM-3-treated rats had more CO in the cortical tissue than sham- and iCORM-3-treated rats. CORM-3-treated rats had significantly less neuronal pyroptosis in the cortical tissue; higher sGC activity and cGMP content; lower ROS production; better mitochondrial morphology, function, and membrane potential; and enhanced learning/memory ability than HSR-treated rats. However, these neuroprotective effects of CORM-3 were partially inhibited by NS2028. CONCLUSION CORM-3 may alleviate neuronal pyroptosis and improve neurological recovery in HSR through mitochondrial regulation mediated by the sGC-cGMP pathway. Thus, CO administration could be a promising therapeutic strategy for hemorrhagic shock.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Man-Man Qi
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Chen-Chen Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Pan-Pan Song
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Dong Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiang-Jun Kong
- Central Laboratory, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
14
|
Li P, Zhang J, Li X, Gao H. Tristetraprolin attenuates brain edema in a rat model of cerebral hemorrhage. Brain Behav 2019; 9:e01187. [PMID: 30729695 PMCID: PMC6422712 DOI: 10.1002/brb3.1187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES We evaluated the protective effects of protein phosphatase 2A (PP2A)/tristetraprolin (TTP) against brain edema in a rat model of cerebral hemorrhage, bleeding in the brain that occurs in tissues and ventricles. TTP is a well-known mRNA-binding protein and essential regulatory molecule for gene expression. METHODS Cerebral hemorrhage was induced in male albino rats divided into four homogeneous groups: normal control (I), control (II), PP2A siRNA (III), and scrambled siRNA (IV). Neurological scores, caspase-3 mRNA and protein expression, PP2A and TTP protein expression, apoptosis, and water content in the brain were determined. RESULTS The neurological score decreased substantially to 8.2 in rats in which cerebral hemorrhage was induced and was further reduced to 7.4 and 7.7 in groups III and IV, respectively. Caspase-3 expression increased significantly by 90% in group II and by 26.9% in group III. Apoptosis increased by 26.1% in rats in which cerebral hemorrhage was induced and increased considerably by 35.3% and 33.4% in groups III and IV, respectively. PP2A and TTP protein expression increased significantly by 87% and 59%, as compared to their respective sham controls. However, PP2A and TTP siRNA treatment reduced the protein expression of PP2A and TTP in groups III and IV. The water content in the brain increased significantly by 77.4% in rats in which cerebral hemorrhage was induced (group II), as compared to the sham group. The water content in the brain increased by 84.1% and 78.7% in groups III and IV, respectively. CONCLUSION Taken together, these data indicate that TTP has a protective role against brain edema by reducing inflammation, apoptosis, and water content in the brain at 48 hr after cerebral hemorrhage. Our findings may be useful for developing important approaches to treating brain injury.
Collapse
Affiliation(s)
- Peiyu Li
- Department of Neurology, The Affiliated First Hospital of Jiamusi University, Jiamusi, China
| | - Junwu Zhang
- Department of Neurology, The Affiliated First Hospital of Jiamusi University, Jiamusi, China
| | - Xin Li
- Department of Neurology, The Affiliated First Hospital of Jiamusi University, Jiamusi, China
| | - Hongwei Gao
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
15
|
Pterostilbene 4'- β-Glucoside Attenuates LPS-Induced Acute Lung Injury via Induction of Heme Oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2747018. [PMID: 30425781 PMCID: PMC6218729 DOI: 10.1155/2018/2747018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/03/2018] [Accepted: 08/29/2018] [Indexed: 01/11/2023]
Abstract
Heme oxygenase-1 (HO-1) can exert anti-inflammatory and antioxidant effects. Acute lung injury (ALI) is associated with increased inflammation and influx of proinflammatory cells and mediators in the airspaces and lung parenchyma. In this study, we demonstrate that pterostilbene 4′-β-glucoside (4-PG), the glycosylated form of the antioxidant pterostilbene (PTER), can protect against lipopolysaccharide- (LPS-) or Pseudomonas aeruginosa- (P. aeruginosa-) induced ALI when applied as a pretreatment or therapeutic post-treatment, via the induction of HO-1. To determine whether HO-1 mediates the antioxidant and anti-inflammatory effects of 4-PG, we subjected mice genetically deficient in Hmox-1 to LPS-induced ALI and evaluated histological changes, HO-1 expression, and proinflammatory cytokine levels in bronchoalveolar lavage (BAL) fluid. 4-PG exhibited protective effects on LPS- or P. aeruginosa-induced ALI by ameliorating pathological changes in lung tissue and decreasing proinflammatory cytokines. In addition, HO-1 expression was significantly increased by 4-PG in cells and in mouse lung tissues. The glycosylated form of pterostilbene (4-PG) was more effective than PTER in inducing HO-1 expression. Genetic deletion of Hmox-1 abolished the protective effects of 4-PG against LPS-induced inflammatory responses. Furthermore, we found that 4-PG decreased both intracellular ROS levels and mitochondrial (mt) ROS production in a manner dependent on HO-1. Pharmacological application of the HO-1 reaction product carbon monoxide (CO), but not biliverdin or iron, conferred protection in Hmox-1-deficient macrophages. Taken together, these results demonstrate that 4-PG can increase HO-1 expression, which plays a critical role in ameliorating intracellular and mitochondrial ROS production, as well as in downregulating inflammatory responses induced by LPS. Therefore, these findings strongly suggest that HO-1 mediates the antioxidant and anti-inflammatory effects of 4-PG.
Collapse
|
16
|
Tian FJ, He XY, Wang J, Li X, Ma XL, Wu F, Zhang J, Liu XR, Qin XL, Zhang Y, Zeng WH, Lin Y. Elevated Tristetraprolin Impairs Trophoblast Invasion in Women with Recurrent Miscarriage by Destabilization of HOTAIR. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:600-609. [PMID: 30195796 PMCID: PMC6078837 DOI: 10.1016/j.omtn.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
Abstract
Tristetraprolin (TTP) regulates the stability of multiple targets that have important biological roles. However, the role of TTP in trophoblasts at the maternal-fetal interface remains poorly understood. We demonstrated that TTP was upregulated in placental trophoblasts from patients with recurrent miscarriages (RMs). Immunofluorescence and immunoblotting analyses indicated that TTP was redistributed from the nucleus to the cytoplasm in trophoblasts from patients with RMs. Trophoblast invasion and proliferation was repressed by TTP overexpression and was enhanced by TTP knockdown. Interestingly, TTP knockdown promoted trophoblast invasion in an ex vivo explant culture model. Furthermore, TTP overexpression in trophoblasts significantly inhibited the expression of the long non-coding RNA (lncRNA) HOTAIR. TTP was found to regulate HOTAIR expression by a posttranscriptional mechanism. To RNA immunoprecipitation (RIP) and RNA-protein, pull-down identified TTP as a specific binding partner that decreased the half-life of HOTAIR and lowered steady-state HOTAIR expression levels, indicating a novel posttranscriptional regulatory mechanism. Our findings identify a novel function for TTP in lncRNA regulation and provide important insights into the regulation of lncRNA expression. This study reveals a new pathway governing the regulation of TTP/HOTAIR in trophoblast cell invasion during early pregnancy.
Collapse
Affiliation(s)
- Fu-Ju Tian
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Ying He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jie Wang
- Department of Breast Disease, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Ling Ma
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Fan Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jing Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Rui Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Li Qin
- Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei-Hong Zeng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Yi Lin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
17
|
Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5164314. [PMID: 29849710 PMCID: PMC5925179 DOI: 10.1155/2018/5164314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022]
Abstract
Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.
Collapse
|
18
|
Yin J, Li R, Liu W, Chen Y, Zhang X, Li X, He X, Duan C. Neuroprotective Effect of Protein Phosphatase 2A/Tristetraprolin Following Subarachnoid Hemorrhage in Rats. Front Neurosci 2018; 12:96. [PMID: 29535596 PMCID: PMC5835096 DOI: 10.3389/fnins.2018.00096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) can lead to inflammation and neuronal dysfunction. There is a need for effective strategies to mitigate these effects and improve the outcome of patients who experience SAH. The mRNA-destabilizing protein tristetraprolin (TTP) is an anti-inflammatory factor that induces the decay of cytokine transcripts and has been implicated in diseases such as glioma. However, the mechanism of action of TTP in EBI after SAH is unclear. The present study investigated the effects of TTP regulation via phosphorylation in a rat model of SAH by protein phosphatase (PP)2A, which is a pleiotropic enzyme complex with multiple substrate phospho-proteins. We hypothesized that inhibitory phosphorylation of TTP by PP2A would reduce neuroinflammation and apoptosis. To evaluate the function of each factor, the PP2A agonist FTY720, short interfering (si)RNAs targeting TTP and PP2A were administered to rats by intracerebroventricular injection 24 h before SAH. Rats were evaluated with SAH grade, neurological score, brain water content and by western blotting, and terminal deoxynucleotidyltransferase dUTP nick-end labeling. We found that endogenous PP2A and TTP levels were increased after SAH. FTY720 induced PP2A activation would lead to dephosphorylation and activation of TTP and decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. SiRNA-mediated TTP knockdown abolished anti-inflammatory effects of FTY720 treatment, indicating that PP2A was associated with TTP activation in vivo. Decreased TNF-α, IL-6, and IL-8 levels were associated with improvement of neurological function, reduction of brain edema, suppression of caspase-3, and up-regulation of B cell lymphoma-2. These results demonstrated that PP2A activation could enhance the anti-inflammatory and anti-apoptotic effects of TTP, by which it might shed light on the development of an effective therapeutic strategy against EBI following SAH.
Collapse
Affiliation(s)
- Jian Yin
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Departments of Neurosurgery, Hanghzou Red Cross Hospital, Hangzhou, China
| | - Ran Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunchang Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Joe Y, Kim S, Kim HJ, Park J, Chen Y, Park HJ, Jekal SJ, Ryter SW, Kim UH, Chung HT. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway. FASEB J 2018; 32:2630-2643. [PMID: 29295856 PMCID: PMC5901375 DOI: 10.1096/fj.201700709rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The prevalence of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease, has rapidly increased, yet the molecular mechanisms underlying the metabolic syndrome, a primary risk factor, remain incompletely understood. The small, gaseous molecule carbon monoxide (CO) has well-known anti-inflammatory, antiproliferative, and antiapoptotic effects in a variety of cellular- and tissue-injury models, whereas its potential effects on the complex pathways of metabolic disease remain unknown. We demonstrate here that CO can alleviate metabolic dysfunction in vivo and in vitro. We show that CO increased the expression and section of the fibroblast growth factor 21 (FGF21) in hepatocytes and liver. CO-stimulated PERK activation and enhanced the levels of FGF21 via the eIF2α–ATF4 signaling pathway. The induction of FGF21 by CO attenuated endoreticulum stress- or diet-induced, obesity-dependent hepatic steatosis. Moreover, CO inhalation lowered blood glucose levels, enhanced insulin sensitivity, and promoted energy expenditure by stimulating the emergence of beige adipose cells from white adipose cells. In conclusion, we suggest that CO acts as a potent inducer of FGF21 expression and that CO critically depends on FGF21 to regulate metabolic homeostasis.—Joe, Y., Kim, S., Kim, H. J., Park, J., Chen, Y., Park, H.-J., Jekal, S.-J., Ryter, S. W., Kim, U. H., Chung, H. T. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway.
Collapse
Affiliation(s)
- Yeonsoo Joe
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Sena Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyo Jeong Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeongmin Park
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Yingqing Chen
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyeok-Jun Park
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Seung-Joo Jekal
- Wonkwang Health Science University, Iksan, Jeonbuk, South Korea
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; and
| | - Uh Hyun Kim
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea
| | - Hun Taeg Chung
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
20
|
Ezegbunam W, Foronjy R. Posttranscriptional control of airway inflammation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29071794 DOI: 10.1002/wrna.1455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Acute inflammation in the lungs is a vital protective response, efficiently and swiftly eliminating inciters of tissue injury. However, in respiratory diseases characterized by chronic inflammation, such as chronic obstructive pulmonary disease and asthma, enhanced expression of inflammatory mediators leads to tissue damage and impaired lung function. Although transcription is an essential first step in the induction of proinflammatory genes, tight regulation of inflammation requires more rapid, flexible responses. Increasing evidence shows that such responses are achieved by posttranscriptional mechanisms directly affecting mRNA stability and translation initiation. RNA-binding proteins, microRNAs, and long noncoding RNAs interact with messenger RNA and each other to impact the stability and/or translation of mRNAs implicated in lung inflammation. Recent research has shown that these biological processes play a central role in the pathogenesis of several important pulmonary conditions. This review will highlight several posttranscriptional control mechanisms that influence lung inflammation and the known associations of derangements in these mechanisms with common respiratory diseases. WIREs RNA 2018, 9:e1455. doi: 10.1002/wrna.1455 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Robert Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
21
|
Wu D, Wang Y, Zhang H, Du M, Li T. Acacetin attenuates mice endotoxin-induced acute lung injury via augmentation of heme oxygenase-1 activity. Inflammopharmacology 2017; 26:635-643. [PMID: 28988328 DOI: 10.1007/s10787-017-0398-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/09/2017] [Indexed: 12/17/2022]
Abstract
Acacetin, a natural product, has a wide spectrum of biological activities such as antioxidant properties. In the present study, we examined whether Acacetin has any beneficial role on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and, if so, whether its effect is mediated via heme oxygenase-1 (HO-1), an antioxidant enzyme playing an important role in ALI. Male BALB/c mice were stimulated with LPS intratracheal instillation to induce ALI. Acacetin was administrated 2 h after LPS challenge. Samples were harvested 10 h after LPS administration. We demonstrated that LPS challenge significantly induced lung histological alterations such as inflammation and edema. Acacetin administration notably attenuated these changes and reduced tumor necrosis factor-α and interleukin-1β in lung tissues. The LPS-induced reactive oxygen species generation was markedly suppressed by Acacetin. Furthermore, Acacetin treatment significantly elevated pulmonary HO-1 and nuclear factor erythroid-2-related factor 2 (Nrf2) activities. However, the beneficial action of Acacetin was markedly abolished when pretreated with zinc protoporphyrin, an inhibitor of HO-1. In in vitro studies, Acacetin notably increased the HO-1 expression in pulmonary microvascular endothelial cells. During knockdown of Nrf2 by siRNA, the effect of Acacetin on HO-1 expression was significantly reversed. Acacetin attenuates LPS-induced ALI in mice. This protective effect of Acacetin may be mediated, in part, through an HO-1-dependent pathway.
Collapse
Affiliation(s)
- Dongdong Wu
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yanan Wang
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Heng Zhang
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Minghua Du
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Tanshi Li
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
22
|
Phua T, Sng MK, Tan EHP, Chee DSL, Li Y, Wee JWK, Teo Z, Chan JSK, Lim MMK, Tan CK, Zhu P, Arulampalam V, Tan NS. Angiopoietin-like 4 Mediates Colonic Inflammation by Regulating Chemokine Transcript Stability via Tristetraprolin. Sci Rep 2017; 7:44351. [PMID: 28287161 PMCID: PMC5347094 DOI: 10.1038/srep44351] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022] Open
Abstract
Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 (ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice (ANGPTL4−/−) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene expression profile of the colon from DSS-treated ANGPTL4−/− mice was enriched for genes involved in leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a novel target for therapy in regulating and attenuating inflammation.
Collapse
Affiliation(s)
- Terri Phua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, Stockholm 17177, Sweden
| | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Eddie Han Pin Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Dickson Shao Liang Chee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinliang Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jonathan Wei Kiat Wee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ziqiang Teo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Maegan Miang Kee Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chek Kun Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Pengcheng Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Velmurugesan Arulampalam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, Stockholm 17177, Sweden
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore.,Institute of Molecular Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology &Research, Singapore 138673, Singapore.,KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| |
Collapse
|