1
|
Peng N, Gao X, Yong Z, Zhang Y, Guo X, Wang Q, Wan Y, Zhao S, Zhang T, Hu F. "Sample-in, result-out" liquid biopsy chip based on immunomagnetic separation and CRISPR detection for multiplex analysis of exosomal microRNAs. Biosens Bioelectron 2025; 280:117460. [PMID: 40215698 DOI: 10.1016/j.bios.2025.117460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Multiplex analysis of exosomal microRNAs (miRNAs) plays an important role in noninvasive early disease diagnosis. However, the complexity of the testing process has hindered its clinical application. Here, we proposed an integrated chip for the detection of eight exosomal miRNAs in serum which can achieve "sample in, result out" detection. We developed an immunomagnetic isolation system based on CD63 aptamers (IISA) for separation of serum exosomes. The system was combined with immiscible filtration assisted by surface tension (IFAST) to remove impurities. Bubble mixing was applied to ensure adequate binding or cleavage of exosomes to magnetic beads. CRISPR detection technology was utilized to allow for effective detection of seven hepatocellular carcinoma (HCC)-related miRNA targets. Based on the test of clinical samples, the chip can achieve 78 % exosome capture efficiency and 55 % recovery, and simultaneously detect eight targets within 1 h. This chip could be applied as a robust and cost-effective tool for cancer diagnosis and monitoring of cancer stages.
Collapse
Affiliation(s)
- Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China; Xi'an Key Laboratory of Biomedical Testing and High-End Equipment, Xi'an, 710049, Shaanxi, China
| | - Xueqin Gao
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Zhang Yong
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yunyun Zhang
- Xi'an Key Laboratory of Biomedical Testing and High-End Equipment, Xi'an, 710049, Shaanxi, China
| | - Xiaoniu Guo
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Qiaochu Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yong Wan
- Department of Geriatric Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Tianyi Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
2
|
Brovkina AF, Tsybikova ND. [Epigenetic markers of choroidal melanoma]. Vestn Oftalmol 2024; 140:5-10. [PMID: 38962973 DOI: 10.17116/oftalma20241400315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs (18-25 nucleotides in length) that are important participants in the regulation of gene expression. In 2003, their active role in oncogenesis was demonstrated. In 2008, the first report on the isolation of miRNAs from uveal melanoma (UM) tissue was published. Four years later (2012), the presence of miRNAs in the plasma of patients with this category was shown. To date, changes in the expression level of 100 miRNAs in the plasma of cancer patients (with cancer of various localizations) out of the 2654 miRNAs described in mirbase.org have been proven. In the plasma of patients with UM, changes in the expression of only 13 miRNAs have been confirmed. As a rule, studies were conducted in patients at the stage of hematogenous metastasis of UM. PURPOSE This study analyzed the expression pattern of miRNA-223 and miRNA-126 in patients with localized choroidal melanoma (CM) taking into account biometric parameters in the absence of metastases. MATERIAL AND METHODS Blood plasma of 84 patients with M0N0 CM aged 35-86 years (mean age 63.4±1.2 years) was investigated. The basis for the diagnosis of CM was the results of ophthalmological examination, optical coherence tomography, and ultrasound scanning. In all cases, the absence of metastases was proven (using computed tomography or magnetic resonance imaging). Control - plasma of 28 volunteers (mean age 62.9±1.42 years, age range 45-78 years), who did not have tumoral, autoimmune, or chronic inflammatory processes. The expression levels of miRNAs circulating in blood plasma were determined by real-time polymerase chain reaction. RESULTS An increase in the expression levels of miRNA-223 and miRNA-126 in the plasma of all 84 patients with CM was confirmed compared to the control group. Features of the miRNA expression pattern that emerged with changes in the tumor's quantitative parameters were identified. CONCLUSION Evaluation of the levels of miRNA-223 and miRNA-126 in the blood plasma of patients with CM can be used in clinical practice to clarify the diagnosis of CM, as well as to predict the development of hematogenous metastases.
Collapse
Affiliation(s)
- A F Brovkina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Ophthalmological Center of S.P. Botkin City Clinical Hospital, Moscow, Russia
| | - N D Tsybikova
- Ophthalmological Center of S.P. Botkin City Clinical Hospital, Moscow, Russia
| |
Collapse
|
3
|
Carberry CK, Bangma J, Koval L, Keshava D, Hartwell HJ, Sokolsky M, Fry RC, Rager JE. Extracellular Vesicles altered by a Per- and Polyfluoroalkyl Substance Mixture: In Vitro Dose-Dependent Release, Chemical Content, and MicroRNA Signatures involved in Liver Health. Toxicol Sci 2023; 197:kfad108. [PMID: 37851381 PMCID: PMC10823775 DOI: 10.1093/toxsci/kfad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as high priority contaminants due to their ubiquity and pervasiveness in the environment. Numerous PFAS co-occur across sources of drinking water, including areas of North Carolina (NC) with some detected concentrations above the Environmental Protection Agency's health advisory levels. While evidence demonstrates PFAS exposure induces harmful effects in the liver, the involvement of extracellular vesicles (EVs) as potential mediators of these effects has yet to be evaluated. This study set out to evaluate the hypothesis that PFAS mixtures induce dose-dependent release of EVs from liver cells, with exposures causing differential loading of microRNAs (miRNAs) and PFAS chemical signatures. To test this hypothesis, a defined PFAS mixture was prioritized utilizing data collected by the NC PFAS Testing Network. This mixture contained three substances, PFOS, PFOA, and PFHxA, selected based upon co-occurrence patterns and the inclusion of both short-chain (PFHxA) and long-chain (PFOA and PFOS) substances. HepG2 liver cells were exposed to equimolar PFAS, and secreted EVs were isolated from conditioned media and characterized for count and molecular content. Exposures induced a dose-dependent release of EVs carrying miRNAs that were differentially loaded upon exposure. These altered miRNA signatures were predicted to target mRNA pathways involved in hepatic fibrosis and cancer. Chemical concentrations of PFOS, PFOA, and PFHxA were also detected in both parent HepG2 cells and their released EVs, specifically within a 15-fold range after normalizing for protein content. This study therefore established EVs as novel biological responders and measurable endpoints for evaluating PFAS-induced toxicity.
Collapse
Affiliation(s)
- Celeste K Carberry
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacqueline Bangma
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Lauren Koval
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Deepak Keshava
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hadley J Hartwell
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rebecca C Fry
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Medicine, Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julia E Rager
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Medicine, Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Li Y, Xu Q, Zhang W, Yang Q, Guo Z, Li C, Zhang Z, Dong Q, Sun H, Zhang C, Li C, Yao J, Li J, Qin L, Zhou L. A highly-parallelized and low-sample-size chip for simultaneous detection of protein and nucleic acid biomarkers in hepatocellular carcinoma. SENSORS AND ACTUATORS B: CHEMICAL 2023; 392:134112. [DOI: 10.1016/j.snb.2023.134112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
5
|
Öksüz Z, Gragnani L, Lorini S, Temel GÖ, Serin MS, Zignego AL. Evaluation of Plasma miR-17-5p, miR-24-3p and miRNA-223-3p Profile of Hepatitis C Virus-Infected Patients after Treatment with Direct-Acting Antivirals. J Pers Med 2023; 13:1188. [PMID: 37623439 PMCID: PMC10455277 DOI: 10.3390/jpm13081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
The expression of miR-223-3p, miR-17-5p, and miR-24-3p was evaluated in hepatitis C virus (HCV) patient serum samples, collected before DAA treatment and after a sustained virological response (SVR). Fifty HCV patients were stratified based on their liver damage stages into three different subgroups (21 with chronic hepatitis-CH, 15 with cirrhosis, and 14 with hepatocellular carcinoma-HCC). Considering the entire HCV population, the miRNA expression levels were significantly downregulated after the SVR compared to pre-treatment ones (p < 0.05). Stratifying the patients based on liver damage, the post-SVR values of the three miRNAs were significantly downregulated compared to the pre-treatment levels for both cirrhosis and HCC patients. No significant differences emerged from the analysis of the CH group. To our knowledge, this is the first study to detail the behavior of miR-223-3p, miR-17-5p, and miR-24-3p levels in patients with HCV-related CH, cirrhosis, and HCC after DAA therapy. Our findings show that HCV-infected patients have different miRNA profiles before and after treatment with DAAs, strongly suggesting that miRNAs may be involved in the pathogenesis of HCV-related damage. In this respect, the correlation observed among the three studied miRNAs could imply that they share common pathways by which they contribute the progression of HCV-induced chronic liver damage.
Collapse
Affiliation(s)
- Zehra Öksüz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, 33160 Mersin, Turkey;
| | - Laura Gragnani
- MASVE Interdepartmental Hepatology Center, Department of Experimental and Clinical Medicine, University of Florence, Center for Research and Innovation CRIA-MASVE, AOU Careggi, 50134 Firenze, Italy; (L.G.); (S.L.)
- Department of Translational Research & New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Serena Lorini
- MASVE Interdepartmental Hepatology Center, Department of Experimental and Clinical Medicine, University of Florence, Center for Research and Innovation CRIA-MASVE, AOU Careggi, 50134 Firenze, Italy; (L.G.); (S.L.)
| | - Gülhan Örekici Temel
- Department of Biostatistics, Faculty of Medicine, Mersin University, 33343 Mersin, Turkey;
| | - Mehmet Sami Serin
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, 33160 Mersin, Turkey;
| | - Anna Linda Zignego
- MASVE Interdepartmental Hepatology Center, Department of Experimental and Clinical Medicine, University of Florence, Center for Research and Innovation CRIA-MASVE, AOU Careggi, 50134 Firenze, Italy; (L.G.); (S.L.)
| |
Collapse
|
6
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
7
|
Rana M, Saini M, Das R, Gupta S, Joshi T, Mehta DK. Circulating MicroRNAs: Diagnostic Value as Biomarkers in the Detection of Non-alcoholic Fatty Liver Diseases and Hepatocellular Carcinoma. Microrna 2023; 12:99-113. [PMID: 37005546 DOI: 10.2174/2211536612666230330083146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 04/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a metabolic-related disorder, is the most common cause of chronic liver disease which, if left untreated, can progress from simple steatosis to advanced fibrosis and eventually cirrhosis or hepatocellular carcinoma, which is the leading cause of hepatic damage globally. Currently available diagnostic modalities for NAFLD and hepatocellular carcinoma are mostly invasive and of limited precision. A liver biopsy is the most widely used diagnostic tool for hepatic disease. But due to its invasive procedure, it is not practicable for mass screening. Thus, noninvasive biomarkers are needed to diagnose NAFLD and HCC, monitor disease progression, and determine treatment response. Various studies indicated that serum miRNAs could serve as noninvasive biomarkers for both NAFLD and HCC diagnosis because of their association with different histological features of the disease. Although microRNAs are promising and clinically useful biomarkers for hepatic diseases, larger standardization procedures and studies are still required.
Collapse
Affiliation(s)
- Minakshi Rana
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Manisha Saini
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Tanishq Joshi
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
8
|
The Novel Action of miR-193b-3p/CDK1 Signaling in HCC Proliferation and Migration: A Study Based on Bioinformatic Analysis and Experimental Investigation. Int J Genomics 2022; 2022:8755263. [PMID: 36600989 PMCID: PMC9806689 DOI: 10.1155/2022/8755263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/30/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common human malignancy with high mortality and dismal prognosis. A growing number of novel targets underlying HCC pathophysiology have been detected using microarray high throughput screening platforms. This study carried out bioinformatics analysis to explore underlying biomarkers in HCC and assessed the potential action of the miR-193b-3p/CDK1 signaling pathway in HCC progression. A total of 241 common differentially expressed genes (DEGs) were screened from GSE33294, GSE104310, and GSE144269. Functional analysis results implicated that DEGs are significantly associated with "cell cycle," "cell division," and "proliferation." The protein-protein interaction network analysis extracted ten hub genes from common DEGs. Ten hub genes were significantly overexpression in HCC tissues. Kaplan-Meier survival analysis revealed that 10 hub genes were linked with a poorer prognosis in HCC patients. Functional assays showed that CDK1 knockdown repressed HCC cell proliferation and migration. Luciferase reporter assay showed that miR-193b-3p could target CDK1 3' untranslated region, and miR-193b-3p negatively modulated CDK1. Enforced CDK1 expression attenuated miR-193b-3p-modulated suppressive actions on HCC cell proliferation and migration. To summarize, we performed a comprehensive bioinformatics analysis and identified 10 hub genes linked to the prognosis in HCC patients. Functional analysis revealed that CDK1, negatively regulated by miR-193b-3p, may act as an oncogene to promote HCC cell proliferation and migration and may predict poor prognosis of HCC patients. However, the role of CDK1/miR-193b-3p may still require further investigation.
Collapse
|
9
|
Sharma N, Srivastava S. Diagnosis of Pancreatic Cancer Using miRNA30e Biosensor. Interdiscip Sci 2022; 14:804-813. [PMID: 35781212 DOI: 10.1007/s12539-022-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
This work describes miRNA-based electrochemical biosensor for detection of miRNA30e, a pancreatic cancer biomarker. The screen-printed gold electrode was functionalized using cysteine hydrochloride followed by immobilization of synthesized colloidal gold nanorods (10-12 nm diameter and 25-65 nm length). The gold nanorods modified electrode surface was amino functionalized for covalent attachment of single-stranded DNA probe against miRNA30e (miR30e). This platform was utilized for electrochemical measurements and response analysis of target miRNA30e. Electrochemical impedance spectroscopic measurements showed very poor sensitivity (13.51 Ω/µg/mL/cm2) using charge transfer resistance calibration plots. Cyclic voltammetry and differential pulse voltammetry-based miR30e quantification showed decreasing current response with increasing concentration of miR30e with detection range of 0.1 fg/mL-0.1 µg/mL (14.9 aM-14.9 nM). The sensitivity of DPV sensing (104.4 µA/µg/mL/cm2) was found to be 1.3 times higher than that of CV-based quantification (79.6 µA/µg/mL/cm2). miRNA-based biosensors have the potential of replacing current invasive, time consuming and technically difficult diagnostic procedures. Furthermore, the lower limit of detection of 14.9 aM miRNA30e makes it a promising tool for detection of cancer at early stages and hence increasing survival rate.
Collapse
Affiliation(s)
- Namita Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, India.
| |
Collapse
|
10
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
11
|
Yu B, Zhou S, Liang H, Ye Q, Wang Y. Development and Validation of a Novel Circulating miRNA-Based Diagnostic Score for Early Detection of Hepatocellular Carcinoma. Dig Dis Sci 2022; 67:2283-2292. [PMID: 33982217 DOI: 10.1007/s10620-021-07031-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND With the rise of liquid biopsy in oncology, circulating miRNAs have become one of the most promising noninvasive biomarkers for early detection of hepatocellular carcinoma (HCC). However, a reliable HCC-related circulating miRNA panel and corresponding diagnostic model remain to be explored. METHODS Five large public datasets related to intact miRNA profiles in the serum or tumors of HCC patients were included and divided into training cohorts (GSE113740 and TCGA-LIHC) and validation cohorts (GSE112264, GSE113486 and GSE106817). Compared with non-cancer controls and high-risk patients, key miRNAs dysregulated in both the serum and tumors of HCC patients were identified by differential expression analysis and overlapping analysis. The corresponding diagnostic model was constructed by LASSO logistic regression and evaluated by receiver operating characteristic curves and a nomogram with calibration plot. RESULTS A distinctive panel of HCC-related circulating miRNAs, including three upregulated miRNAs (miR-184, miR-532-5p, miR-221-3p) and three downregulated miRNAs (miR-5589-5p, let-7b-3p, miR-26b-3p), were rigorously screened out, all of which displayed significant discriminability between HCC patients and controls (all P < 0.05). In addition, a reliable six-circulating miRNA-based diagnostic score was constructed and displayed robust diagnostic ability for HCC (particularly for early-stage HCC) (AUC = 0.9535, P < 0.05) compared with that of the serum α-fetoprotein test. Importantly, its efficacy was sufficiently validated in three independent datasets (AUC = 0.9780/0.9961/0.9681, all P < 0.05). Furthermore, a visual nomogram based on the diagnostic score was correspondingly established to strengthen its clinical applicability. CONCLUSION The six-circulating miRNA-based diagnostic score may be a reliable noninvasive biomarker for early-stage HCC screening and dynamic monitoring of postoperative recurrence.
Collapse
Affiliation(s)
- Bin Yu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, 430071, People's Republic of China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, 430071, People's Republic of China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, 430071, People's Republic of China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, 430071, People's Republic of China.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, Hunan, 410013, People's Republic of China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
12
|
Öksüz Z, Üçbilek E, Serin MS, Yaraş S, Temel GÖ, Sezgin O. hsa-miR-17-5p: A Possible Predictor of Ombitasvir/Paritaprevir/Ritonavir + Dasabuvir ± Ribavirin Therapy Efficacy in Hepatitis C Infection. Curr Microbiol 2022; 79:186. [PMID: 35524830 DOI: 10.1007/s00284-022-02882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022]
Abstract
Although persistent sustained viral response rates are increased in hepatitis C infection following administration of direct-acting antiviral (DAA) agents, the pre-use predictive parameters of these antivirals and the clinical progression in patients post-treatment remain unknown. To obtain data pertaining to the predictive parameters prior to the use of ombitavir/paritaprevir/ritonavir + dasabuvir and the clinical progression in patients following antiviral treatment. The expression profiles of miR-223-3p, miR-17-5p, miR-24-3p, and TLR2 - 196 to - 174 del/ins polymorphisms from the blood/serum of 34 hepatitis C virus (HCV)-infected patients pre- and post-ombitavir/paritaprevir/ritonavir + dasabuvir treatment were determined by RT-qPCR. The expression levels of miR-17-5p (P < 0.001) and miR-24-3p (P = 0.011) were significantly downregulated post-treatment as compared with those pre-treatment; however, there was no significant difference between these two groups in terms of miR-223-3p expression. In addition, there was no significant difference in TLR2 genotype or allele distribution between pre-and post-treatment (P > 0.05); nevertheless, the TLR2 del allele was decreased post-treatment (16.2%) as compared with that pre-treatment (19.1%), although the difference was not statistically significant. Moreover, a significant difference was found between the mRNA levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and HCV RNA pre-and post-treatment (P < 0.05). Further, miR-17-5p expression correlated with both ALT and AST mRNA levels post-treatment (P.
Collapse
Affiliation(s)
- Zehra Öksüz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Enver Üçbilek
- Department of Gastroenterology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Mehmet Sami Serin
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Serkan Yaraş
- Department of Gastroenterology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Gülhan Örekici Temel
- Department of Biostatistics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Orhan Sezgin
- Department of Gastroenterology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
13
|
Zhou ZW, Zheng W, Xiang Z, Ye CS, Yin QQ, Wang SH, Xu CA, Wu WH, Hui TC, Wu QQ, Zhao LY, Pan HY, Xu KY. Clinical implications of exosome-derived noncoding RNAs in liver. J Transl Med 2022; 102:464-473. [PMID: 35013531 DOI: 10.1038/s41374-021-00723-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Exosomes, one of three main types of extracellular vesicles, are ~30-100 nm in diameter and have a lipid bilayer membrane. They are widely distributed in almost all body fluids. Exosomes have the potential to regulate unknown cellular and molecular mechanisms in intercellular communication, organ homeostasis, and diseases. They are critical signal carriers that transfer nucleic acids, proteins, lipids, and other substances into recipient cells, participating in cellular signal transduction and material exchange. ncRNAs are non-protein-coding genes that account for over 90% of the genome and include microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). ncRNAs are crucial for physiological and pathological activities in the liver by participating in gene transcription, posttranscriptional epigenetic regulation, and cellular processes through interacting with DNA, RNA, or proteins. Recent evidence from both clinical and preclinical studies indicates that exosome-derived noncoding RNAs (ncRNAs) are highly involved in the progression of acute and chronic liver diseases by regulating hepatic lipid metabolism, innate immunity, viral infection, fibrosis, and cancer. Therefore, exosome-derived ncRNAs have promising potential and clinical implications for the early diagnosis, targeted therapy, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Zhe Wen Zhou
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Wei Zheng
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Zheng Xiang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Cun Si Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Qiao Qiao Yin
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Shou Hao Wang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Cheng An Xu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Wen Hao Wu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Tian Chen Hui
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Qing Qing Wu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Ling Yun Zhao
- Emergency Medicine Unit, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Hong Ying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui, China.
| | - Ke Yang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| |
Collapse
|
14
|
Zhan S, Yang P, Zhou S, Xu Y, Xu R, Liang G, Zhang C, Chen X, Yang L, Jin F, Wang Y. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front Med 2022; 16:216-226. [PMID: 35416630 DOI: 10.1007/s11684-022-0920-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC), which makes up the majority of liver cancer, is induced by the infection of hepatitis B/C virus. Biomarkers are needed to facilitate the early detection of HCC, which is often diagnosed too late for effective therapy. The tRNA-derived small RNAs (tsRNAs) play vital roles in tumorigenesis and are stable in circulation. However, the diagnostic values and biological functions of circulating tsRNAs, especially for HCC, are still unknown. In this study, we first utilized RNA sequencing followed by quantitative reverse-transcription PCR to analyze tsRNA signatures in HCC serum. We identified tRF-Gln-TTG-006, which was remarkably upregulated in HCC serum (training cohort: 24 HCC patients vs. 24 healthy controls). In the validation stage, we found that tRF-Gln-TTG-006 signature could distinguish HCC cases from healthy subjects with high sensitivity (80.4%) and specificity (79.4%) even in the early stage (Stage I: sensitivity, 79.0%; specificity, 74.8%; 155 healthy controls vs. 153 HCC patients from two cohorts). Moreover, in vitro studies indicated that circulating tRF-Gln-TTG-006 was released from tumor cells, and its biological function was predicted by bioinformatics assay and validated by colony formation and apoptosis assays. In summary, our study demonstrated that serum tsRNA signature may serve as a novel biomarker of HCC.
Collapse
Affiliation(s)
- Shoubin Zhan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ping Yang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210023, China
| | - Shengkai Zhou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ye Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Rui Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Gaoli Liang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chenyu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xi Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Liuqing Yang
- Department of Infectious Diseases, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Fangfang Jin
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yanbo Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Mirzajani E, Vahidi S, Norollahi SE, Samadani AA. Novel biomarkers of microRNAs in gastric cancer; an overview from diagnosis to treatment. Microrna 2022; 11:12-24. [PMID: 35319404 DOI: 10.2174/2211536611666220322160242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
The fourth frequent disease in the world and the second cause of cancer-related death is gastric cancer (GC). In this way, over 80% of diagnoses are made in the middle to advanced degrees of the disease, underscoring the requirement for innovative biomarkers that can be identified quickly. Meaningly, biomarkers that can complement endoscopic diagnosis and be used to detect patients with a high risk of GC are desperately needed. These biomarkers will allow for the accurate prediction of therapy response and prognosis in GC patients, as well as the development of an optimal treatment strategy for each individual. Conspicoiusly, microRNAs (miRNAs) and small noncoding RNA regulates the expression of target mRNA and thereby modifies critical biological mechanisms. According to the data, abnormally miRNAs expression in GC is linked to tumor growth, carcinogenesis, aggression and distant metastasis. Importantly, miRNA expression patterns and next-generation sequencing (NGS) can also be applied to analyze kinds of tissues and cancers. Given the high death rates and poor prognosis of GC, and the absence of a clinical diagnostic factor that is adequately sensitive to GC, research into novel sensitive and specific markers for GC diagnosis is critical. In this review,we evaluate the latest research findings that suggest the feasibility and clinical utility of miRNAs in GC.
Collapse
Affiliation(s)
- Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
16
|
MiR-223 Promotes Tumor Progression via Targeting RhoB in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6708871. [PMID: 35035482 PMCID: PMC8758265 DOI: 10.1155/2022/6708871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is among the most prevalent causes of cancer-related death globally. MiR-223 has been implicated in a variety of cellular mechanisms linked to cancer progression. However, the miR-223 expressions and its function in GC are unknown. We discovered that miR-223 expression was raised in GC tissues in comparison with nearby normal tissues in this investigation. Additionally, multiplied miR-223 expression was strongly linked with TNM stage (p=0.022), live metastasis (p=0.004),lymph node metastasis (p=0.004),and Borrmann type and was associated with an unfavorable prognostic for patients with GC. Furthermore, suppressing miR-223 significantly increased cell death and prevented cell migration and invasion in vitro. Additionally, miR-223 silencing decreased tumor development in vivo. Additionally, we discovered that miR-223 enhanced GC development by specifically targeting RhoB. In summary, our findings reveal that miR-223 increases tumor progression in GC by targeting RhoB, suggesting that it could serve to be a potential biomarker for the prediction of the disease.
Collapse
|
17
|
Safi S, Badshah Y, Shabbir M, Zahra K, Khan K, Dilshad E, Afsar T, Almajwal A, Alruwaili NW, Al-disi D, Abulmeaty M, Razak S. Predicting 3D Structure, Cross Talks, and Prognostic Significance of KLF9 in Cervical Cancer. Front Oncol 2022; 11:797007. [PMID: 35047407 PMCID: PMC8761731 DOI: 10.3389/fonc.2021.797007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Our study aimed to identify the new blood-based biomarkers for the diagnosis and prognosis of cervical cancer. Moreover, the three-dimensional (3D) structure of Kruppel-like factor 9 (KLF9) was also determined in order to better understand its function, and a signaling pathway was constructed to identity its upstream and downstream targets. In the current study, the co-expressions of tumor protein D52 (TPD52), KLF9, microRNA 223 (miR-223), and protein kinase C epsilon (PKCϵ) were evaluated in cervical cancer patients and a possible relation with disease outcome was revealed. The expressions of TPD52, KLF9, miR-223, and PKCϵ were studied in the blood of 100 cervical cancer patients and 100 healthy controls using real-time PCR. The 3D structure of KLF9 was determined through homology modeling via the SWISS-MODEL and assessed using the Ramachandran plot. The predicted 3D structure of KLF9 had a similarity index of 62% with its template (KLF4) with no bad bonds in it. In order to construct a genetic pathway, depicting the crosstalk between understudied genes, STRING analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and DAVID software were used. The constructed genetic pathway showed that all the understudied genes are linked to each other and involved in the PI3K/Akt signaling pathway. There was a 23-fold increase in TPD52 expression, a 2-fold increase in miR-223 expression, a 0.14-fold decrease in KLF9 expression, and a 0.05-fold decrease of PKCϵ expression in cervical cancer. In the present study, we observed an association of the expressions of TPD52, KLF9, miR-223, and PKCϵ with tumor stage, metastasis, and treatment status of cervical cancer patients. Elevated expressions of TPD52 and miR-223 and reduced expressions of KLF9 and PKCϵ in peripheral blood of cervical cancer patients may serve as predictors of disease diagnosis and prognosis. Nevertheless, further in vitro and tissue-level studies are required to strengthen their role as potential diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Sadia Safi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dara Al-disi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
MicroRNA in refined diagnosis of choroidal melanoma. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epigenetic studies of the level of microRNAs in human oncogenesis indicate their signifi cant role in the development and growth of malignant tumors of various origins. The fi rst works on the role of microRNAs in patients with uveal melanoma appeared in 2008.The aim: to analyze the expression level of miRNA-126 and miRNA-223 in the plasma blood of patients and to determine their signifi cance in the refi ned diagnosis of choroidal melanoma. Materials and methods. We examined 84 patients with choroidal melanoma (CM), mean age – 63.4 ± 1.2 (35–86 y.o.). Localization – a single CM node with a thickness of 0.77–17.19 mm. The control group consisted of 28 volunteers, age – 62.9 ± 1.42 (45–78 y.o.). Plasma miRNA expression levels were determined by real-time PCR.Results. An increase in the level of expression of miRNA-223 and miRNA-126 in blood plasma was confi rmed in all 84 patients with choroidal melanoma N0M0 compared with the control group. An increase in the expression of miRNA-223 and miRNA-126 was proved with an increase in tumor prominence.Conclusion. The obtained results of an increase in the expression of miRNA-223 indicate an increase in cell proliferation, and an increase in the expression of miRNA-126 on the activation of angiogenesis in a growing tumor, which makes it possible to recommend a study of the level of miRNA-223 and miRNA-126 for a more accurate diagnosis of small CM in cases of difficulty of differential diagnosis with other tumor-like diseases of the choroid.
Collapse
|
19
|
Wojtusik J, Curry E, Roth TL. Rhinoceros Serum microRNAs: Identification, Characterization, and Evaluation of Potential Iron Overload Biomarkers. Front Vet Sci 2021; 8:711576. [PMID: 34977204 PMCID: PMC8716540 DOI: 10.3389/fvets.2021.711576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Iron overload disorder (IOD) in critically endangered Sumatran (Dicerorhinus sumatrensis) and black (Diceros bicornis) rhinoceros is an over-accumulation of iron in organs which may exacerbate other diseases and indicate metabolic disturbances. IOD in rhinos is not well understood and diagnostics and therapeutics are limited in effectiveness. MicroRNAs (miRNAs) are small non-coding RNAs capable of altering protein synthesis. miRNA expression responds to physiological states and could serve as the basis for development of diagnostics and therapeutics. This study aimed to identify miRNAs differentially expressed among healthy rhinos and those afflicted with IOD or other diseases ("unhealthy"), and assess expression of select miRNAs to evaluate their potential as biomarkers of IOD. miRNAs in serum of black (n = 11 samples; five individuals) and Sumatran (n = 7 samples; four individuals) rhinos, representing individuals categorized as healthy (n = 9), unhealthy (n = 5), and afflicted by IOD (n = 3) were sequenced. In total, 715 miRNAs were identified, of which 160 were novel, 131 were specific to black rhinos, and 108 were specific to Sumatran rhinos. Additionally, 95 miRNAs were specific to healthy individuals, 31 specific to unhealthy, and 63 were specific to IOD individuals. Among healthy, unhealthy, and IOD states, 21 miRNAs were differentially expressed (P ≤ 0.01). Five known miRNAs (let-7g, miR-16b, miR-30e, miR-143, and miR-146a) were selected for further assessment via RT-qPCR in serum from black (n = 61 samples; seven individuals) and Sumatran (n = 38 samples; five individuals) rhinos. let-7g, miR-30e, and miR-143 all showed significant increased expression (P ≤ 0.05) during IOD (between 1 and 2 years prior to death) and late IOD (within 1 year of death) compared to healthy and unhealthy individuals. miR-16b expression increased (P ≤ 0.05) in late IOD, but was not different among IOD, healthy, and unhealthy states (P > 0.05). Expression of miR-146a increased in IOD and late IOD as compared to unhealthy samples (P ≤ 0.05) but was not different from the healthy state (P > 0.05). Selected serum miRNAs of black and Sumatran rhinos, in particular let-7g, miR-30e, and miR-143, could therefore provide a tool for advancing rhino IOD diagnostics that should be further investigated.
Collapse
Affiliation(s)
- Jessye Wojtusik
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo and Botanical Garden, Cincinnati, OH, United States
| | | | | |
Collapse
|
20
|
Han Z, Li K, Wu J, Wang K, Qiu C, Ye H, Cui C, Song C, Wang K, Shi J, Wang P, Zhang J. Diagnostic value of RNA for hepatocellular carcinoma: a network meta-analysis. Biomark Med 2021; 15:1755-1767. [PMID: 34783583 DOI: 10.2217/bmm-2021-0327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Aim: The aim of this study was to evaluate the capacity of RNA in the diagnosis of hepatocellular carcinoma (HCC). Methods: A systematic review was conducted from PubMed, Cochrane Library, EMBASE and Web of Science databases via well-designed retrieval strategy. Subsequently, the network meta-analysis was performed by the STATA software. Results: Through statistical analysis, the three hypotheses of the network meta-analysis were established. In view of these hypotheses, the diagnostic efficacy of the three markers in HCC (HCC vs healthy people) may be consistent, and the cumulative ranking results showed such a trend: circular RNA >long noncoding RNA >microRNA. Conclusion: Circular RNA may be most effective for diagnosing HCC across the three types of RNA.
Collapse
Affiliation(s)
- Zhuo Han
- College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Keming Li
- College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Jinyu Wu
- College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
- Henan Institute of Medical & Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Cuipeng Qiu
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Hua Ye
- College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Chi Cui
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
- Henan Institute of Medical & Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Chunhua Song
- College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Kaijuan Wang
- College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
- Henan Institute of Medical & Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Jianying Zhang
- College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
- Henan Institute of Medical & Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| |
Collapse
|
21
|
Xu H, Luo M, Xiang H, Liao W, Huang H, Wu Y, Mei J. miR-506-3p can inhibit cell proliferation and is a diagnostic and prognostic marker of liver cancer. Am J Transl Res 2021; 13:11531-11539. [PMID: 34786079 PMCID: PMC8581929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND At the time of diagnosis, most patients with liver cancer (LC) are at advanced stage, which increases the difficulty of treatment. MiR-506-3p is considered an anti-oncogene in a wide spectrum of malignancies. This investigation aims to determine the clinical implications of miR-506-3p in diagnosis and prognosis of LC. METHODS The expression of miR-506-3p in tissues and serum samples of 92 LC patients was detected using quantitative real-time PCR (qRT-PCR), and the connection between serum miR-506-3p and pathologic features of LC patients was analyzed. The diagnostic efficacy of miR-506-3p in LC was visualized by Receiver Operating Characteristic (ROC) curves, its prognostic implications in LC were confirmed by follow-up, and its impact on LC cell proliferation was analyzed by CCK-8 assay. RESULTS miR-506-3p was lowly expressed in LC tissues and serum samples. Reduced serum miR-506-3p expression indicated larger tumor size, higher TNM stage, and poorer differentiation degree in LC patients. The area under the curve (AUC) of serum miR-506-3p in diagnosing LC was 0.911, and for distinguishing tumor size, TNM stage and pathologic differentiation degree, AUC was 0.751, 0.825 and 0.777, respectively. Kaplan-Meier analysis demonstrated decreased overall survival in patients presenting with reduced serum miR-506-3p. Cox proportional hazards regression model analysis revealed that TNM staging and low serum miR-506-3p expression were independent prognostic factors in patients with LC. In vitro experiments identified that the proliferation of LC cells decreased significantly following miR-506-3p up-regulation. CONCLUSION miR-506-3p, capable of inhibiting LC cell proliferation, is a possible diagnostic and prognostic biomarker of LC.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of Pathology, The Affiliated Children’s Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Ming Luo
- Department of General Surgery, The Affiliated Children’s Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Huali Xiang
- Department of Health Management and Physical Examination, Jiangxi Provincial Maternal and Child Health HospitalNanchang 330006, Jiangxi, China
| | - Wenjun Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Hui Huang
- Department of Pathology, The Affiliated Children’s Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yan Wu
- Department of Pathology, The Affiliated Children’s Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
22
|
García-Chávez JN, Vásquez-Garzón VR, López MG, Villa-Treviño S, Montiel R. Integration of chronological omics data reveals mitochondrial regulatory mechanisms during the development of hepatocellular carcinoma. PLoS One 2021; 16:e0256016. [PMID: 34383828 PMCID: PMC8360386 DOI: 10.1371/journal.pone.0256016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria participate in multiple functions in eukaryotic cells. Although disruption of mitochondrial function has been associated with energetic deregulation in cancer, the chronological changes in mitochondria during cancer development remain unclear. With the aim to assess the role of mitochondria throughout cancer development, we analyzed samples chronologically obtained from induced hepatocellular carcinoma (HCC) in rats. In our analyses, we integrated mitochondrial proteomic data, mitochondrial metabolomic data and nuclear genome transcriptomic data. We used pathway over-representation and weighted gene co-expression network analysis (WGCNA) to integrate expression profiles of genes, miRNAs, proteins and metabolite levels throughout HCC development. Our results show that mitochondria are dynamic organelles presenting specific modifications in different stages of HCC development. We also found that mitochondrial proteomic profiles from tissues adjacent to nodules or tumor are determined more by the stage of HCC development than by tissue type, and we evaluated two models to predict HCC stage of the samples using proteomic profiles. Finally, we propose an omics integration pipeline to massively identify molecular features that could be further evaluated as key regulators, biomarkers or therapeutic targets. As an example, we show a group of miRNAs and transcription factors as candidates, responsible for mitochondrial metabolic modification in HCC.
Collapse
Affiliation(s)
- J. Noé García-Chávez
- Langebio, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | | | - Mercedes G. López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Rafael Montiel
- Langebio, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
23
|
MicroRNAs-1299, -126-3p and -30e-3p as Potential Diagnostic Biomarkers for Prediabetes. Diagnostics (Basel) 2021; 11:diagnostics11060949. [PMID: 34073154 PMCID: PMC8226728 DOI: 10.3390/diagnostics11060949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
This cross-sectional study investigated the association of miR-1299, -126-3p and -30e-3p with and their diagnostic capability for dysglycaemia in 1273 (men, n = 345) South Africans, aged >20 years. Glycaemic status was assessed by oral glucose tolerance test (OGTT). Whole blood microRNA (miRNA) expressions were assessed using TaqMan-based reverse transcription quantitative-PCR (RT-qPCR). Receiver operating characteristic (ROC) curves assessed the ability of each miRNA to discriminate dysglycaemia, while multivariable logistic regression analyses linked expression with dysglycaemia. In all, 207 (16.2%) and 94 (7.4%) participants had prediabetes and type 2 diabetes mellitus (T2DM), respectively. All three miRNAs were significantly highly expressed in individuals with prediabetes compared to normotolerant patients, p < 0.001. miR-30e-3p and miR-126-3p were also significantly more expressed in T2DM versus normotolerant patients, p < 0.001. In multivariable logistic regressions, the three miRNAs were consistently and continuously associated with prediabetes, while only miR-126-3p was associated with T2DM. The ROC analysis indicated all three miRNAs had a significant overall predictive ability to diagnose prediabetes, diabetes and the combination of both (dysglycaemia), with the area under the receiver operating characteristic curve (AUC) being significantly higher for miR-126-3p in prediabetes. For prediabetes diagnosis, miR-126-3p (AUC = 0.760) outperformed HbA1c (AUC = 0.695), p = 0.042. These results suggest that miR-1299, -126-3p and -30e-3p are associated with prediabetes, and measuring miR-126-3p could potentially contribute to diabetes risk screening strategies.
Collapse
|
24
|
Favero A, Segatto I, Perin T, Belletti B. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1659. [PMID: 33951281 PMCID: PMC8518860 DOI: 10.1002/wrna.1659] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Given their intrinsic pleiotropism, microRNAs (miR) play complex biological roles, in both normal and pathological conditions. Often the same miR can act as oncogene or oncosuppressor, depending on the biological process dysregulated in each specific tissue. miR‐223 does not represent an exception to this rule and its functions greatly differ in different contexts. miR‐223 has been widely studied in the hematopoietic compartment, where it plays a central role in innate immune response, regulating myeloid differentiation and granulocytes function. Accordingly, dysregulated expression of miR‐223 has been associated to different inflammatory disorders and tumors arising from the immune compartment. Most carcinomas, breast cancer being the most studied, display loss of miR‐223. However, in gastro‐esophageal cancers miR‐223 is frequently overexpressed and correlates with worse prognosis. A link between miR‐223 and response to CDK4/6‐inhibitors has been recently proposed, suggesting a role as biomarker of therapeutic response. The notion that one of the most commonly mutated protein in cancer, mutant p53, binds the promoter of miR‐223 and suppresses its transcription, adds a further level of complexity to the full understanding of miR‐223 in cancer. In this review, we will summarize the current knowledge on the molecular networks that alter or are altered by miR‐223, in different cancer types. We will discuss if the times are ready for the exploitation of miR‐223 as predictive biomarker of treatment response or, even, as therapeutic target, in specific settings. Finally, we will suggest which could be the next steps to be taken for a realistic clinical application of miR‐223. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Andrea Favero
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
25
|
Chen Y, Yang W, Chen Q, Liu Q, Liu J, Zhang Y, Li B, Li D, Nan J, Li X, Wu H, Xiang X, Peng Y, Wang J, Su S, Wang Z. Prediction of hepatocellular carcinoma risk in patients with chronic liver disease from dynamic modular networks. J Transl Med 2021; 19:122. [PMID: 33757544 PMCID: PMC7989040 DOI: 10.1186/s12967-021-02791-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Background Discovering potential predictive risks in the super precarcinomatous phase of hepatocellular carcinoma (HCC) without any clinical manifestations is impossible under normal paradigm but critical to control this complex disease. Methods In this study, we utilized a proposed sequential allosteric modules (AMs)-based approach and quantitatively calculated the topological structural variations of these AMs. Results We found the total of 13 oncogenic allosteric modules (OAMs) among chronic hepatitis B (CHB), cirrhosis and HCC network used SimiNEF. We obtained the 11 highly correlated gene pairs involving 15 genes (r > 0.8, P < 0.001) from the 12 OAMs (the out-of-bag (OOB) classification error rate < 0.5) partial consistent with those in independent clinical microarray data, then a three-gene set (cyp1a2-cyp2c19-il6) was optimized to distinguish HCC from non-tumor liver tissues using random forests with an average area under the curve (AUC) of 0.973. Furthermore, we found significant inhibitory effect on the tumor growth of Bel-7402, Hep 3B and Huh7 cell lines in zebrafish treated with the compounds affected those three genes. Conclusions These findings indicated that the sequential AMs-based approach could detect HCC risk in the patients with chronic liver disease and might be applied to any time-dependent risk of cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02791-9.
Collapse
Affiliation(s)
- Yinying Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian Ge, Xicheng District, Beijing, 100053, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China.,Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Qilong Chen
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong, Shanghai, 201203, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Yingying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China
| | - Dongfeng Li
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Jingyi Nan
- Shandong Danhong Pharmaceutical Co. Ltd., Heze, China
| | - Xiaodong Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Huikun Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xinghua Xiang
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, China
| | - Yehui Peng
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| | - Shibing Su
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong, Shanghai, 201203, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700, China.
| |
Collapse
|
26
|
Aalami AH, Abdeahad H, Mesgari M, Sahebkar A. MicroRNA-223 in gastrointestinal cancers: A systematic review and diagnostic meta-analysis. Eur J Clin Invest 2021; 51:e13448. [PMID: 33244751 DOI: 10.1111/eci.13448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Several studies have been conducted on the diagnostic role of miR-223 in cancers related to the digestive system. However, the diagnostic role of this microRNA in gastrointestinal (GI) cancers has not been fully elucidated. This meta-analysis aimed to accurately assess the diagnostic role of circulating miR-223 in GI cancers. METHODS A literature search was performed in PubMed/Medline, Science Direct, Web of Science, Google Scholar, Embase and Scopus, up to 1st May 2020 databases. Twelve studies were eligible and included in the analysis. Meta-Disc software was used to calculate the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, area under the curve (AUC) and the summary receiver operating characteristic (SROC) based on true positive, true negative, false negative and false positive for each gastrointestinal cancer separately and in total. RESULTS Twelve case-control studies were included with 1859 participants (1080 cases and 779 controls). Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio were 0.77 (95% CI: 0.74-0.79), 0.75 (95% CI: 0.72-0.78), 3.04 (95% CI: 2.20-4.18), 0.31 (95% CI: 0.22-0.42) and 10.77 (95% CI: 5.96-19.47), respectively. AUC was 0.83, suggesting a high-grade diagnostic precision of miR-223 in gastrointestinal cancers. Besides, subgroup analyses were performed to assess the diagnostic power of miR-223 based on the type of gastrointestinal cancer, sample type and country via calculating pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio. CONCLUSION Our meta-analysis showed the value of circulating miR-223 levels in the early diagnosis of diverse digestive system carcinomas.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, Collogue of Health, University of Utah, Salt Lake City, UT, USA
| | - Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
27
|
Abdeltawab A, Zaki ME, Abdeldayem Y, Mohamed AA, Zaied SM. Circulating micro RNA-223 and angiopoietin-like protein 8 as biomarkers of gestational diabetes mellitus. Br J Biomed Sci 2021; 78:12-17. [PMID: 32421465 DOI: 10.1080/09674845.2020.1764211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a serious health problem associated with both foetal and maternal complications. New biomarkers that can predict or help in the early diagnosis of GDM are needed to minimize the hazards of hyperglycaemia in pregnant women and their offspring. We hypothesised a link between levels of microRNA-223 (miRNA-223) and Angiopoietin-Like Protein 8 (ANGPTL8) and GDM. MATERIALS AND METHODS The study included 109 patients with confirmed early diagnosed GDM and 103 healthy control pregnant women in their second or third trimester. miRNA-223 and ANGPTL8 blood levels were assessed by real-time RT-PCR and sandwich ELISA, respectively, laboratory markers by standard methods. RESULTS There was a significant increase in mean [SD] miRNA-223 and ANGPTL8 in GDM (0.31 [0.06] relative units) and (692 [199] pg/ml), respectively, in the GDM women compared to healthy pregnant women (0.17[0.05] relative units) and (261 [127] pg/ml), respectively, P < 0.001. miRNA-223 and ANGPTL8 correlated significantly with each other (r = 0.38, P < 0.001) and with fasting, 1-h and 2-h postprandial blood glucose levels (all P ≤ 0.002) HbA1 c (P < 0.025), total cholesterol (P < 0.01), LDL-C and triglycerides (both P ≤ 0.005). The ROC area under curve (AUC) (95%CI) was 0.94 (0.91-0.97) for ANGPTL8, 0.92 (0.88-0.96) for miRNA-223 and 0.97 (0.95 - 0.99) for their combination. CONCLUSIONS These findings support the hypothesis of involvement of both miRNA-223 and ANGPTL8 in the pathogenesis of GDM. The difference between levels in GDM patients and in control pregnant women indicates potential use for early diagnosis or prediction of GDM.
Collapse
Affiliation(s)
- A Abdeltawab
- Physiology Department, College of Medicine, Jouf University , Sakaka, Saudi Arabia
- Physiology Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| | - M E Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University , Mansoura, Egypt
| | - Y Abdeldayem
- Obstetric and Gynecology Department, Mansoura University , Mansoura, Egypt
| | - A A Mohamed
- Medical Biochemistry Division, Pathology Department, Jouf University , Sakaka, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| | - S M Zaied
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| |
Collapse
|
28
|
Abstract
Liver cancer is a global problem and hepatocellular carcinoma (HCC) accounts for about 85% of this cancer. In the USA, etiologies and risk factors for HCC include chronic hepatitis C virus (HCV) infection, diabetes, non-alcoholic steatohepatitis (NASH), obesity, excessive alcohol drinking, exposure to tobacco smoke, and genetic factors. Chronic HCV infection appears to be associated with about 30% of HCC. Chronic HCV infection induces multistep changes in liver, involving metabolic disorders, steatosis, cirrhosis and HCC. Liver carcinogenesis requires initiation of neoplastic clones, and progression to clinically diagnose malignancy. Tumor progression associates with profound exhaustion of tumor-antigen-specific CD8+T cells, and accumulation of PD-1hi CD8+T cells and Tregs. In this chapter, we provide a brief description of HCV and environmental/genetic factors, immune regulation, and highlight mechanisms of HCV associated HCC. We also underscore HCV treatment and recent paradigm of HCC progression, highlighted the current treatment and potential future therapeutic opportunities.
Collapse
|
29
|
Yang L, Wei C, Li Y, He X, He M. miR-224 is an early-stage biomarker of hepatocellular carcinoma with miR-224 and miR-125b as prognostic biomarkers. Biomark Med 2020; 14:1485-1500. [PMID: 33155836 DOI: 10.2217/bmm-2020-0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: The aim was to systematically investigate the miRNA biomarkers for early diagnosis of hepatocellular carcinoma (HCC). Materials & methods: A systematic review and meta-analysis of miRNA expression in HCC were performed. Results: A total of 4903 cases from 30 original studies were comprehensively analyzed. The sensitivity and specificity of miR-224 in discriminating early-stage HCC patients from benign lesion patients were 0.868 and 0.792, which were superior to α-fetoprotein. Combined miR-224 with α-fetoprotein, the sensitivity and specificity were increased to 0.882 and 0.808. Prognostic survival analysis showed low expression of miR-125b and high expression of miR-224 were associated with poor prognosis. Conclusion: miR-224 had a prominent diagnostic efficiency in early-stage HCC, with miR-224 and miR-125b being valuable in the prognostic diagnosis.
Collapse
Affiliation(s)
- Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Chunmeng Wei
- Nanning Municipal Center for Disease Control & Prevention, Nanning 530021, China
| | - Yasi Li
- College of Global Public Health, New York University, NY 10003, USA
| | - Xiao He
- School of Public Health, Guilin Medical School, Guilin 541100, China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China.,Key Laboratory of High-Incidence Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning 530021, China.,Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
30
|
Yang W, Gao S, Wang Z, Pan L, Luo X, Zhang Y. The upregulation of microRNA-223 promoted the apoptosis of liver cancer cells via TLR4. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1835743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Weihua Yang
- Hepatobiliary and Pancreatic Surgery I Ward, First People’s Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Su Gao
- Hepatobiliary and Pancreatic Surgery I Ward, First People’s Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Zhigang Wang
- Hepatobiliary and Pancreatic Surgery I Ward, First People’s Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Leyu Pan
- Hepatobiliary and Pancreatic Surgery I Ward, First People’s Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Xiaofeng Luo
- Hepatobiliary and Pancreatic Surgery I Ward, First People’s Hospital of Jingmen, Jingmen, People’s Republic of China
| | - Yuxian Zhang
- Hepatobiliary and Pancreatic Surgery I Ward, First People’s Hospital of Jingmen, Jingmen, People’s Republic of China
| |
Collapse
|
31
|
Balahura LR, Selaru A, Dinescu S, Costache M. Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis. J Immunol Res 2020; 2020:2549763. [PMID: 33015196 PMCID: PMC7520695 DOI: 10.1155/2020/2549763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, it has been well established that tumorigenesis is affected by chronic inflammation. During this event, proinflammatory cytokines are produced by numerous types of cells, such as fibroblasts, endothelial cells, macrophages, and tumor cells, and are able to promote the initiation, progression, and metastasis of different types of cancer. When persistent inflammation occurs, activation of inflammasome complexes is initiated, leading to its assembly and further activation of caspase, production of proinflammatory cytokines, and pyroptosis induction. The function of this multiprotein complex is not only to reassure inflammation and to promote cell death, through caspase activity, but also has been identified to have significant contributions during tumorigenesis and cancer development. So far, many efforts have been made in order to extend the knowledge of inflammasome implications and how its components could be targeted as therapeutic agents. Additionally, microRNAs (miRNAs), evolutionary conserved noncoding molecules, have emerged as pivotal players during numerous biological events by regulating gene and protein expression. Therefore, dysregulations of miRNA expressions have been correlated with inflammation during tumor development. In this review, we aim to highlight the dual role of inflammasomes and proinflammatory cytokines during carcinogenesis paired with the distinguished effects of miRNAs upon inflammation cascades during tumor growth and progression.
Collapse
Affiliation(s)
- Liliana R Balahura
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences "Victor Babes", Bucharest 050096, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Aida Selaru
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences "Victor Babes", Bucharest 050096, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
- The Research Institute of the University of Bucharest, Bucharest 050663, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
- The Research Institute of the University of Bucharest, Bucharest 050663, Romania
| |
Collapse
|
32
|
Bashir AO, El-Mesery ME, Anwer R, Eissa LA. Thymoquinone potentiates miR-16 and miR-375 expressions in hepatocellular carcinoma. Life Sci 2020; 254:117794. [DOI: 10.1016/j.lfs.2020.117794] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/27/2022]
|
33
|
Pratedrat P, Chuaypen N, Nimsamer P, Payungporn S, Pinjaroen N, Sirichindakul B, Tangkijvanich P. Diagnostic and prognostic roles of circulating miRNA-223-3p in hepatitis B virus-related hepatocellular carcinoma. PLoS One 2020; 15:e0232211. [PMID: 32330203 PMCID: PMC7182200 DOI: 10.1371/journal.pone.0232211] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Circulating microRNAs (miRNAs) have been shown to dysregulate in many cancer types including hepatocellular carcinoma (HCC). The purpose of this study was to examine the potential diagnostic or prognostic roles of circulating miRNAs in patients with hepatitis B virus (HBV)-related HCC. Methods Paired cancerous and adjacent non-cancerous liver tissue specimens of patients with HBV-related HCC were used as a discovery set for screening 800 miRNAs by a Nanostring quantitative assay. Differentially expressed miRNAs were then examined by SYBR green quantitative RT-PCR in a validation cohort of serum samples obtained from 70 patients with HBV-related HCC, 70 HBV patients without HCC and 50 healthy controls. Results The discovery set identified miR-223-3p, miR-199a-5p and miR-451a significantly lower expressed in cancerous tissues compared with non-cancerous tissues. In the validated cohort, circulating miR-223-3p levels were significantly lower in the HCC group compared with the other groups. The combined use of serum alpha-fetoprotein and miR-223-3p displayed high sensitivity for detecting early HCC (85%) and intermediate/advanced stage HCC (100%). Additionally, serum miR-223-3p had a negative correlation with tumor size and BCLC stage. On multivariate analysis, serum miR-223-3p was identified as an independent prognostic factor of overall survival in patients with HCC. In contrast, circulating miRNA-199a-5p and miR-451a did not show any clinical benefit for the diagnosis and prognostic prediction of HCC. Conclusions Our results demonstrated that miR-223-3p was differentially expressed in cancerous compared with paired adjacent non-cancerous tissues. In addition, circulating miRNA-223-3p could represent a novel diagnostic and prognostic marker for patients with HBV-related HCC.
Collapse
Affiliation(s)
- Pornpitra Pratedrat
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
34
|
Li C, Feng Y, Shao W. Changes of serum miR-223-3p in patients with oral cancer treated with TPF regimen and the prognosis. Oncol Lett 2020; 19:2527-2532. [PMID: 32194755 DOI: 10.3892/ol.2020.11258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/14/2019] [Indexed: 11/06/2022] Open
Abstract
Changes of serum miR-223-3p in patients with oral cancer treated with TPF regimen and the prognosis were investigated. Fifty patients with oral cancer treated in the Affiliated Stomatological Hospital of Jiamusi University from March 2014 to January 2016 were enrolled in the study group, while 50 healthy subjects receiving physical examinations during the same period were enrolled in the control group. Serum expression of miR-223-3p was quantified by RT-qPCR. The diagnostic value of miR-223-3p in oral cancer was analyzed by the receiver operating characteristic (ROC) curve. Expression of miR-223-3p before and after treatment was compared. The study group was divided into the remission and the non-remission group based on the treatment outcome to analyze the predictive value of miR-223-3p. Patients were followed up for 3 years. Cox regression analysis was performed to analyze the independent prognostic factors. The relative serum miR-223-3p level was lower in the study than in the control group (P<0.001). Expression of miR-223-3p was significantly higher after treatment than before (P<0.05). Spearman's correlation analysis indicated that miR-223-3p expression before treatment gradually increased with the improvement of treatment outcome (r=0.617, P<0.001). The miR-223-3p level was markedly higher in the remission than in the non-remission group (P<0.05). The area under the ROC curve of miR-223-3p was 0.797. Multivariate Cox regression analysis demonstrated that the degree of differentiation [HR: 11.862 (95% CI: 2.730-51.547)] and miR-223-3p [HR: 3.489 (95% CI: 1.447-8.413)] were independent prognostic factors. The 3-year survival of patients with high differentiation and high miR-223-3p expression was significantly higher than that of patients with poor differentiation and low miR-223-3p expression (P<0.05). In conclusion, miR-223-3p expression is low in oral cancer, and it shows potential for predicting the efficacy and prognosis of patients with oral squamous cell carcinoma (OSCC) after TPF regimen.
Collapse
Affiliation(s)
- Chunru Li
- Department of Endodontics, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yao Feng
- Department of Endodontics, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Weiran Shao
- Department of Emergency, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
35
|
Gramantieri L, Pollutri D, Gagliardi M, Giovannini C, Quarta S, Ferracin M, Casadei-Gardini A, Callegari E, De Carolis S, Marinelli S, Benevento F, Vasuri F, Ravaioli M, Cescon M, Piscaglia F, Negrini M, Bolondi L, Fornari F. MiR-30e-3p Influences Tumor Phenotype through MDM2/ TP53 Axis and Predicts Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Res 2020; 80:1720-1734. [PMID: 32015093 DOI: 10.1158/0008-5472.can-19-0472] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/29/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
The molecular background of hepatocellular carcinoma (HCC) is highly heterogeneous, and biomarkers predicting response to treatments are an unmet clinical need. We investigated miR-30e-3p contribution to HCC phenotype and response to sorafenib, as well as the mutual modulation of TP53/MDM2 pathway, in HCC tissues and preclinical models. MiR-30e-3p was downregulated in human and rat HCCs, and its downregulation associated with TP53 mutations. TP53 contributed to miR-30e-3p biogenesis, and MDM2 was identified among its target genes, establishing an miR-30e-3p/TP53/MDM2 feedforward loop and accounting for miR-30e-3p dual role based on TP53 status. EpCAM, PTEN, and p27 were demonstrated as miR-30e-3p additional targets mediating its contribution to stemness and malignant features. In a preliminary cohort of patients with HCC treated with sorafenib, increased miR-30e-3p circulating levels predicted the development of resistance. In conclusion, molecular background dictates miR-30e-3p dual behavior in HCC. Mdm2 targeting plays a predominant tumor suppressor function in wild-type TP53 contexts, whereas other targets such as PTEN, p27, and EpCAM gain relevance and mediate miR-30e-3p oncogenic role in nonfunctional TP53 backgrounds. Increased circulating levels of miR-30e-3p predict the development of sorafenib resistance in a preliminary series of patients with HCC and deserve future investigations. SIGNIFICANCE: The dual role of miR-30e-3p in HCC clarifies how the molecular context dictates the tumor suppressor or oncogenic function played by miRNAs.
Collapse
Affiliation(s)
- Laura Gramantieri
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy.
| | - Daniela Pollutri
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Martina Gagliardi
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Catia Giovannini
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Santina Quarta
- Department of Medicine, University of Padua, Padua, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Andrea Casadei-Gardini
- Division of Oncology, Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Callegari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrina De Carolis
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Sara Marinelli
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Benevento
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, St.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, St.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- General Surgery and Transplant Unit, St.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luigi Bolondi
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Fornari
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy.
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Cisilotto J, do Amaral AE, Rosolen D, Rode MP, Silva AH, Winter E, da Silva TE, Fischer J, Matiollo C, Rateke ECDM, Narciso-Schiavon JL, Schiavon LDL, Creczynski-Pasa TB. MicroRNA profiles in serum samples from Acute-On-Chronic Liver Failure patients and miR-25-3p as a potential biomarker for survival prediction. Sci Rep 2020; 10:100. [PMID: 31919459 PMCID: PMC6952390 DOI: 10.1038/s41598-019-56630-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a condition characterized by acute decompensation of cirrhosis, associated with organ failure(s), and high short-term mortality. The microRNAs or miRNAs are small non-coding RNA molecules, stable in circulating samples such as biological fluids, and the difference in expression levels may indicate the presence, absence and/or stage of the disease. We analyzed here the miRNA profiling to identify potential diagnostic or prognostic biomarkers for ACLF. The major miRNAs discovered were validated in a cohort of patients with acute decompensation of cirrhosis grouped in no ACLF or ACLF according to EASL-CLIF definition. Relationship between serum miRNAs and variables associated with liver-damage and survival outcomes were verified to identify possible prognostic markers. Our results showed twenty altered miRNAs between no ACLF and ACLF patients, and twenty-seven in patients who died in 30 days compared with who survived. In validation phase, miR-223-3p and miR-25-3p were significantly altered in ACLF patients and in those who died in 30 days. miR-223-3p and miR-25-3p expression were associated with the lowest survival in 30 days. The decrease in miR-223-3p and miR-25-3p expression was associated with the presence of ACLF and poor prognosis. Of these, miR-25-3p was independently related to ACLF and 30-day mortality.
Collapse
Affiliation(s)
- Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Alex Evangelista do Amaral
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Michele Patrícia Rode
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, 89520-000, SC, Brazil
| | - Telma Erotides da Silva
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Josiane Fischer
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Camila Matiollo
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Elayne Cristina de Morais Rateke
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Janaína Luz Narciso-Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Leonardo de Lucca Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | | |
Collapse
|
37
|
Omran NM, El-Sherbini SM, Hegazy O, Elshaarawy AA, Talaat RM. Crosstalk between miR-215 and epithelial-mesenchymal transition specific markers (E-cadherin and N-cadherin) in different stages of chronic HCV Infection. J Med Virol 2019; 92:1231-1238. [PMID: 31769519 DOI: 10.1002/jmv.25637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
The main causes of death among patients with hepatocellular carcinoma (HCC) are a recurrence, metastasis, and deterioration of primary tumors by the epithelial-to-mesenchymal transition (EMT) which is controlled by several molecules including E-cadherin and N-cadherin. Microribonucleic acids (miRNAs) have been identified to play a regulatory role in EMT. miR-215 is important in repressing migration/invasion of cancer cells. In this study, we aimed to evaluate the crosstalk between miR-215 and EMT specific markers (E-cadherin and N-cadherin) with a spotlight on its role in the EMT process in hepatitis C virus (HCV)-infected patients. One hundred forty-five patients were studied, 75 had HCV-induced cirrhosis classified into child A, B, and C and 25 had HCC. In parallel, 45 healthy volunteers considered as controls. Serum levels of E- and N-cadherin were measured using enzyme-linked immunosorbent assay and miR-215 expression measured by a quantitative reverse transcription-polymerase chain reaction. Insignificant change in serum levels of E-cadherin and N-cadherin in HCV-infected patients compared with normal controls was observed with a slight increase in E-cadherin and N-cadherin in the child B group. HCC patients had the lowest amount of E-cadherin and N-cadherin compared with cirrhotic and normal subjects. A maximum reduction in miR-215 was observed in HCC patients compared with cirrhotic and control ones. A positive correlation (r = .202; P < .05) was observed between miR-215 and E-cadherin. Our data stressed on the potential role of miR-215 as an important mediator in HCC progression. miRNAs participating in EMT needs further studies to provide insight into the metastasis of HCC.
Collapse
Affiliation(s)
- Nermeen M Omran
- Department of Clinical Pathology, National Liver Institute, Menofia University, Al Minufya, Egypt
| | - Sherif M El-Sherbini
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Osama Hegazy
- Department of Hepatopancreatobiliary Surgery and Liver Transplantation, National Liver Institute, Menofia University, Al Minufya, Egypt
| | - Ahmed A Elshaarawy
- Department of Clinical Pathology, National Liver Institute, Menofia University, Al Minufya, Egypt
| | - Roba M Talaat
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
38
|
Jiang Y, He J, Li Y, Guo Y, Tao H. The Diagnostic Value of MicroRNAs as a Biomarker for Hepatocellular Carcinoma: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5179048. [PMID: 31871941 PMCID: PMC6907051 DOI: 10.1155/2019/5179048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recently, the role of microRNAs (miRNAs) in diagnosing cancer has been attracted increasing attention. However, few miRNAs have been applied in clinical practice. The purpose of this study was to evaluate the diagnostic efficacy of miRNAs for hepatocellular carcinoma (HCC) at early stages clinically. METHODS A literature search was carried out using PubMed, Web of Science, and EMBASE databases. We explored the diagnostic value of miRNAs in distinguishing HCC from healthy individuals. The quality assessment was performed in Review Manager 5.3 software. The overall sensitivity and specificity and 95% confidence intervals (CIs) were obtained with random-effects models through Stata 14.0 software. And heterogeneity was assessed using Q test and I 2 statistics. Meta-regression and subgroup analyses were conducted based on the sample, nation, quality of studies, and miRNA profiling. The publication bias was evaluated through Deeks' funnel plot. RESULTS A total of 34 studies, involving in 2747 HCC patients and 2053 healthy individuals, met the inclusion criteria in the 33 included literature studies. In the summary receiver operating characteristic (sROC) curve, AUC was 0.92 (95% CI, 0.90-0.94), with 0.84 (95% CI, 0.79-0.88) sensitivity and 0.87 (95% CI, 0.83-0.90) specificity. There was no publication bias (P=0.48). CONCLUSION miRNAs in vivo can be acted as a potential diagnostic biomarker for HCC, which can facilitate the early diagnosis of HCC in clinical practice.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jimin He
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Yiqin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hualin Tao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
39
|
Yu G, Yin Z, He H, Zheng Z, Chai Y, Xuan L, Lin R, Wang Q, Li J, Xu D. Low serum miR-223 expression predicts poor outcome in patients with acute myeloid leukemia. J Clin Lab Anal 2019; 34:e23096. [PMID: 31691380 PMCID: PMC7083432 DOI: 10.1002/jcla.23096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/12/2019] [Accepted: 09/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Identification of biomarkers for acute myeloid leukemia (AML) is important for treating this malignancy. Recent studies have reported that microRNAs (miRNAs) are stably detectable in the blood/plasma and can be used as biomarkers for various types of cancer including AML. The aim of this study was to analyze miR‐223 level in serum as a potential indicator for AML diagnosis and prognosis prediction. Methods Quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR) was used to detect the levels of miR‐223 in the serum samples from 131 patients and 70 healthy individuals. Results The results revealed that serum miR‐223 was underexpressed in AML patients, particularly those in intermediate and unfavorable cytogenetic risk groups. Further analysis revealed that serum miR‐223 could yield a receiver operating characteristic (ROC) area under the curve (AUC) of 0.849 with 83.2% sensitivity and 81.4% specificity. Moreover, a significant increase in serum miR‐223 level was observed in AML subjects after their treatment. Reduced serum miR‐223 level was highly associated with aggressive clinical variables and shorter survival of patients. Furthermore, miR‐223 expression was identified to be an independent prognostic predictor of worse overall survival. Conclusion In conclusion, miR‐223 may be a reliable diagnostic and prognostic biomarker for AML.
Collapse
Affiliation(s)
- Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Chai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Study of serum microRNA19a and microRNA223 as potential biomarkers for early diagnosis of hepatitis C virus-related hepatocellular carcinoma. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Peng C, Ye Y, Wang Z, Guan L, Bao S, Li B, Li W. Circulating microRNAs for the diagnosis of hepatocellular carcinoma. Dig Liver Dis 2019; 51:621-631. [PMID: 30744930 DOI: 10.1016/j.dld.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
AIM There are no existing biomarkers that demonstrate very reliable performance in the diagnosis of hepatocellular carcinoma (HCC), especially in the early stage. Studies have shown that numerous aberrantly expressed circulating microRNAs (miRNAs) can be used as a diagnostic tool for HCC; however, these studies have produced inconsistent results. METHODS We performed a meta-analysis to summarize the diagnostic accuracy of circulating miRNAs, alpha-fetoprotein (AFP), and AFP combined with miRNAs in differentiating HCC patients from non-HCC controls, healthy controls and chronic liver disease controls. We also evaluated the diagnostic accuracy of circulating miRNAs for early-stage HCC. Furthermore, we systematically reviewed the diagnostic effectiveness of single miRNAs and individual miRNA panels. RESULTS Circulating miRNAs showed good diagnostic performance. Compared with single miRNAs, the diagnostic accuracy of miRNA panels was clearly better. The combination of AFP and miRNAs improved the diagnostic accuracy compared with the use of miRNAs or AFP alone. For early-stage HCC patients, circulating miRNAs exhibited relatively satisfactory diagnostic accuracy. CONCLUSIONS Circulating miRNAs can be used as an early diagnostic marker of HCC. The combination of miRNAs and AFP has great potential as a novel strategy for the diagnosis of HCC.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanshuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhanpeng Wang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Suriguga Bao
- Department of Hepatobiliary-Pancreatic Surgery, Inner Mongolia people's Hospital, Hohhot, China
| | - Bo Li
- Department of Epidemiology, School of Public Health of Jilin University, Changchun, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
42
|
Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA, Khaiboullina SF. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. Front Pharmacol 2019; 10:451. [PMID: 31118894 PMCID: PMC6504709 DOI: 10.3389/fphar.2019.00451] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammation has a crucial role in protection against various pathogens. The inflammasome is an intracellular multiprotein signaling complex that is linked to pathogen sensing and initiation of the inflammatory response in physiological and pathological conditions. The most characterized inflammasome is the NLRP3 inflammasome, which is a known sensor of cell stress and is tightly regulated in resting cells. However, altered regulation of the NLRP3 inflammasome is found in several pathological conditions, including autoimmune disease and cancer. NLRP3 expression was shown to be post-transcriptionally regulated and multiple miRNA have been implicated in post-transcriptional regulation of the inflammasome. Therefore, in recent years, miRNA based post-transcriptional control of NLRP3 has become a focus of much research, especially as a potential therapeutic approach. In this review, we provide a summary of the recent investigations on the role of miRNA in the post-transcriptional control of the NLRP3 inflammasome, a key regulator of pro-inflammatory IL-1β and IL-18 cytokine production. Current approaches to targeting the inflammasome product were shown to be an effective treatment for diseases linked to NLRP3 overexpression. Although utilizing NLRP3 targeting miRNAs was shown to be a successful therapeutic approach in several animal models, their therapeutic application in patients remains to be determined.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alan McIntyre
- Centre for Cancer Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
43
|
Espelt MV, Bacigalupo ML, Carabias P, Troncoso MF. MicroRNAs contribute to ATP-binding cassette transporter- and autophagy-mediated chemoresistance in hepatocellular carcinoma. World J Hepatol 2019; 11:344-358. [PMID: 31114639 PMCID: PMC6504855 DOI: 10.4254/wjh.v11.i4.344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has an elevated mortality rate, largely because of high recurrence and metastasis. Additionally, the main obstacle during treatment of HCC is that patients usually develop resistance to chemotherapy. Cancer drug resistance involves many different mechanisms, including alterations in drug metabolism and processing, impairment of the apoptotic machine, activation of cell survival signaling, decreased drug sensitivity and autophagy, among others. Nowadays, miRNAs are emerging as master regulators of normal physiology- and tumor-related gene expression. In HCC, aberrant expression of many miRNAs leads to chemoresistance. Herein, we particularly analyzed miRNA impact on HCC resistance to drug therapy. Certain miRNAs target ABC (ATP-binding cassette) transporter genes. As most of these miRNAs are downregulated in HCC, transporter levels increase and intracellular drug accumulation decrease, turning cells less sensitive to death. Others miRNAs target autophagy-related gene expression, inhibiting autophagy and acting as tumor suppressors. Nevertheless, due to its downregulation in HCC, these miRNAs do not inhibit autophagy or tumor growth and, resistance is favored. Concluding, modulation of ABC transporter and/or autophagy-related gene expression or function by miRNAs could be determinant for HCC cell survival under chemotherapeutic drug treatment. Undoubtedly, more insights on the biological processes, signaling pathways and/or molecular mechanisms regulated by miRNAs are needed. Anyway, miRNA-based therapy together with conventional chemotherapeutic drugs has a great future in cancer therapy.
Collapse
Affiliation(s)
- María V Espelt
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - María L Bacigalupo
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Pablo Carabias
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - María F Troncoso
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
44
|
Sasaki R, Sur S, Cheng Q, Steele R, Ray RB. Repression of MicroRNA-30e by Hepatitis C Virus Enhances Fatty Acid Synthesis. Hepatol Commun 2019; 3:943-953. [PMID: 31334444 PMCID: PMC6601325 DOI: 10.1002/hep4.1362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection often leads to end‐stage liver disease, including hepatocellular carcinoma (HCC). We have previously observed reduced expression of microRNA‐30e (miR‐30e) in the liver tissues and sera of patients with HCV‐associated HCC, although biological functions remain unknown. In this study, we demonstrated that HCV infection of hepatocytes transcriptionally reduces miR‐30e expression by modulating CCAAT/enhancer binding protein β. In silico prediction suggests that autophagy‐related gene 5 (ATG5) is a direct target of miR‐30e. ATG5 is involved in autophagy biogenesis, and HCV infection in hepatocytes induces autophagy. We showed the presence of ATG5 in the miR‐30e–Argonaute 2 RNA‐induced silencing complex. Overexpression of miR‐30e in HCV‐infected hepatocytes inhibits autophagy activation. Subsequent studies suggested that ATG5 knockdown in Huh7.5 cells results in the remarkable inhibition of sterol regulatory element binding protein (SREBP)‐1c and fatty acid synthase (FASN) level. We also showed that overexpression of miR‐30e decreased lipid synthesis‐related protein SREBP‐1c and FASN in hepatocytes. Conclusion: We show new mechanistic insights into the interactions between autophagy and lipid synthesis through inhibition of miR‐30e in HCV‐infected hepatocytes.
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Pathology Saint Louis University St Louis MO.,Saint Louis University Liver Center Saint Louis University St Louis MO
| | - Subhayan Sur
- Department of Pathology Saint Louis University St Louis MO
| | - Qi Cheng
- Department of Pathology Saint Louis University St Louis MO
| | - