1
|
Ren W, Fang Z, Dolzhenko E, Saunders CT, Cheng Z, Popic V, Peltz G. A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632219. [PMID: 39868308 PMCID: PMC11761040 DOI: 10.1101/2025.01.09.632219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A more complete map of the pattern of genetic variation among inbred mouse strains is essential for characterizing the genetic architecture of the many available mouse genetic models of important biomedical traits. Although structural variants (SVs) are a major component of genetic variation, they have not been adequately characterized among inbred strains due to methodological limitations. To address this, we generated high-quality long-read sequencing data for 40 inbred strains; and designed a pipeline to optimally identify and validate different types of SVs. This generated a database for 40 inbred strains with 573,191SVs, which included 10,815 duplications and 2,115 inversions, that also has 70 million SNPs and 7.5 million insertions/deletions. Analysis of this SV database led to the discovery of a novel bi-genic model for susceptibility to a B cell lymphoma that spontaneously develops in SJL mice, which was initially described 55 years ago. The first genetic factor is a previously identified endogenous retrovirus encoded protein that stimulates CD4 T cells to produce the cytokines required for lymphoma growth. The second genetic factor is a newly found deletion SV, which ablates a protein whose promotes B lymphoma development in SJL mice. Characterizing the genetic architecture of SJL lymphoma susceptibility could provide new insight into the pathogenesis of a human lymphoma that has similarities with this murine lymphoma.
Collapse
Affiliation(s)
- Wenlong Ren
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | | | | | - Zhuanfen Cheng
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | | | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
2
|
Chalhoub B, Franco Puntes V, Mondragón L. Metallic nanoparticles biodistribution for the study of lymphoma in animal models. Methods Cell Biol 2024; 192:159-180. [PMID: 39863388 DOI: 10.1016/bs.mcb.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects. Inorganic materials (i.e., metal nanoparticles) can be used as imaging and radiotherapy agents demonstrating that nanoparticle-based therapies can combine and act as "precision medicine" for targeting tumors while leaving healthy tissue intact. Therefore, nanoparticles (NPs) appear as ideal platforms for multimodal therapy constituting a more than promising strategy in the search of effective combined treatments for T cell lymphoma. In our laboratory, we aim at validating these therapeutic strategies making use of metal NPs able to provide a diagnostic and therapeutic effect at the same time. Validation of the synthesized NPs will be possible thanks to the availability of an in vivo T cell lymphoma animal model also developed in the lab. Here, we describe basic protocols for the administration and biodistribution studies in solid tumors which could be of significant help for future therapies development and follow-up.
Collapse
Affiliation(s)
- Barbara Chalhoub
- T Cell Lymphoma Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Víctor Franco Puntes
- Design and Pharmacokinetics of Nanoparticles, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Universitari, Barcelona, Spain; Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Institut Català de Nanociència i Nanotecnologia (ICN2), Inorganic Nanoparticles, Edifici ICN2, Barcelona, Spain; Institut Català de Recerca i Estudis Avançats, (ICREA), Barcelona, Spain
| | - Laura Mondragón
- T Cell Lymphoma Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
| |
Collapse
|
3
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Robles-Valero J, Fernández-Nevado L, Lorenzo-Martín LF, Cuadrado M, Fernández-Pisonero I, Rodríguez-Fdez S, Astorga-Simón EN, Abad A, Caloto R, Bustelo XR. Cancer-associated mutations in VAV1 trigger variegated signaling outputs and T-cell lymphomagenesis. EMBO J 2021; 40:e108125. [PMID: 34617326 PMCID: PMC8591544 DOI: 10.15252/embj.2021108125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Mutations in VAV1, a gene that encodes a multifunctional protein important for lymphocytes, are found at different frequencies in peripheral T‐cell lymphoma (PTCL), non‐small cell lung cancer, and other tumors. However, their pathobiological significance remains unsettled. After cataloguing 51 cancer‐associated VAV1 mutations, we show here that they can be classified in five subtypes according to functional impact on the three main VAV1 signaling branches, GEF‐dependent activation of RAC1, GEF‐independent adaptor‐like, and tumor suppressor functions. These mutations target new and previously established regulatory layers of the protein, leading to quantitative and qualitative changes in VAV1 signaling output. We also demonstrate that the most frequent VAV1 mutant subtype drives PTCL formation in mice. This process requires the concurrent engagement of two downstream signaling branches that promote the chronic activation and transformation of follicular helper T cells. Collectively, these data reveal the genetic constraints associated with the lymphomagenic potential of VAV1 mutant subsets, similarities with other PTCL driver genes, and potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Javier Robles-Valero
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Lucía Fernández-Nevado
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - L Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Myriam Cuadrado
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Isabel Fernández-Pisonero
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Elsa N Astorga-Simón
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain
| | - Antonio Abad
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Rubén Caloto
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Xosé R Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Tari G, Lemonnier F, Morschhauser F. Epigenetic focus on angioimmunoblastic T-cell lymphoma: pathogenesis and treatment. Curr Opin Oncol 2021; 33:400-405. [PMID: 34230442 DOI: 10.1097/cco.0000000000000773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Angioimmunoblastic T-cell lymphoma (AITL) is a frequent peripheral T-cell lymphoma affecting elderly patients with a poor outcome when treated with conventional chemotherapy. Molecular studies revealed a homogenous mutational landscape gathering anomalies in genes regulating the DNA methylation and hydroxymethylation and anomalies in T-cell signalling. RECENT FINDINGS Recent studies indicate that AITL emerges from a TET2 and/or DNMT3A mutated clonal haematopoiesis. This clonal haematopoiesis bearing mutations altering DNA hydroxymethylation can explain the observed coexistence of AITL with myeloid neoplasms. In addition, AITL development requires AITL-specific mutations, such as the RHOAG17V mutations. Combination of TET2 and RHOAG17V alterations results in the development of AITL-like disease in mouse models. The impact of the presence of these mutations on patient outcome seems limited and new biological factor predicting treatment response and survival remains to be determined. At the therapeutic level, therapies targeting epigenetic changes, such as histone deacetylase inhibitors and the hypomethylating 5-azacytidine agent, could have efficacy in this disease and gave promising results. Recent progress in mouse model development should allow development of new treatments. SUMMARY Epigenetic changes are frequent in AITL and could be a promising target.
Collapse
Affiliation(s)
| | - François Lemonnier
- Univ Paris Est Créteil, INSERM, IMRB
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, Créteil
| | - Franck Morschhauser
- University Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| |
Collapse
|
6
|
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol 2021; 11:691210. [PMID: 34123879 PMCID: PMC8188986 DOI: 10.3389/fcimb.2021.691210] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments.
Collapse
Affiliation(s)
- Benjamin O. Murray
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Carlos Flores
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Corin Williams
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Deborah A. Flusberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Elizabeth E. Marr
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Karolina M. Kwiatkowska
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Joseph L. Charest
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Jennifer L. Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| |
Collapse
|
7
|
Desmirean M, Rauch S, Jurj A, Pasca S, Iluta S, Teodorescu P, Berce C, Zimta AA, Turcas C, Tigu AB, Moldovan C, Paris I, Steinheber J, Richlitzki C, Constantinescu C, Sigurjonsson OE, Dima D, Petrushev B, Tomuleasa C. B Cells versus T Cells in the Tumor Microenvironment of Malignant Lymphomas. Are the Lymphocytes Playing the Roles of Muhammad Ali versus George Foreman in Zaire 1974? J Clin Med 2020; 9:jcm9113412. [PMID: 33114418 PMCID: PMC7693982 DOI: 10.3390/jcm9113412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant lymphomas are a heterogeneous group of malignancies that develop both in nodal and extranodal sites. The different tissues involved and the highly variable clinicopathological characteristics are linked to the association between the lymphoid neoplastic cells and the tissues they infiltrate. The immune system has developed mechanisms to protect the normal tissue from malignant growth. In this review, we aim to explain how T lymphocyte-driven control is linked to tumor development and describe the tumor-suppressive components of the resistant framework. This manuscript brings forward a new insight with regard to intercellular and intracellular signaling, the immune microenvironment, the impact of therapy, and its predictive implications. A better understanding of the key components of the lymphoma environment is important to properly assess the role of both B and T lymphocytes, as well as their interplay, just as two legendary boxers face each other in a heavyweight title final, as was the case of Ali versus Foreman.
Collapse
Affiliation(s)
- Minodora Desmirean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Pathology, Constantin Papilian Military Hospital, 400124 Cluj Napoca, Romania;
| | - Sebastian Rauch
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Ancuta Jurj
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Cristian Berce
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Irene Paris
- Department of Pathology, Constantin Papilian Military Hospital, 400124 Cluj Napoca, Romania;
| | - Jakob Steinheber
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Cedric Richlitzki
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania
| | - Olafur Eysteinn Sigurjonsson
- The Blood Bank, Landspitali—The National University Hospital of Iceland, 101 Reykjavik, Iceland;
- School of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania;
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
- Department of Pathology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400124 Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania;
- Correspondence: ; Tel.: +40741337489
| |
Collapse
|
8
|
Mhaidly R, Krug A, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP. Oncogenesis 2020; 9:73. [PMID: 32796826 PMCID: PMC7427806 DOI: 10.1038/s41389-020-00259-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mouse models are essential to study and comprehend normal and malignant hematopoiesis. The ideal preclinical model should mimic closely the human malignancy. This means that these mice should recapitulate the clinical behavior of the human diseases such as cancer and therapeutic responses with high reproducibility. In addition, the genetic mutational status, the cell phenotype, the microenvironment of the tumor and the time until tumor development occurs, should be mimicked in a preclinical model. This has been particularly challenging for human angioimmunoblastic lymphoma (AITL), one of the most prominent forms of peripheral T-cell lymphomas. A complex network of interactions between AITL tumor cells and the various cells of the tumor microenvironment has impeded the study of AITL pathogenesis in vitro. Very recently, new mouse models that recapitulate faithfully the major features of human AITL disease have been developed. Here, we provide a summary of the pathology, the transcriptional profile and genetic and immune-phenotypic features of human AITL. In addition, we give an overview of preclinical models that recapitulate more or less faithfully human AITL characteristics and pathology. These recently engineered mouse models were essential in the evaluation of novel therapeutic agents for possible treatment of AITL, a malignancy in urgent need of new treatment options.
Collapse
Affiliation(s)
- Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Institut Curie, Stress and Cancer Laboratory, Equipe Labellisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'ULM, F-75248, Paris, France
- Inserm, U830, 26, rue d'ULM, Paris, F-75005, France
| | - Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Philippe Gaulard
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Institut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Institut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil, France
- Unité Hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | | | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007, Lyon, France.
| |
Collapse
|
9
|
Branca JA, Low BE, Saxl RL, Sargent JK, Doty RA, Wiles MV, Dumont BL, Hasham MG. Loss of TRP53 (p53) accelerates tumorigenesis and changes the tumor spectrum of SJL/J mice. Genes Cancer 2020; 11:83-94. [PMID: 32577159 PMCID: PMC7289902 DOI: 10.18632/genesandcancer.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background—SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin’s-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model.
Collapse
Affiliation(s)
| | | | - Ruth L Saxl
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | | | | |
Collapse
|
10
|
Filling the GAP (DH) in Pre-Clinical Models. Hemasphere 2019; 3:e311. [PMID: 31976484 PMCID: PMC6924543 DOI: 10.1097/hs9.0000000000000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Mondragón L, Mhaidly R, De Donatis GM, Tosolini M, Dao P, Martin AR, Pons C, Chiche J, Jacquin M, Imbert V, Proïcs E, Boyer L, Doye A, Luciano F, Neels JG, Coutant F, Fabien N, Sormani L, Rubio-Patiño C, Bossowski JP, Muller F, Marchetti S, Villa E, Peyron JF, Gaulard P, Lemonnier F, Asnafi V, Genestier L, Benhida R, Fournié JJ, Passeron T, Ricci JE, Verhoeyen E. GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell 2019; 36:268-287.e10. [PMID: 31447347 DOI: 10.1016/j.ccell.2019.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/17/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
GAPDH is emerging as a key player in T cell development and function. To investigate the role of GAPDH in T cells, we generated a transgenic mouse model overexpressing GAPDH in the T cell lineage. Aged mice developed a peripheral Tfh-like lymphoma that recapitulated key molecular, pathological, and immunophenotypic features of human angioimmunoblastic T cell lymphoma (AITL). GAPDH induced non-canonical NF-κB pathway activation in mouse T cells, which was strongly activated in human AITL. We developed a NIK inhibitor to reveal that targeting the NF-κB pathway prolonged AITL-bearing mouse survival alone and in combination with anti-PD-1. These findings suggest the therapeutic potential of targeting NF-κB signaling in AITL and provide a model for future AITL therapeutic investigations.
