1
|
Liukkonen M, Heloterä H, Siintamo L, Ghimire B, Mattila P, Kivinen N, Kostanek J, Watala C, Hytti M, Hyttinen J, Koskela A, Blasiak J, Kaarniranta K. Oxidative Stress and Inflammation-Related mRNAs Are Elevated in Serum of a Finnish Wet AMD Cohort. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39546296 DOI: 10.1167/iovs.65.13.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose Localized diseases can be affected by and affect the systemic environment via blood circulation. In this study, we explored the differences in circulating serum mRNAs between patients with wet AMD (wAMD) and controls. Methods Blood samples were obtained from 60 Finnish patients with wAMD and 64 controls. After serum preparation and RNA sequencing, the count data was examined for differentially expressed genes (DEGs) and further checked for enriched molecular pathways and ontology terms as well as links to clinical data. Results We found many DEGs and some enriched pathways, including the inflammation and cell survival-associated pathway tumour necrosis factor alpha (TNF-α) signaling via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The related DEGs were oxidized low-density lipoprotein receptor 1 (OLR1), salt inducible kinase 1 (SIK1), and coagulation factor III (F3). DEGs from degradative macular and retinal processes were also examined, many of which were also related to cardiovascular disease and maintenance. Additionally, DEG counts were inspected in relation to clinical and anti-VEGF treatment parameters, and glutamine amidotransferase-like class 1 domain-containing 3A (GATD3A) levels were found to be significantly lower in patients with wAMD treated with anti-VEGF. Conclusions Differentially expressed systemic mRNAs that are linked to mitochondrial function, oxidative stress, and inflammation may have a role in the pathology of wAMD. Our observations provide new data for the understanding of the progression of wAMD.
Collapse
Affiliation(s)
- Mikko Liukkonen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Hanna Heloterä
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Leea Siintamo
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Niko Kivinen
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Joanna Kostanek
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Maria Hytti
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Juha Hyttinen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Faculty of Medicine, Mazovian Academy in Plock, Plock, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Lei J, Wang L, Yang C, Li D, Zhang J, Ma J, Zhang P, Li Q, Zhang J. Dasatinib and erianin co-loaded ion-responsive in-situ hydrogel for effective treatment of corneal neovascularization. J Control Release 2024; 376:94-107. [PMID: 39368709 DOI: 10.1016/j.jconrel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Corneal neovasularization (CNV) is one of the leading causes for visual impairment. Dasatinib is a multi-target tyrosine kinase inhibitor, which can inhibit both platelet derived growth factor receptor and Src family kinases. Erianin exhibits excellent anti-inflammatory and anti-angiogenic effects. In this study, dasatinib and erianin were found to synergically inhibit the proliferation, migration and tube formation of Ea.hy926 cells, the three most important cellular processes of CNV. Next, dasatinib and erianin were co-encapsulated in nanostructured lipid carriers (dasa-eri-NLC), which increased the solubility of dasatinib by about 1790 times, increased the solubility of erianin by about 3 times. To improve its retention time on the ocular surface, dasa-eri-NLC was mixed with gellan gum (dasa-eri-NLC-gel), which achieved a sol-gel transformation when got in contact with tears. The dasa-eri-NLC-gel exhibited good rheological properties with shear thinning properties, extended the ocular residence time by more than 6 times, sustained the drug release, improved the corneal permeability of drug and exhibited good biocompatibility. Finally, the in vivo anti-CNV effect was evaluated in an alkaline burned mouse model of CNV, in which, the dasa-eri-NLC-gel significantly impeded the development and pathological changes of CNV, inhibited the expression of TNF-α, VEGF-A, HIF-1α, Src, pSrc in the cornea. In summary, dasa-eri-NLC-gel safely and efficiently delivered dasatinib and erianin to the cornea and exhibited significantly anti-CNV effect via inhibiting various angiogenesis related cytokines or factors. Dasa-eri-NLC-gel showed a great promise for the treatment of CNV and our study laid a solid foundation for future clinical transformation.
Collapse
Affiliation(s)
- Jiaxing Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Sewduth RN, Carai P, Ivanisevic T, Zhang M, Jang H, Lechat B, Van Haver D, Impens F, Nussinov R, Jones E, Sablina A. Spatial Mechano-Signaling Regulation of GTPases through Non-Degradative Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303367. [PMID: 37946677 PMCID: PMC10754123 DOI: 10.1002/advs.202303367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Blood flow produces shear stress exerted on the endothelial layer of the vessels. Spatial characterization of the endothelial proteome is required to uncover the mechanisms of endothelial activation by shear stress, as blood flow varies in the vasculature. An integrative ubiquitinome and proteome analysis of shear-stressed endothelial cells demonstrated that the non-degradative ubiquitination of several GTPases is regulated by mechano-signaling. Spatial analysis reveals increased ubiquitination of the small GTPase RAP1 in the descending aorta, a region exposed to laminar shear stress. The ubiquitin ligase WWP2 is identified as a novel regulator of RAP1 ubiquitination during shear stress response. Non-degradative ubiquitination fine-tunes the function of GTPases by modifying their interacting network. Specifically, WWP2-mediated RAP1 ubiquitination at lysine 31 switches the balance from the RAP1/ Talin 1 (TLN1) toward RAP1/ Afadin (AFDN) or RAP1/ RAS Interacting Protein 1 (RASIP1) complex formation, which is essential to suppress shear stress-induced reactive oxygen species (ROS) production and maintain endothelial barrier integrity. Increased ROS production in endothelial cells in the descending aorta of endothelial-specific Wwp2-knockout mice leads to increased levels of oxidized lipids and inflammation. These results highlight the importance of the spatially regulated non-degradative ubiquitination of GTPases in endothelial mechano-activation.
Collapse
Affiliation(s)
- Raj N. Sewduth
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Paolo Carai
- Department of Cardiovascular SciencesCentre for Molecular and Vascular BiologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Tonci Ivanisevic
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Mingzhen Zhang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
| | - Hyunbum Jang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
| | - Benoit Lechat
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Delphi Van Haver
- VIB‐UGent Center for Medical BiotechnologyTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- Department of Biomolecular MedicineGhent UniversityTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- VIB Proteomics CoreTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
| | - Francis Impens
- VIB‐UGent Center for Medical BiotechnologyTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- Department of Biomolecular MedicineGhent UniversityTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- VIB Proteomics CoreTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
| | - Ruth Nussinov
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
- Department of Human Molecular Genetics and BiochemistrySackler School of MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Elizabeth Jones
- Department of Cardiovascular SciencesCentre for Molecular and Vascular BiologyKU LeuvenHerestraat 49Leuven3000Belgium
- Department of CardiologyCARIM School for Cardiovascular DiseasesMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Anna Sablina
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| |
Collapse
|
4
|
Muniyandi A, Martin M, Sishtla K, Motolani A, Sun M, Jensen NR, Qi X, Boulton ME, Prabhu L, Lu T, Corson TW. PRMT5 is a therapeutic target in choroidal neovascularization. Sci Rep 2023; 13:1747. [PMID: 36720900 PMCID: PMC9889383 DOI: 10.1038/s41598-023-28215-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Ocular neovascular diseases including neovascular age-related macular degeneration (nvAMD) are widespread causes of blindness. Patients' non-responsiveness to currently used biologics that target vascular endothelial growth factor (VEGF) poses an unmet need for novel therapies. Here, we identify protein arginine methyltransferase 5 (PRMT5) as a novel therapeutic target for nvAMD. PRMT5 is a well-known epigenetic enzyme. We previously showed that PRMT5 methylates and activates a proangiogenic and proinflammatory transcription factor, the nuclear factor kappa B (NF-κB), which has a master role in tumor progression, notably in pancreatic ductal adenocarcinoma and colorectal cancer. We identified a potent and specific small molecule inhibitor of PRMT5, PR5-LL-CM01, that dampens the methylation and activation of NF-κB. Here for the first time, we assessed the antiangiogenic activity of PR5-LL-CM01 in ocular cells. Immunostaining of human nvAMD sections revealed that PRMT5 is highly expressed in the retinal pigment epithelium (RPE)/choroid where neovascularization occurs, while mouse eyes with laser induced choroidal neovascularization (L-CNV) showed PRMT5 is overexpressed in the retinal ganglion cell layer and in the RPE/choroid. Importantly, inhibition of PRMT5 by PR5-LL-CM01 or shRNA knockdown of PRMT5 in human retinal endothelial cells (HRECs) and induced pluripotent stem cell (iPSC)-derived choroidal endothelial cells (iCEC2) reduced NF-κB activity and the expression of its target genes, such as tumor necrosis factor α (TNF-α) and VEGF-A. In addition to inhibiting angiogenic properties of proliferation and tube formation, PR5-LL-CM01 blocked cell cycle progression at G1/S-phase in a dose-dependent manner in these cells. Thus, we provide the first evidence that inhibition of PRMT5 impedes angiogenesis in ocular endothelial cells, suggesting PRMT5 as a potential therapeutic target to ameliorate ocular neovascularization.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nathan R Jensen
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lakshmi Prabhu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Burr SD, Dorroh CC, Stewart JA. Rap1a Activity Elevated the Impact of Endogenous AGEs in Diabetic Collagen to Stimulate Increased Myofibroblast Transition and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23094480. [PMID: 35562872 PMCID: PMC9101126 DOI: 10.3390/ijms23094480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/07/2022] Open
Abstract
Diabetics have an increased risk for heart failure due to cardiac fibroblast functional changes occurring as a result of AGE/RAGE signaling. Advanced glycation end products (AGEs) levels are higher in diabetics and stimulate elevated RAGE (receptor for AGE) signaling. AGE/RAGE signaling can alter the expression of proteins linked to extracellular matrix (ECM) remodeling and oxidative stressors. Our lab has identified a small GTPase, Rap1a, that may overlap the AGE/RAGE signaling pathway. We sought to determine the role Rap1a plays in mediating AGE/RAGE changes and to assess the impact of isolated collagen on further altering these changes. Primary cardiac fibroblasts from non-diabetic and diabetic mice with and without RAGE expression and from mice lacking Rap1a were cultured on tail collagen extracted from non-diabetic or diabetic mice, and in addition, cells were treated with Rap1a activator, EPAC. Protein analyses were performed for changes in RAGE-associated signaling proteins (RAGE, PKC-ζ, ERK1/2) and downstream RAGE signaling outcomes (α-SMA, NF-κB, SOD-2). Increased levels of endogenous AGEs within the diabetic collagen and increased Rap1a activity promoted myofibroblast transition and oxidative stress, suggesting Rap1a activity elevated the impact of AGEs in the diabetic ECM to stimulate myofibroblast transition and oxidative stress.
Collapse
|
6
|
de Almeida Torres R, de Almeida Torres R, Luchini A, Anjos Ferreira A. The oxidative and inflammatory nature of age-related macular degeneration. JOURNAL OF CLINICAL OPHTHALMOLOGY AND RESEARCH 2022. [DOI: 10.4103/jcor.jcor_268_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Song X, Wen H, Zuo L, Geng Z, Nian J, Wang L, Jiang Y, Tao J, Zhu Z, Wu X, Wang Z, Zhang X, Yu L, Zhao H, Xiang P, Li J, Shen L, Hu J. Epac-2 ameliorates spontaneous colitis in Il-10 -/- mice by protecting the intestinal barrier and suppressing NF-κB/MAPK signalling. J Cell Mol Med 2022; 26:216-227. [PMID: 34862717 PMCID: PMC8742196 DOI: 10.1111/jcmm.17077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/25/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intestinal barrier dysfunction and intestinal inflammation interact in the progression of Crohn's disease (CD). A recent study indicated that Epac-2 protected the intestinal barrier and had anti-inflammatory effects. The present study examined the function of Epac-2 in CD-like colitis. Interleukin-10 gene knockout (Il-10-/- ) mice exhibit significant spontaneous enteritis and were used as the CD model. These mice were treated with Epac-2 agonists (Me-cAMP) or Epac-2 antagonists (HJC-0350) or were fed normally (control), and colitis and intestinal barrier structure and function were compared. A Caco-2 and RAW 264.7 cell co-culture system were used to analyse the effects of Epac-2 on the cross-talk between intestinal epithelial cells and inflammatory cells. Epac-2 activation significantly ameliorated colitis in mice, which was indicated by reductions in the colitis inflammation score, the expression of inflammatory factors and intestinal permeability. Epac-2 activation also decreased Caco-2 cell permeability in an LPS-induced cell co-culture system. Epac-2 activation significantly suppressed nuclear factor (NF)-κB/mitogen-activated protein kinase (MAPK) signalling in vivo and in vitro. Epac-2 may be a therapeutic target for CD based on its anti-inflammatory functions and protective effects on the intestinal barrier.
Collapse
Affiliation(s)
- Xue Song
- Department of Central LaboratoryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
| | - Hexin Wen
- Department of Gastrointestinal SurgeryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Lugen Zuo
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Gastrointestinal SurgeryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Zhijun Geng
- Department of Central LaboratoryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
| | - Jing Nian
- Department of ImagingSecond Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Luyao Wang
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Clinical MedicineBengbu Medical CollegeBengbuChina
| | - Yifan Jiang
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Clinical MedicineBengbu Medical CollegeBengbuChina
| | - Jing Tao
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Clinical MedicineBengbu Medical CollegeBengbuChina
| | - Zihan Zhu
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Clinical MedicineBengbu Medical CollegeBengbuChina
| | - Xiaopei Wu
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Clinical MedicineBengbu Medical CollegeBengbuChina
| | - Zhikun Wang
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Clinical MedicineBengbu Medical CollegeBengbuChina
| | - Xiaofeng Zhang
- Department of Central LaboratoryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Liang Yu
- Department of Central LaboratoryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
| | - Hao Zhao
- Department of Central LaboratoryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Ping Xiang
- Department of Central LaboratoryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Jing Li
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Clinical LaboratoryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Lin Shen
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
- Department of Clinical LaboratoryFirst Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| |
Collapse
|
8
|
Torres RJDA, Ferreira ALDA. Age-related macular degeneration: an overview. REVISTA BRASILEIRA DE OFTALMOLOGIA 2021. [DOI: 10.37039/1982.8551.20210038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Nashine S. Potential Therapeutic Candidates for Age-Related Macular Degeneration (AMD). Cells 2021; 10:cells10092483. [PMID: 34572131 PMCID: PMC8464988 DOI: 10.3390/cells10092483] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Aging contributes to the risk of development of ocular diseases including, but not limited to, Age-related Macular Degeneration (AMD) that is a leading cause of blindness in the United States as well as worldwide. Retinal aging, that contributes to AMD pathogenesis, is characterized by accumulation of drusen deposits, alteration in the composition of Bruch’s membrane and extracellular matrix, vascular inflammation and dysregulation, mitochondrial dysfunction, and accumulation of reactive oxygen species (ROS), and subsequent retinal pigment epithelium (RPE) cell senescence. Since there are limited options available for the prophylaxis and treatment of AMD, new therapeutic interventions are constantly being looked into to identify new therapeutic targets for AMD. This review article discusses the potential candidates for AMD therapy and their known mechanisms of cytoprotection in AMD. These target therapeutic candidates include APE/REF-1, MRZ-99030, Ciliary NeuroTrophic Factor (CNTF), RAP1 GTPase, Celecoxib, and SS-31/Elamipretide.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Regulation of Rac1 Activation in Choroidal Endothelial Cells: Insights into Mechanisms in Age-Related Macular Degeneration. Cells 2021; 10:cells10092414. [PMID: 34572063 PMCID: PMC8469925 DOI: 10.3390/cells10092414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide. Vision loss from the neovascular form is associated with the invasion of choroidal endothelial cells into the neural retina to form vision-threatening macular neovascularization (MNV). Anti-angiogenic agents are the current standard of care but are effective in only ~50% of AMD cases. The molecular mechanisms involved in invasive MNV point to the importance of regulating signaling pathways that lead to pathologic biologic outcomes. In studies testing the effects of AMD-related stresses, activation of the Rho GTPase, Rac1, was found to be important for the choroidal endothelial cell invasion into the neural retina. However, current approaches to prevent Rac1 activation are inefficient and less effective. We summarize active Rac1-mediated mechanisms that regulate choroidal endothelial cell migration. Specifically, we discuss our work regarding the role of a multidomain protein, IQ motif containing GTPase activating protein 1 (IQGAP1), in sustaining pathologic Rac1 activation and a mechanism by which active Rap1, a Ras-like GTPase, may prevent active Rac1-mediated choroidal endothelial cell migration.
Collapse
|
11
|
Ramshekar A, Wang H, Kunz E, Pappas C, Hageman GS, Chaqour B, Sacks DB, Hartnett ME. Active Rap1-mediated inhibition of choroidal neovascularization requires interactions with IQGAP1 in choroidal endothelial cells. FASEB J 2021; 35:e21642. [PMID: 34166557 PMCID: PMC8238370 DOI: 10.1096/fj.202100112r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of blindness. The pathophysiology involves activation of choroidal endothelial cells (CECs) to transmigrate the retinal pigment epithelial (RPE) monolayer and form choroidal neovascularization (CNV) in the neural retina. The multidomain GTPase binding protein, IQGAP1, binds active Rac1 and sustains activation of CECs, thereby enabling migration associated with vision-threatening CNV. IQGAP1 also binds the GTPase, Rap1, which when activated reduces Rac1 activation in CECs and CNV. In this study, we tested the hypothesis that active Rap1 binding to IQGAP1 is necessary and sufficient to reduce Rac1 activation in CECs, and CNV. We found that pharmacologic activation of Rap1 or adenoviral transduction of constitutively active Rap1a reduced VEGF-mediated Rac1 activation, migration, and tube formation in CECs. Following pharmacologic activation of Rap1, VEGF-mediated Rac1 activation was reduced in CECs transfected with an IQGAP1 construct that increased active Rap1-IQGAP1 binding but not in CECs transfected with an IQGAP1 construct lacking the Rap1 binding domain. Specific knockout of IQGAP1 in endothelial cells reduced laser-induced CNV and Rac1 activation in CNV lesions, but pharmacologic activation of Rap1 did not further reduce CNV compared to littermate controls. Taken together, our findings provide evidence that active Rap1 binding to the IQ domain of IQGAP1 is sufficient to interfere with active Rac1-mediated CEC activation and CNV formation.
Collapse
Affiliation(s)
- Aniket Ramshekar
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Haibo Wang
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Eric Kunz
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Christian Pappas
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Steele Center for Translational Medicine, John A. Moran Eye
Center, University of Utah, Salt Lake City, UT, USA
| | - Gregory S. Hageman
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Steele Center for Translational Medicine, John A. Moran Eye
Center, University of Utah, Salt Lake City, UT, USA
| | - Brahim Chaqour
- Department of Ophthalmology, Downstate Medical Center,
Brooklyn, NY, USA
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of
Health, Bethesda, MD, USA
| | - M. Elizabeth Hartnett
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Correspondence to: M. Elizabeth Hartnett,
MD, Address: 65 Mario Capecchi Drive, Salt Lake City, UT 84132. Tel:
801-213-4110; Fax: 801-581-3357,
| |
Collapse
|
12
|
Rap1a Regulates Cardiac Fibroblast Contraction of 3D Diabetic Collagen Matrices by Increased Activation of the AGE/RAGE Cascade. Cells 2021; 10:cells10061286. [PMID: 34067282 PMCID: PMC8224555 DOI: 10.3390/cells10061286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is a common diabetic complication that can arise when cardiac fibroblasts transition into myofibroblasts. Myofibroblast transition can be induced by advanced glycated end products (AGEs) present in the extracellular matrix (ECM) activating RAGE (receptor for advanced glycated end products) to elicit intracellular signaling. The levels of AGEs are higher under diabetic conditions due to the hyperglycemic conditions present in diabetics. AGE/RAGE signaling has been shown to alter protein expression and ROS production in cardiac fibroblasts, resulting in changes in cellular function, such as migration and contraction. Recently, a small GTPase, Rap1a, has been identified to overlap the AGE/RAGE signaling cascade and mediate changes in protein expression. While Rap1a has been shown to impact AGE/RAGE-induced protein expression, there are currently no data examining the impact Rap1a has on AGE/RAGE-induced cardiac fibroblast function. Therefore, we aimed to determine the impact of Rap1a on AGE/RAGE-mediated cardiac fibroblast contraction, as well as the influence isolated diabetic ECM has on facilitating these effects. In order to address this idea, genetically different cardiac fibroblasts were embedded in 3D collagen matrices consisting of collagen isolated from either non-diabetic of diabetic mice. Fibroblasts were treated with EPAC and/or exogenous AGEs, which was followed by assessment of matrix contraction, protein expression (α-SMA, SOD-1, and SOD-2), and hydrogen peroxide production. The results showed Rap1a overlaps the AGE/RAGE cascade to increase the myofibroblast population and generation of ROS production. The increase in myofibroblasts and oxidative stress appeared to contribute to increased matrix contraction, which was further exacerbated by diabetic conditions. Based off these results, we determined that Rap1a was essential in mediating the response of cardiac fibroblasts to AGEs within diabetic collagen.
Collapse
|
13
|
Mettu PS, Allingham MJ, Cousins SW. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res 2021; 82:100906. [PMID: 33022379 PMCID: PMC10368393 DOI: 10.1016/j.preteyeres.2020.100906] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Intravitreal anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular age-related macular degeneration (NVAMD). However, many patients suffer from incomplete response to anti-VEGF therapy (IRT), which is defined as (1) persistent (plasma) fluid exudation; (2) unresolved or new hemorrhage; (3) progressive lesion fibrosis; and/or (4) suboptimal vision recovery. The first three of these collectively comprise the problem of persistent disease activity (PDA) in spite of anti-VEGF therapy. Meanwhile, the problem of suboptimal vision recovery (SVR) is defined as a failure to achieve excellent functional visual acuity of 20/40 or better in spite of sufficient anti-VEGF treatment. Thus, incomplete response to anti-VEGF therapy, and specifically PDA and SVR, represent significant clinical unmet needs. In this review, we will explore PDA and SVR in NVAMD, characterizing the clinical manifestations and exploring the pathobiology of each. We will demonstrate that PDA occurs most frequently in NVAMD patients who develop high-flow CNV lesions with arteriolarization, in contrast to patients with capillary CNV who are highly responsive to anti-VEGF therapy. We will review investigations of experimental CNV and demonstrate that both types of CNV can be modeled in mice. We will present and consider a provocative hypothesis: formation of arteriolar CNV occurs via a distinct pathobiology, termed neovascular remodeling (NVR), wherein blood-derived macrophages infiltrate the incipient CNV lesion, recruit bone marrow-derived mesenchymal precursor cells (MPCs) from the circulation, and activate MPCs to become vascular smooth muscle cells (VSMCs) and myofibroblasts, driving the development of high-flow CNV with arteriolarization and perivascular fibrosis. In considering SVR, we will discuss the concept that limited or poor vision in spite of anti-VEGF may not be caused simply by photoreceptor degeneration but instead may be associated with photoreceptor synaptic dysfunction in the neurosensory retina overlying CNV, triggered by infiltrating blood-derived macrophages and mediated by Müller cell activation Finally, for each of PDA and SVR, we will discuss current approaches to disease management and treatment and consider novel avenues for potential future therapies.
Collapse
Affiliation(s)
- Priyatham S Mettu
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC.
| | - Michael J Allingham
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC
| | - Scott W Cousins
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
14
|
Santana-Garrido Á, Reyes-Goya C, Fernández-Bobadilla C, Blanca AJ, André H, Mate A, Vázquez CM. NADPH oxidase-induced oxidative stress in the eyes of hypertensive rats. Mol Vis 2021; 27:161-178. [PMID: 33907371 PMCID: PMC8056463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Increased reactive oxygen species (ROS) released by NADPH oxidase and inflammation are associated with arterial hypertension and eye diseases associated with high blood pressure, including glaucoma, retinopathies (e.g., age-related macular degeneration), and choroidopathies affecting ocular function; however, the mechanisms underlying these adverse outcomes remain undefined. The present study was designed to highlight the importance of oxidative stress in severe hypertension-related eye damage. Methods Male Wistar rats (n = 7, unless otherwise specified for specific experiments) were administered an oral dose of 30 mg of Nω-nitro-L-arginine methyl ester (L-NAME) per kilogram of bodyweight and day for 3 weeks; chronic administration with L-NAME is a validated experimental approach resulting in severe hypertension secondary to nitric oxide (NO) depletion and subsequent vasoconstriction in the systemic circulation. Upon treatment completion, histomorphometric studies, NADPH oxidase activity, and ROS production were measured in eyecup homogenates and paraffin-embedded sections from control and L-NAME-treated animals. In addition, immunohistofluorescence, western blotting, and real-time PCR (RT-qPCR) analyses were performed in the eye and the retina to evaluate the expression of i) NADPH oxidase main isoforms (NOX1, NOX2, and NOX4) and subunits (p22phox and p47phox); ii) glial fibrillary acidic protein (GFAP), as a marker of microglial activation in the retina; iii) antioxidant enzymes; and iv) endothelial constitutive (eNOS) and inflammation inducible (iNOS) nitric oxide synthase isoforms, and nitrotyrosine as a versatile biomarker of oxidative stress. Results Increased activity of NADPH oxidase and superoxide anion production, accompanied by transcriptional upregulation of this enzyme isoforms, was found in the retina and choroid of the hypertensive rats in comparison with the untreated controls. Histomorphometric analyses revealed a significant reduction in the thickness of the ganglion cell layer and the outer retinal layers in the hypertensive animals, which also showed a positive strong signal of GFAP in the retinal outer segment and plexiform layers. In addition, L-NAME-treated animals presented with upregulation of nitric oxide synthase (including inducible and endothelial isoforms) and abnormally elevated nitrotyrosine levels. Experiments on protein and mRNA expression of antioxidant enzymes revealed depletion of superoxide dismutase and glutathione peroxidase in the eyes of the hypertensive animals; however, glutathione reductase was significantly higher than in the normotensive controls. Conclusions The present study demonstrated structural changes in the retinas of the L-NAME-treated hypertensive animals and strengthens the importance of NADPH oxidase as a major ROS-generating enzyme system in the oxidative and inflammatory processes surrounding hypertensive eye diseases. These observations might contribute to unveiling pathogenic mechanisms responsible for developing ocular disturbances in the context of severe hypertension.
Collapse
Affiliation(s)
- Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Carmen Fernández-Bobadilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Antonio J. Blanca
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| | - Carmen M. Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| |
Collapse
|
15
|
Burr SD, Stewart JA. Rap1a Overlaps the AGE/RAGE Signaling Cascade to Alter Expression of α-SMA, p-NF-κB, and p-PKC-ζ in Cardiac Fibroblasts Isolated from Type 2 Diabetic Mice. Cells 2021; 10:cells10030557. [PMID: 33806572 PMCID: PMC8000763 DOI: 10.3390/cells10030557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.
Collapse
|
16
|
Wang H, Ramshekar A, Kunz E, Hartnett ME. 7-ketocholesterol induces endothelial-mesenchymal transition and promotes fibrosis: implications in neovascular age-related macular degeneration and treatment. Angiogenesis 2021; 24:583-595. [PMID: 33646466 DOI: 10.1007/s10456-021-09770-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Oxidized cholesterols and lipids accumulate in Bruch's membrane in age-related macular degeneration (AMD). It remains unknown what causal relationship exists between these substances and AMD pathophysiology. We addressed the hypothesis that a prevalent form, 7-ketocholesterol (7KC), promotes choroidal endothelial cell (CEC) migration and macular neovascularization in AMD. Compared to control, 7KC injection caused 40% larger lectin-stained lesions, but 70% larger lesions measured by optical coherence tomography one week after laser-injury. At two weeks, 7KC-injected eyes had 86% larger alpha smooth muscle actin (αSMA)-labeled lesions and more collagen-labeling than control. There was no difference in cell death. 7KC-treated RPE/choroids had increased αSMA but decreased VE-cadherin. Compared to control-treated CECs, 7KC unexpectedly reduced endothelial VE-cadherin, CD31 and VEGFR2 and increased αSMA, fibroblast activation protein (FAP) and transforming growth factor beta (TGFβ). Inhibition of TGFβ receptor-mediated signaling by SB431542 abrogated 7KC-induced loss of endothelial and increase in mesenchymal proteins in association with decreased transcription factor, SMAD3. Knockdown of SMAD3 partially inhibited 7KC-mediated loss of endothelial proteins and increase in αSMA and FAP. Compared to control, 7KC-treatment of CECs increased Rac1GTP and migration, and both were inhibited by the Rac1 inhibitor; however, CECs treated with 7KC had reduced tube formation. These findings suggest that 7KC, which increases in AMD and with age, induces mesenchymal transition in CECs making them invasive and migratory, and causing fibrosis in macular neovascularization. Further studies to interfere with this process may reduce fibrosis and improve responsiveness to anti-VEGF treatment in non-responsive macular neovascularization in AMD.
Collapse
Affiliation(s)
- Haibo Wang
- The John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA
| | - Aniket Ramshekar
- The John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA
| | - Eric Kunz
- The John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA
| | - M Elizabeth Hartnett
- The John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Levine ES, Custo Greig E, Mendonça LSM, Gulati S, Despotovic IN, Alibhai AY, Moult E, Muakkassa N, Quaranta-El Maftouhi M, El Maftouhi A, Chakravarthy U, Fujimoto JG, Baumal CR, Witkin AJ, Duker JS, Hartnett ME, Waheed NK. The long-term effects of anti-vascular endothelial growth factor therapy on the optical coherence tomography angiographic appearance of neovascularization in age-related macular degeneration. Int J Retina Vitreous 2020; 6:39. [PMID: 32844038 PMCID: PMC7441632 DOI: 10.1186/s40942-020-00242-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background The short-term effects of anti-vascular endothelial growth factor (anti-VEGF) treatment on macular neovascularization (MNV) morphology is well described, but long-term studies on morphologic changes and correlation of such changes to the type of MNV have not been conducted. This study aims to determine if different types of MNVs in neovascular AMD (nAMD) behave differently with anti-VEGF treatment as visualized on optical coherence tomography angiography (OCTA). Methods Treatment-naïve nAMD patients were retrospectively screened for baseline and follow-up OCTA imaging 10 or more months after initial treatment. Images were graded for MNV type, area, activity, mature versus immature vessels, vessel density, presence of atrophy, atrophy location and area. Growth rate was calculated as the percent change in lesion area from baseline over the years of follow-up. In addition, the occurrence of complete regression and the percent of lesions that grew, remained stable, and shrunk per type was also evaluated. Results Forty-three eyes from 43 patients with a mean follow-up of 2 years were evaluated. On structural OCT, 26 lesions were classified as pure type 1 MNVs, 12 MNVs had a type 2 component, and 5 MNVs had a type 3 component. Of these cases, 2 mixed-type MNVs were considered to have completely regressed. There was no significant differences in MNV area and growth rate between type 1 and type 2 lesions, but all cases of type 3 lesions shrunk in the follow-up period. There was no correlation between the number of injections per year and growth rate, endpoint MNV area or endpoint activity status for any MNV type. There was no significant association between the development of atrophy and the number of injections, baseline MNV area, baseline vessel density, or lesion growth rate. Conclusions In nAMD, complete regression of an MNV network exposed to anti-VEGF is rare. This work emphasizes the role of anti-VEGF as anti-leakage rather than vascular regression agents in nAMD.
Collapse
Affiliation(s)
- Emily S Levine
- New England Eye Center, Tufts Medical Center, Boston, MA USA.,Tufts University School of Medicine, Boston, MA USA
| | - Eugenia Custo Greig
- New England Eye Center, Tufts Medical Center, Boston, MA USA.,Yale School of Medicine, New Haven, CT USA
| | - Luísa S M Mendonça
- New England Eye Center, Tufts Medical Center, Boston, MA USA.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Shilpa Gulati
- New England Eye Center, Tufts Medical Center, Boston, MA USA
| | | | - A Yasin Alibhai
- New England Eye Center, Tufts Medical Center, Boston, MA USA
| | - Eric Moult
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA USA
| | | | | | | | | | - James G Fujimoto
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA USA
| | | | - Andre J Witkin
- New England Eye Center, Tufts Medical Center, Boston, MA USA
| | - Jay S Duker
- New England Eye Center, Tufts Medical Center, Boston, MA USA
| | | | - Nadia K Waheed
- New England Eye Center, Tufts Medical Center, Boston, MA USA.,Department of Ophthalmology, Tufts Medical Center, 800 Washington Street, Box 450, Boston, MA 02111 USA
| |
Collapse
|
18
|
Baker MJ, Cooke M, Kreider-Letterman G, Garcia-Mata R, Janmey PA, Kazanietz MG. Evaluation of active Rac1 levels in cancer cells: A case of misleading conclusions from immunofluorescence analysis. J Biol Chem 2020; 295:13698-13710. [PMID: 32817335 DOI: 10.1074/jbc.ra120.013919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
A large number of aggressive cancer cell lines display elevated levels of activated Rac1, a small GTPase widely implicated in cytoskeleton reorganization, cell motility, and metastatic dissemination. A commonly accepted methodological approach for detecting Rac1 activation in cancer cells involves the use of a conformation-sensitive antibody that detects the active (GTP-bound) Rac1 without interacting with the GDP-bound inactive form. This antibody has been extensively used in fixed cell immunofluorescence and immunohistochemistry. Taking advantage of prostate and pancreatic cancer cell models known to have high basal Rac1-GTP levels, here we have established that this antibody does not recognize Rac1 but rather detects the intermediate filament protein vimentin. Indeed, Rac1-null PC3 prostate cancer cells or cancer models with low levels of Rac1 activation still show a high signal with the anti-Rac1-GTP antibody, which is lost upon silencing of vimentin expression. Moreover, this antibody was unable to detect activated Rac1 in membrane ruffles induced by epidermal growth factor stimulation. These results have profound implications for the study of this key GTPase in cancer, particularly because a large number of cancer cell lines with characteristic mesenchymal features show simultaneous up-regulation of vimentin and high basal Rac1-GTP levels when measured biochemically. This misleading correlation can lead to assumptions about the validity of this antibody and inaccurate conclusions that may affect the development of appropriate therapeutic approaches for targeting the Rac1 pathway.
Collapse
Affiliation(s)
- Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
IQGAP1 causes choroidal neovascularization by sustaining VEGFR2-mediated Rac1 activation. Angiogenesis 2020; 23:685-698. [PMID: 32783108 DOI: 10.1007/s10456-020-09740-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/01/2020] [Indexed: 01/31/2023]
Abstract
Loss of visual acuity in neovascular age-related macular degeneration (nAMD) occurs when factors activate choroidal endothelial cells (CECs) to transmigrate the retinal pigment epithelium into the sensory retina and develop into choroidal neovascularization (CNV). Active Rac1 (Rac1GTP) is required for CEC migration and is induced by different AMD-related stresses, including vascular endothelial growth factor (VEGF). Besides its role in pathologic events, Rac1 also plays a role in physiologic functions. Therefore, we were interested in a method to inhibit pathologic activation of Rac1. We addressed the hypothesis that IQGAP1, a scaffold protein with a Rac1 binding domain, regulates pathologic Rac1GTP in CEC migration and CNV. Compared to littermate Iqgap1+/+, Iqgap1-/- mice had reduced volumes of laser-induced CNV and decreased Rac1GTP and phosphorylated VEGFR2 (p-VEGFR2) within lectin-stained CNV. Knockdown of IQGAP1 in CECs significantly reduced VEGF-induced Rac1GTP, mediated through p-VEGFR2, which was necessary for CEC migration. Moreover, sustained activation of Rac1GTP induced by VEGF was eliminated when CECs were transfected with an IQGAP1 construct that is unable to bind Rac1. IQGAP1-mediated Src activation was involved in initiating Rac1 activation, CEC migration, and tube formation. Our findings indicate that CEC IQGAP1 interacts with VEGFR2 to mediate Src activation and subsequent Rac1 activation and CEC migration. In addition, IQGAP1 binding to Rac1GTP results in sustained activation of Rac1, leading to CEC migration toward VEGF. Our study supports a role of IQGAP1 and the interaction between IQGAP1 and Rac1GTP to restore CECs quiescence and, therefore, prevent vision-threatening CNV in nAMD.
Collapse
|
20
|
Sunitinib-induced oxidative imbalance and retinotoxic effects in rats. Life Sci 2020; 257:118072. [PMID: 32659367 DOI: 10.1016/j.lfs.2020.118072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
Abstract
AIMS Sunitinib (Su), a tyrosine kinase inhibitor, is one of the most commonly used anti-angiogenic drugs. Some studies have described retinal detachment and photoreceptor damage following systemic exposure to Su, despite beneficial effects achieved with local treatment of ocular pathologies. The aim of this study was to explore the role of NADPH oxidase system and oxidative stress in eyes from Su-treated animals. MAIN METHODS Male Wistar rats were administered 25 mg Su/kg body weight/day incorporated in the chow for 3 weeks. Upon treatment completion, NADPH oxidase activity and ROS levels were measured in ocular tissue by chemiluminescence and dihydroethidium (DHE) staining, respectively. The expression of NADPH oxidase isoforms (NOX1, NOX2 and NOX4), antioxidant enzymes and endothelial/inducible nitric oxidase isoforms (eNOS/iNOS) in the eyecup and/or retina were measured via immunofluorescence, immunoblotting and RT-qPCR. KEY FINDINGS NADPH oxidase activity/expression increased in eyecup and retinas from Su-treated rats. Immunohistofluorescence studies in retinal layer confirmed a higher signal of NADPH oxidase isoforms after Su treatment. Treated animals also presented with reductions in NO levels and eNOS expression, whereas iNOS was upregulated. Finally, a significant depletion of antioxidant enzyme glutathione peroxidase was measured in eyecups of rats following Su exposure, and the opposite pattern was seen for glutathione reductase and superoxide dismutase. SIGNIFICANCE This study demonstrates that Su treatment is associated with NADPH oxidase-derived oxidative stress in the eye. Long-term treatment of Su should be properly monitored to avoid retinotoxic effects that might result in ocular pathologies and sight-threatening conditions.
Collapse
|
21
|
Mishra R, Sehring I, Cederlund M, Mulaw M, Weidinger G. NF-κB Signaling Negatively Regulates Osteoblast Dedifferentiation during Zebrafish Bone Regeneration. Dev Cell 2020; 52:167-182.e7. [DOI: 10.1016/j.devcel.2019.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023]
|
22
|
Wang H, Kunz E, Stoddard GJ, Hauswirth WW, Hartnett ME. Optimal Inhibition of Choroidal Neovascularization by scAAV2 with VMD2 Promoter-driven Active Rap1a in the RPE. Sci Rep 2019; 9:15732. [PMID: 31673119 PMCID: PMC6823539 DOI: 10.1038/s41598-019-52163-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial chronic disease that requires long term treatment. Gene therapy is being considered as a promising tool to treat AMD. We found that increased activation of Rap1a in the retinal pigment epithelium (RPE) reduces oxidative signaling to maintain barrier integrity of the RPE and resist neural sensory retinal angiogenesis from choroidal endothelial cell invasion. To optimally deliver constitutively active Rap1a (CARap1a) into the RPE of wild type mice, self-complementary AAV2 (scAAV2) vectors driven by two different promoters, RPE65 or VMD2, were generated and tested for optimal active Rap1a expression and inhibition of choroidal neovascularization (CNV) induced by laser injury. scAAV2-VMD2, but not scAAV2-RPE65, specifically and efficiently transduced the RPE to increase active Rap1a protein in the RPE. Mice with increased Rap1a from the scAAV2-VMD2-CARap1a had a significant reduction in CNV compared to controls. Increased active Rap1a in the RPE in vivo or in vitro inhibited inflammatory and angiogenic signaling determined by decreased activation of NF-κB and expression of VEGF without causing increased cell death or autophagy measured by increased LCA3/B. Our study provides a potential future strategy to deliver active Rap1a to the RPE in order to protect against both atrophic and neovascular AMD.
Collapse
Affiliation(s)
- Haibo Wang
- John A Moran Eye Center, Salt Lake City, UT, 84132, USA
| | - Eric Kunz
- John A Moran Eye Center, Salt Lake City, UT, 84132, USA
| | - Gregory J Stoddard
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | | |
Collapse
|
23
|
The Regulatory Role of Rac1, a Small Molecular Weight GTPase, in the Development of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8070965. [PMID: 31277234 PMCID: PMC6678477 DOI: 10.3390/jcm8070965] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy, a microvascular complication of diabetes, remains the leading cause of vision loss in working age adults. Hyperglycemia is considered as the main instigator for its development, around which other molecular pathways orchestrate. Of these multiple pathways, oxidative stress induces many metabolic, functional and structural changes in the retinal cells, leading to the development of pathological features characteristic of this blinding disease. An increase in cytosolic reactive oxygen species (ROS), produced by cytosolic NADPH oxidase 2 (Nox2), is an early event in the pathogenesis of diabetic retinopathy, which leads to mitochondrial damage and retinal capillary cell apoptosis. Activation of Nox2 is mediated through an obligatory small molecular weight GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), and subcellular localization of Rac1 and its activation are regulated by several regulators, rendering it a complex biological process. In diabetes, Rac1 is functionally activated in the retina and its vasculature, and, via Nox2-ROS, contributes to mitochondrial damage and the development of retinopathy. In addition, Rac1 is also transcriptionally activated, and epigenetic modifications play a major role in this transcriptional activation. This review focusses on the role of Rac1 and its regulation in the development and progression of diabetic retinopathy, and discusses some possible avenues for therapeutic interventions.
Collapse
|
24
|
Ramadass M, Johnson JL, Marki A, Zhang J, Wolf D, Kiosses WB, Pestonjamasp K, Ley K, Catz SD. The trafficking protein JFC1 regulates Rac1-GTP localization at the uropod controlling neutrophil chemotaxis and in vivo migration. J Leukoc Biol 2019; 105:1209-1224. [PMID: 30748033 DOI: 10.1002/jlb.1vma0818-320r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Neutrophil chemotaxis is essential in responses to infection and underlies inflammation. In neutrophils, the small GTPase Rac1 has discrete functions at both the leading edge and in the retraction of the trailing structure at the cell's rear (uropod), but how Rac1 is regulated at the uropod is unknown. Here, we identified a mechanism mediated by the trafficking protein synaptotagmin-like 1 (SYTL1 or JFC1) that controls Rac1-GTP recycling from the uropod and promotes directional migration of neutrophils. JFC1-null neutrophils displayed defective polarization and impaired directional migration to N-formyl-methionine-leucyl-phenylalanine in vitro, but chemoattractant-induced actin remodeling, calcium signaling and Erk activation were normal in these cells. Defective chemotaxis was not explained by impaired azurophilic granule exocytosis associated with JFC1 deficiency. Mechanistically, we show that active Rac1 localizes at dynamic vesicles where endogenous JFC1 colocalizes with Rac1-GTP. Super-resolution microscopy (STORM) analysis shows adjacent distribution of JFC1 and Rac1-GTP, which increases upon activation. JFC1 interacts with Rac1-GTP in a Rab27a-independent manner to regulate Rac1-GTP trafficking. JFC1-null cells exhibited Rac1-GTP accumulation at the uropod and increased tail length, and Rac1-GTP uropod accumulation was recapitulated by inhibition of ROCK or by interference with microtubule remodeling. In vivo, neutrophil dynamic studies in mixed bone marrow chimeric mice show that JFC1-/- neutrophils are unable to move directionally toward the source of the chemoattractant, supporting the notion that JFC1 deficiency results in defective neutrophil migration. Our results suggest that defective Rac1-GTP recycling from the uropod affects directionality and highlight JFC1-mediated Rac1 trafficking as a potential target to regulate chemotaxis in inflammation and immunity.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Alex Marki
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - William B Kiosses
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| |
Collapse
|
25
|
Lyu Y, Xu WQ, Sun LJ, Pan XY, Zhang J, Wang YS. Effect of integrin α5β1 inhibition on SDF-l/CXCR4-mediated choroidal neovascularization. Int J Ophthalmol 2018; 11:726-735. [PMID: 29862169 DOI: 10.18240/ijo.2018.05.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/28/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the roles of integrins in choroidal neovascularization (CNV) and their associations with the stromal cell-derived factor-1 (SDF-1)/CXCR4 axis. METHODS CNV lesions were induced in mice using laser photocoagulation. After CNV induction, all animals were randomly assigned to: control, SDF-1, SDF-1+age-related macular degeneration (AMD) 3100 (CXCR4 inhibitor), and SDF-1+ATN161 (integrin α5β1 inhibitor) groups; their effects on CNV progression were observed using hematoxylin eosin (HE) staining, fundus fluorescein angiography (FFA) grading and optical coherence tomography (OCT), and their effects on CXCR4/integrin α5 expression were evaluated using Western blot and double immunofluorescence staining. Hypoxia-exposed endothelial cells (ECs) were used to simulate CNV in vitro, they were treated with SDF-1, combined with CXCR4 siRNA/AMD3100 or ATN161, and expression of integrin α5, cell migration and tube formation were analyzed. RESULTS Integrin subunit α5 increased at 3rd and 7th day and decreased at 14th day in CNV mice, with no significant change of β1-integrin. CXCR4 expression in CNV mice had persistent increase within 14d after induction. SDF-1 treatment significantly promoted the CNV progression during 3-14d. The mean CNV length in AMD3100 and ATN161 group at day 7 was 270.13 and 264.23 µm in HE images, significantly lower than the mean length in SDF-1 (345.70 µm) group. AMD3100 and ATN161 also significantly reduced thickness and leakage of CNV induced by SDF-1. Mean integrin α5 positive area in SDF-1 group reached 2.31×104 µm2, significantly higher than control (1.25×104 µm2), which decreased to 1.78×104 µm2 after AMD3100 treatment. About 61.36% of ECs in CNV lesions expressed α5 in SDF-1 group, which significantly decreased to 43.12% after AMD3100 treatment. In vitro, integrin α5 peaked by 6 folds after 6h of hypoxia exposure and CXCR4 gradually increased by up to 2.3 folds after 24h of hypoxia. Approximately 25.12% of ECs expressed integrin α5 after SDF-1 stimulation, which decreased to 7.2%-9.5% after si-CXCR4 or AMD3100 treatment. ATN161 exerted an inhibitory effect comparable to that of si-CXCR4 on EC migration and tube formation in the presence of SDF-1. CONCLUSION SDF-1/CXCR4 signaling induces integrin α5β1 expression in ECs to promote CNV.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou 730050, Gansu Province, China
| | - Wen-Qin Xu
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li-Juan Sun
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiao-Yan Pan
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
26
|
Zhang T, Jiang K, Zhu X, Zhao G, Wu H, Deng G, Qiu C. miR-433 inhibits breast cancer cell growth via the MAPK signaling pathway by targeting Rap1a. Int J Biol Sci 2018; 14:622-632. [PMID: 29904277 PMCID: PMC6001658 DOI: 10.7150/ijbs.24223] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/22/2018] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is one of the most lethal cancers in the world. The fight against breast cancer has also become a major task for medical workers. MicroRNAs (miRNAs) are often aberrantly expressed in diverse cancers and are involved in progression and metastasis. Many studies have found that miRNAs can act as oncogenes or as tumor suppressor genes. Here, we show that miR-433 is significantly decreased in breast cancer cells. In addition, we demonstrate the effects of miR-433 on breast cancer cell apoptosis, migration and proliferation in an attempt to elucidate the mechanism of action of miR-433. Moreover, Rap1a was predicted to be a potential target of miR-433 using bioinformatic approaches, and we found that the expression of Rap1a is inversely correlated with the level of miR-433. Further studies through overexpression and knockdown of Rap1a confirmed that Rap1a, as a direct target gene of miR-433, contributes to the functions of miR-433. In addition, we found that Rap1a activates the MAPK signaling pathway, which can contribute to cell migration and proliferation and can inhibit apoptosis. Overall, these findings highlight miR-433 as a tumor suppressor gene in the regulation of the progression and metastatic potential of breast cancer and may benefit the future development of therapies targeting miR-433 in breast cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
27
|
Shimizu A, Zankov DP, Kurokawa-Seo M, Ogita H. Vascular Endothelial Growth Factor-A Exerts Diverse Cellular Effects via Small G Proteins, Rho and Rap. Int J Mol Sci 2018; 19:ijms19041203. [PMID: 29659486 PMCID: PMC5979568 DOI: 10.3390/ijms19041203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) include five molecules (VEGF-A, -B, -C, -D, and placental growth factor), and have various roles that crucially regulate cellular functions in many kinds of cells and tissues. Intracellular signal transduction induced by VEGFs has been extensively studied and is usually initiated by their binding to two classes of transmembrane receptors: receptor tyrosine kinase VEGF receptors (VEGF receptor-1, -2 and -3) and neuropilins (NRP1 and NRP2). In addition to many established results reported by other research groups, we have previously identified small G proteins, especially Ras homologue gene (Rho) and Ras-related protein (Rap), as important mediators of VEGF-A-stimulated signaling in cancer cells as well as endothelial cells. This review article describes the VEGF-A-induced signaling pathways underlying diverse cellular functions, including cell proliferation, migration, and angiogenesis, and the involvement of Rho, Rap, and their related molecules in these pathways.
Collapse
Affiliation(s)
- Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Dimitar P Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Misuzu Kurokawa-Seo
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
28
|
Li J, Zhang R, Wang C, Wang X, Xu M, Ma J, Shang Q. Activation of the Small GTPase Rap1 Inhibits Choroidal Neovascularization by Regulating Cell Junctions and ROS Generation in Rats. Curr Eye Res 2018; 43:934-940. [PMID: 29601231 DOI: 10.1080/02713683.2018.1454477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Choroidal neovascularization (CNV) is a common vision-threatening complication associated with many fundus diseases. The retinal pigment epithelial (RPE) cell junction barrier has critical functions in preventing CNV, and oxidative stress can cause compromise of barrier integrity and induce angiogenesis. Rap1, a small guanosine triphosphatase (GTPase), is involved in regulating endothelial and epithelial cell junctions. In this work, we explored the function and mechanism of Rap1 in CNV in vivo. METHODS A laser-induced rat CNV model was developed. Rap1 was activated through intravitreal injection of the Rap1 activator 8CPT-2'-O-Me-cAMP (8CPT). At 14 days after laser treatment, CNV size in RPE/choroid flat mounts was measured by fluorescein isothiocyanate-dextran staining. Expression of vascular endothelial growth factor (VEGF) and cell junction proteins in RPE/choroid tissues were analyzed by western blots and quantitative real-time PCR assays. Reactive oxygen species (ROS) in RPE cells were detectedbydichloro-dihydro-fluorescein diacetate assays. The antioxidant apocynin was intraperitoneally injected into rats. RESULTS Activating Rap1 by 8CPT significantly reduced CNV size and VEGF expression in the rat CNV model. Rap1 activation enhanced protein and mRNA levels of ZO-1 and occludin, two tight junction proteins in the RPE barrier. In addition, reducing ROS generation by injection of apocynin, a NADPH oxidase inhibitor, inhibited CNV formation. Rap1 activation reduced ROS generation and expression of NADPH oxidase 4. CONCLUSIONS Rap1 activation inhibits CNV through regulating barrier integrity and ROS generation of RPE in vivo, and selectively activating Rap1 may be a way to reduce vision loss from CNV.
Collapse
Affiliation(s)
- Jiajia Li
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Rong Zhang
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Caixia Wang
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Xin Wang
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Man Xu
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Jingxue Ma
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Qingli Shang
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Ubiquitously-expressed small GTPase Rap1 is a key modulator of integrin- and cadherin-regulated processes. In endothelium, Rap1 promotes angiogenesis and endothelial barrier function, acting downstream from cAMP-activated Rap1GEF, Epac. Recent in-vivo studies in mouse models have provided more information about the physiological role of Rap1 in vessel development and after birth under normal and pathologic conditions. Important molecular details of dynamic regulation of endothelial barrier are uncovered. RECENT FINDINGS Rap1 is not essential for initial vessel formation but is critical for vessel stabilization, as double knockout of the two Rap1 isoforms leads to hemorrhage and embryonic lethality. After development, Rap1 is not required for endothelial barrier maintenance but is critical for nitric oxide production and endothelial function. Radil and Afadin mediate Rap1 effects on endothelial barrier function by regulating connection with Rho GTPases, actomyosin cytoskeleton, and cell-cell adhesion receptors. SUMMARY Rap1 is critically required for nitric oxide release and normal endothelial function in vivo. Mechanistic studies lead to a novel paradigm of Rap1 as a critical regulator of endothelial cell shear stress responses and endothelial homeostasis. Increased understanding of molecular mechanisms underlying endothelial barrier regulation may identify novel pharmacological targets for retinopathies and conditions with altered endothelial barrier function or when increased endothelial barrier is desired.
Collapse
|
30
|
Wang H, Hartnett ME. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects. Antioxidants (Basel) 2017; 6:antiox6020040. [PMID: 28587189 PMCID: PMC5488020 DOI: 10.3390/antiox6020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis.
Collapse
Affiliation(s)
- Haibo Wang
- The John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - M Elizabeth Hartnett
- The John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
31
|
Seto SW, Chang D, Ko WM, Zhou X, Kiat H, Bensoussan A, Lee SMY, Hoi MPM, Steiner GZ, Liu J. Sailuotong Prevents Hydrogen Peroxide (H₂O₂)-Induced Injury in EA.hy926 Cells. Int J Mol Sci 2017; 18:E95. [PMID: 28067784 PMCID: PMC5297729 DOI: 10.3390/ijms18010095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H₂O₂)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1-50 µg/mL) significantly suppressed the H₂O₂-induced cell death and abolished the H₂O₂-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H₂O₂ (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1-50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H₂O₂-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H₂O₂-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.
Collapse
Affiliation(s)
- Sai Wang Seto
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Dennis Chang
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Wai Man Ko
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Xian Zhou
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, NSW 2052, Australia.
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
- Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia.
| | - Alan Bensoussan
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Simon M Y Lee
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Maggie P M Hoi
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Genevieve Z Steiner
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Jianxun Liu
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
32
|
Wang H, Han X, Bretz CA, Becker S, Gambhir D, Smith GW, Samulski RJ, Wittchen ES, Quilliam LA, Chrzanowska-Wodnicka M, Hartnett ME. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev 2016; 3:16056. [PMID: 27606349 PMCID: PMC4996131 DOI: 10.1038/mtm.2016.56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 01/15/2023]
Abstract
To test the hypothesis that increased Rap1a activity specifically in retinal pigment epithelial cells resists choroidal neovascularization (CNV), self-complementary adeno-associated virus 2 (scAAV2) with RPE65-promoter-driven GFP vectors were generated and introduced subretinally into Rap1b-deficient mice. Six-week-old mice that received subretinal control (scAAV2-Con) or constitutively active Rap1a (scAAV2-CARap1a) showed strong GFP at the 5 × 10(8) viral particle/µl dose 5 weeks later without altering retinal morphology or function. Compared to scAAV2-Con- or phosphate-buffered saline (PBS)-injected, eyes injected with scAAV2-CARap1a had increased Rap1 in retinal pigment epithelial (RPE)/choroidal lysates and a significant reduction in CNV volume 7 days after laser, comparable to eyes that received intravitreal anti-VEGF versus IgG control. scAAV2-CARap1a-, but not anti-VEGF-, injected eyes had increased pan-cadherin in RPE/choroids. In cultured RPE cells, increased active Rap1a inhibited TNFα-induced disassociation of junctional pan-cadherin/β-catenin complexes, increased transepithelial electrical resistance through an interaction of β-catenin with phosphorylated scaffold protein, IQGAP1, and inhibited choroidal endothelial cell (CEC) transmigration of an RPE monolayer. This evidence shows that increased Rap1a activity specifically in RPE cells is sufficient to reduce CEC transmigration and CNV and involves IQGAP1-mediated protection of RPE junctional complexes.
Collapse
Affiliation(s)
- Haibo Wang
- The John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Xiaokun Han
- The John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, P.R. China
| | - Colin A Bretz
- The John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Silke Becker
- The John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Deeksha Gambhir
- The John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - George W Smith
- The John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - R Jude Samulski
- UNC Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erika S Wittchen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
33
|
Histopathological and ophthalmoscopic evaluation of apocynin on experimental proliferative vitreoretinopathy in rabbit eyes. Int Ophthalmol 2016; 37:599-605. [PMID: 27495951 DOI: 10.1007/s10792-016-0318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to evaluate the effect of apocynin (APO) on the development of proliferative vitreoretinopathy (PVR). New Zealand-type male rabbits were randomly grouped into three as follows: (1) Sham group rabbits which were applied intraperitoneal (i.p.) vehicle without PVR; (2) PVR group rabbits where PVR was created and an i.p. vehicle was administered for 21 successive days; (3) PVR + APO group rabbits where PVR was created and i.p. APO was administered for 21 successive days. Fundus examination was conducted with an indirect ophthalmoscope before starting the experiments and at each visit afterwards. At the end of the work, the rabbits were sacrificed under high-dose anesthesia and then eye tissues were taken for histopathological analyses. In the PVR + APO group, histopathologic and ophthalmoscopic examination revealed significant decrease in PVR formation. As the result, it has been observed that APO at least partially inhibits PVR formation.
Collapse
|
34
|
Geng S, Gu L, Ju F, Zhang H, Wang Y, Tang H, Bi Z, Yang C. MicroRNA-224 promotes the sensitivity of osteosarcoma cells to cisplatin by targeting Rac1. J Cell Mol Med 2016; 20:1611-9. [PMID: 27222381 PMCID: PMC4884199 DOI: 10.1111/jcmm.12852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumour in children and adolescents. Accumulating evidence has shown that microRNAs (miRNAs) participate in the development of almost all types of cancer. Here, we investigated the role of miR‐224 in the development and progression of osteosarcoma. We demonstrated that miR‐224 was down‐regulated in osteosarcoma cell lines and tissues. Lower miR‐224 levels were correlated with shorter survivalin osteosarcoma patients. Furthermore, overexpression of miR‐224 suppressed osteosarcoma cell proliferation, migration and invasion and contributed to the increased sensitivity of MG‐63 cells to cisplatin. We identified Rac1 as a direct target gene of miR‐224 in osteosarcoma. Rac1 expression was up‐regulated in the osteosarcoma cell lines and tissues, and there was an inverse correlation between Rac1 and miR‐224 expression in osteosarcoma tissues. Furthermore, rescuing Rac1 expression decreased the sensitivity of miR‐224‐overexpressing MG‐63 cells to cisplatin. We also demonstrated that ectopic expression of Rac1 promoted the proliferation, migration and invasion of miR‐224‐overexpressing MG‐63 cells. These data suggest that miR‐224 plays a tumour suppressor role in the development of osteosarcoma and is related to the sensitivity of osteosarcoma to cisplatin.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Lina Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Fang Ju
- Northern Institute for Cancer Research, Newcastle University, Sir James Spence Institute, RVI Hospital, UK
| | - Hepeng Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Yiwen Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Han Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - ZhengGang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Chenglin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| |
Collapse
|
35
|
Wang H, Hartnett ME. Regulation of signaling events involved in the pathophysiology of neovascular AMD. Mol Vis 2016; 22:189-202. [PMID: 27013848 PMCID: PMC4789180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/25/2016] [Indexed: 11/04/2022] Open
Abstract
Neovascular age-related macular degeneration (AMD) is a complex disease in which an individual's genetic predisposition is affected by aging and environmental stresses, which trigger signaling pathways involving inflammation, oxidation, and/or angiogenesis in the RPE cells and choroidal endothelial cells (CECs), to lead to vision loss from choroidal neovascularization. Antiangiogenic therapies have greatly improved clinical outcomes in the last decade; however, vision improves in less than half of patients treated for neovascular AMD, and treatments remain inadequate for atrophic AMD. Many studies focus on genetic predisposition or the association of outcomes in trials of human neovascular AMD but are unable to evaluate the effects between different cell types involved in AMD and the signaling events that take place to cause pathologic biologic events. This manuscript complements other reviews in that it describes what is known generally in human AMD studies and clinical trials testing methods to inhibit vascular endothelial growth factor (VEGF inhibitors) and presents pathologic signaling events that develop in two important cell types, the RPE cells and the CECs, when stimulated by stresses or placed into conditions similar to what is currently understood to occur in neovascular AMD. This manuscript complements other reviews by discussing signaling events that are activated by cell-cell or cell-matrix interactions. These considerations are particularly important when considering growth factors, such as VEGF, which are important in physiologic and pathologic processes, or GTPases that are present but active only if GTP bound. In either case, it is essential to understand the role of signaling activation to distinguish what is pathologic from what is physiologic. Particularly important is the essential role of activated Rac1 in CEC transmigration of the RPE monolayer, an important step in blindness associated with neovascular AMD. Other concepts discussed include the importance of feed-forward loops that overwhelm mechanisms that seek to restore homeostasis in cells and the importance of regulating, instead of abolishing, signaling events in a chronic, complex disease, such as neovascular AMD. These concepts are important as we move to the next stages in developing treatments for neovascular AMD. A novel therapeutic strategy that will be discussed is activating an isoform of the GTPase, Rap1, which can regulate downstream signaling and a pathologic feed-forward loop leading to Rac1 activation and migration of CECs.
Collapse
|