Collapse
Affiliation(s)
| | - Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Marie Tosolini
- Pôle Technologique du CRCT - Plateau Bioinformatique INSERM-UMR 1037, Toulouse, France
| | - Pascal Dao
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Anthony R Martin
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Caroline Pons
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Marie Jacquin
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Emma Proïcs
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Laurent Boyer
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Anne Doye
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Jaap G Neels
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Frédéric Coutant
- Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Edouard Herriot Hospital, Lyon, France
| | - Nicole Fabien
- Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Laura Sormani
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | | | | | | | - Elodie Villa
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Philippe Gaulard
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France; Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - Vahid Asnafi
- Université Paris 5, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Laurent Genestier
- CRCL, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, 69921 Oullins Cedex, France
| | - Rachid Benhida
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Jean-Jacques Fournié
- CRCT, INSERM U1037 - Université Paul Sabatier - CNRS ERL5294, Université de Toulouse, Laboratoire d'Excellence TOUCAN, Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France; IUCT, 31037 Toulouse, France
| | - Thierry Passeron
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France; Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Dermatology, 06204 Nice, France
| | | | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France; CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS, UMR 5308, 69007 Lyon, France.
| |
Collapse
|
12
|
Transcription factors IRF8 and PU.1 are required for follicular B cell development and BCL6-driven germinal center responses. Proc Natl Acad Sci U S A 2019; 116:9511-9520. [PMID: 31000603 DOI: 10.1073/pnas.1901258116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IRF and Ets families of transcription factors regulate the expression of a range of genes involved in immune cell development and function. However, the understanding of the molecular mechanisms of each family member has been limited due to their redundancy and broad effects on multiple lineages of cells. Here, we report that double deletion of floxed Irf8 and Spi1 (encoding PU.1) by Mb1-Cre (designated DKO mice) in the B cell lineage resulted in severe defects in the development of follicular and germinal center (GC) B cells. Class-switch recombination and antibody affinity maturation were also compromised in DKO mice. RNA-seq (sequencing) and ChIP-seq analyses revealed distinct IRF8 and PU.1 target genes in follicular and activated B cells. DKO B cells had diminished expression of target genes vital for maintaining follicular B cell identity and GC development. Moreover, our findings reveal that expression of B-cell lymphoma protein 6 (BCL6), which is critical for development of germinal center B cells, is dependent on IRF8 and PU.1 in vivo, providing a mechanism for the critical role for IRF8 and PU.1 in the development of GC B cells.
Collapse
|
13
|
Mielle J, Tison A, Cornec D, Le Pottier L, Daien C, Pers JO. B cells in Sjögren's syndrome: from pathophysiology to therapeutic target. Rheumatology (Oxford) 2019; 60:2545-2560. [PMID: 30770916 DOI: 10.1093/rheumatology/key332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Biological abnormalities associated with B lymphocytes are a hallmark of patients with primary Sjögren's syndrome. Those patients present abnormal distribution of B lymphocytes in peripheral blood and B cells in exocrine glands. B cells produce auto-antibodies, cytokines and present antigens but can also suppressive functions. In this review, we will summarize current knowledge on B cells in primary Sjögren's syndrome patients, demonstrate their critical role in the immunopathology of the disease and describe the past and current trials targeting B cells.
Collapse
Affiliation(s)
- Julie Mielle
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | - Alice Tison
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Claire Daien
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | | |
Collapse
|
14
|
Abstract
Cytokines that control the immune response were shown to have efficacy in preclinical murine cancer models. Interferon (IFN)-α is approved for treatment of hairy cell leukemia, and interleukin (IL)-2 for the treatment of advanced melanoma and metastatic renal cancer. In addition, IL-12, IL-15, IL-21, and granulocyte macrophage colony-stimulating factor (GM-CSF) have been evaluated in clinical trials. However, the cytokines as monotherapy have not fulfilled their early promise because cytokines administered parenterally do not achieve sufficient concentrations in the tumor, are often associated with severe toxicities, and induce humoral or cellular checkpoints. To circumvent these impediments, cytokines are being investigated clinically in combination therapy with checkpoint inhibitors, anticancer monoclonal antibodies to increase the antibody-dependent cellular cytotoxicity (ADCC) of these antibodies, antibody cytokine fusion proteins, and anti-CD40 to facilitate tumor-specific immune responses.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Clinical Center, Bethesda, Maryland 20892-1374
| |
Collapse
|
15
|
Pena LJ, Miranda Guarines K, Duarte Silva AJ, Sales Leal LR, Mendes Félix D, Silva A, de Oliveira SA, Junqueira Ayres CF, Júnior AS, de Freitas AC. In vitro and in vivo models for studying Zika virus biology. J Gen Virol 2018; 99:1529-1550. [DOI: 10.1099/jgv.0.001153] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lindomar José Pena
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Anna Jéssica Duarte Silva
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Lígia Rosa Sales Leal
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Daniele Mendes Félix
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Adalúcia Silva
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Sheilla Andrade de Oliveira
- 3Department of Immunology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | | | - Abelardo Silva Júnior
- 5Department of Veterinary Medicine, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Antonio Carlos de Freitas
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
16
|
Wilson JJ, Chow KH, Labrie NJ, Branca JA, Sproule TJ, Perkins BRA, Wolf EE, Costa M, Stafford G, Rosales C, Mills KD, Roopenian DC, Hasham MG. Enhancing the efficacy of glycolytic blockade in cancer cells via RAD51 inhibition. Cancer Biol Ther 2018; 20:169-182. [PMID: 30183475 PMCID: PMC6343731 DOI: 10.1080/15384047.2018.1507666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Targeting the early steps of the glycolysis pathway in cancers is a well-established therapeutic strategy; however, the doses required to elicit a therapeutic effect on the cancer can be toxic to the patient. Consequently, numerous preclinical and clinical studies have combined glycolytic blockade with other therapies. However, most of these other therapies do not specifically target cancer cells, and thus adversely affect normal tissue. Here we first show that a diverse number of cancer models – spontaneous, patient-derived xenografted tumor samples, and xenografted human cancer cells – can be efficiently targeted by 2-deoxy-D-Glucose (2DG), a well-known glycolytic inhibitor. Next, we tested the cancer-cell specificity of a therapeutic compound using the MEC1 cell line, a chronic lymphocytic leukemia (CLL) cell line that expresses activation induced cytidine deaminase (AID). We show that MEC1 cells, are susceptible to 4,4ʹ-Diisothiocyano-2,2ʹ-stilbenedisulfonic acid (DIDS), a specific RAD51 inhibitor. We then combine 2DG and DIDS, each at a lower dose and demonstrate that this combination is more efficacious than fludarabine, the current standard- of- care treatment for CLL. This suggests that the therapeutic blockade of glycolysis together with the therapeutic inhibition of RAD51-dependent homologous recombination can be a potentially beneficial combination for targeting AID positive cancer cells with minimal adverse effects on normal tissue. Implications: Combination therapy targeting glycolysis and specific RAD51 function shows increased efficacy as compared to standard of care treatments in leukemias.
Collapse
Affiliation(s)
- John J Wilson
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Kin-Hoe Chow
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Nathan J Labrie
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Jane A Branca
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Thomas J Sproule
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Bryant R A Perkins
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Elise E Wolf
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Mauro Costa
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Grace Stafford
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Christine Rosales
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | | | - Derry C Roopenian
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Muneer G Hasham
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| |
Collapse
|
17
|
Marnik EA, Wang X, Sproule TJ, Park G, Christianson GJ, Lane-Reticker SK, Jain S, Duffy T, Wang H, Carter GW, Morse HC, Roopenian DC. Precocious Interleukin 21 Expression in Naive Mice Identifies a Natural Helper Cell Population in Autoimmune Disease. Cell Rep 2017; 21:208-221. [PMID: 28978474 PMCID: PMC5661890 DOI: 10.1016/j.celrep.2017.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 01/19/2023] Open
Abstract
Interleukin 21 (IL-21) plays key roles in humoral immunity and autoimmune diseases. It is known to function in mature CD4+ T follicular B cell helper (TFH) cells, but its potential involvement in early T cell ontogeny is unclear. Here, we find that a significant population of newly activated thymic and peripheral CD4+ T cells functionally expresses IL-21 soon after birth. This naturally occurring population, termed natural (n)TH21 cells, exhibits considerable similarity to mature TFH cells. nTH21 cells originating and activated in the thymus are strictly dependent on autoimmune regulator (AIRE) and express high levels of NUR77, consistent with a bias toward self-reactivity. Their activation/expansion in the periphery requires gut microbiota and is held in check by FoxP3+ TREG cells. nTH21 cells are the major thymic and peripheral populations of IL-21+ cells to expand in an IL-21-dependent humoral autoimmune disease. These studies link IL-21 to T cell ontogeny, self-reactivity, and humoral autoimmunity.
Collapse
MESH Headings
- Animals
- Arthritis/genetics
- Arthritis/immunology
- Arthritis/pathology
- Autoimmunity/genetics
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Immunity, Humoral
- Interleukins/genetics
- Interleukins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transcription Factors/genetics
- Transcription Factors/immunology
- AIRE Protein
Collapse
Affiliation(s)
- Elisabeth A Marnik
- The Jackson Laboratory, Bar Harbor, ME, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | | | | | | | - Shweta Jain
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, MD, USA
| | | | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, MD, USA
| | - Gregory W Carter
- The Jackson Laboratory, Bar Harbor, ME, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, MD, USA.
| | - Derry C Roopenian
- The Jackson Laboratory, Bar Harbor, ME, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
18
|
Waldmann TA. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics. Mol Cell Endocrinol 2017; 451:66-70. [PMID: 28214593 PMCID: PMC5469693 DOI: 10.1016/j.mce.2017.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Abstract
Abnormal activation of the γc cytokine JAK/STAT signaling pathway assessed by STAT3 or STAT5b phosphorylation was present in a proportion of many T-cell malignancies. Activating mutations of STAT3/STAT5b and JAK1/3 were present in some but not in all cases with constitutive signaling pathway activation. Using shRNA analysis pSTAT malignant T-cell lines were addicted to JAKs/STATs whether they were mutated or not. Activating JAK/STAT mutations were not sufficient to support leukemic cell proliferation but only augmented upstream pathway signals. Functional cytokine receptors were required for pSTAT expression. Combining a JAK1/2 inhibitor with a Bcl-xL inhibitor navitoclax provided additive/synergistic activity with IL-2 dependent ATLL cell lines and in a mouse model of human IL-2 dependent ATLL. The insight that disorders of the γc/JAK/STAT system are pervasive suggests approaches including those that target gamma cytokines, their receptors or that use JAK kinase inhibitors may be of value in multicomponent therapy for T-cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
19
|
Jain S, Ward JM, Shin DM, Wang H, Naghashfar Z, Kovalchuk AL, Morse HC. Associations of Autoimmunity, Immunodeficiency, Lymphomagenesis, and Gut Microbiota in Mice with Knockins for a Pathogenic Autoantibody. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2020-2033. [PMID: 28727987 DOI: 10.1016/j.ajpath.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023]
Abstract
A number of mouse strains transgenic for B-cell receptors specific for nucleic acids or other autoantigens have been generated to understand how autoreactive B cells are regulated in normal and autoimmune mice. Previous studies of nonautoimmune C57BL/6 mice heterozygous for both the IgH and IgL knockins of the polyreactive autoantibody, 564, produced high levels of autoantibodies in a largely Toll-like receptor 7-dependent manner. Herein, we describe studies of mice homozygous for the knockins that also expressed high levels of autoantibodies but, unlike the heterozygotes, exhibited a high incidence of mature B-cell lymphomas and enhanced susceptibility to bacterial infections. Microarray analyses and serological studies suggested that lymphomagenesis might be related to chronic B-cell activation promoted by IL-21. Strikingly, mice treated continuously with antibiotic-supplemented water did not develop lymphomas or abscesses and exhibited less autoimmunity. This mouse model may help us understand the reasons for enhanced susceptibility to lymphoma development exhibited by humans with a variety of autoimmune diseases, such as Sjögren syndrome, systemic lupus erythematosus, and highly active rheumatoid arthritis.
Collapse
Affiliation(s)
- Shweta Jain
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Jerrold M Ward
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Zohreh Naghashfar
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Alexander L Kovalchuk
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland.
| |
Collapse
|
20
|
Herek TA, Cutucache CE. Using Murine Models to Investigate Tumor-Lymphoid Interactions: Spotlight on Chronic Lymphocytic Leukemia and Angioimmunoblastic T-Cell Lymphoma. Front Oncol 2017; 7:86. [PMID: 28512625 PMCID: PMC5411430 DOI: 10.3389/fonc.2017.00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
The role of the tumor microenvironment in leukemias and lymphomas is well established, yet the intricacies of how the malignant cells regulate and influence their non-malignant counterparts remain elusive. For example, chronic lymphocytic leukemia (CLL) is an expansion of malignant CD5+CD19+ B cells, yet the non-malignant T cells play just as large of a role in disease presentation and etiology. Herein, we review the dynamic tumor cell to lymphoid repertoire interactions found in two non-Hodgkin's lymphoma subtypes: CLL and angioimmunoblastic T-cell lymphoma. We aim to highlight the pivot work done in the murine models which recapitulate these diseases and explore the insights that can be gained from studying the immuno-oncological regulation of non-malignant lymphoid counterparts.
Collapse
Affiliation(s)
- Tyler A Herek
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | | |
Collapse
|
21
|
Waldmann TA, Chen J. Disorders of the JAK/STAT Pathway in T Cell Lymphoma Pathogenesis: Implications for Immunotherapy. Annu Rev Immunol 2017; 35:533-550. [PMID: 28182501 DOI: 10.1146/annurev-immunol-110416-120628] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common gamma receptor-dependent cytokines and their JAK/STAT pathways play pivotal roles in T cell immunity. Abnormal activation of this system was pervasive in diverse T cell malignancies assessed by pSTAT3/pSTAT5 phosphorylation. Activating mutations were described in some but not all cases. JAK1 and STAT3 were required for proliferation and survival of these T cell lines whether or not JAKs or STATs were mutated. Activating JAK and STAT mutations were not sufficient to initiate leukemic cell proliferation but rather only augmented signals from upstream in the cytokine pathway. Activation required the full pathway, including cytokine receptors acting as scaffolds and docking sites for required downstream JAK/STAT proteins. JAK kinase inhibitors have depressed leukemic T cell line proliferation. The insight that JAK/STAT system activation is pervasive in T cell malignancies suggests novel therapeutic approaches that include antibodies to common gamma cytokines, inhibitors of cytokine-receptor interactions, and JAK kinase inhibitors that may revolutionize therapy for T cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | - Jing Chen
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
22
|
Ma H, Abdul-Hay M. T-cell lymphomas, a challenging disease: types, treatments, and future. Int J Clin Oncol 2016; 22:18-51. [PMID: 27743148 PMCID: PMC7102240 DOI: 10.1007/s10147-016-1045-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
T-cell lymphomas are rare and aggressive malignancies associated with poor outcome, often because of the development of resistance in the lymphoma against chemotherapy as well as intolerance in patients to the established and toxic chemotherapy regimens. In this review article, we discuss the epidemiology, pathophysiology, current standard of care, and future treatments of common types of T-cell lymphomas, including adult T-cell leukemia/lymphoma, angioimmunoblastic T-cell lymphoma, anaplastic large-cell lymphoma, aggressive NK/T-cell lymphoma, and cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Helen Ma
- Department of Internal Medicine, New York University, New York, NY, USA
| | - Maher Abdul-Hay
- Department of Internal Medicine, New York University, New York, NY, USA. .,Perlmutter Cancer Center, New York University, New York, NY, USA.
| |
Collapse
|
23
|
Suárez AE, Artiga M, Santonja C, Montes-Moreno S, De Pablo P, Requena L, Piris MA, Rodríguez-Pinilla SM. Angioimmunoblastic T-cell lymphoma with a clonal plasma cell proliferation that underwent immunoglobulin isotype switch in the skin, coinciding with cutaneous disease progression. J Cutan Pathol 2016; 43:1203-1210. [DOI: 10.1111/cup.12814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/19/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Ana E. Suárez
- Pathology Department; Hospital Universitario Fundación Jiménez Díaz; Madrid Spain
| | - M.J. Artiga
- Tumor Bank; Centro Nacional de Investigaciones Oncológicas; Madrid Spain
| | - Carlos. Santonja
- Pathology Department; Hospital Universitario Fundación Jiménez Díaz; Madrid Spain
| | | | - P. De Pablo
- Dermatology Department; Hospital del Tajo; Madrid Spain
| | - Luis Requena
- Dermatology Department; Hospital Universitario Fundación Jiménez Díaz; Madrid Spain
| | - Miguel A. Piris
- Pathology Department; Hospital Universitario Marqués de Valdecilla; Santander Spain
| | | |
Collapse
|
24
|
Han van Krieken J. New developments in the pathology of malignant lymphoma: a review of the literature published from May 2015-September 2015. J Hematop 2015; 8:225-234. [PMID: 26640600 PMCID: PMC4659846 DOI: 10.1007/s12308-015-0262-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- J Han van Krieken
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|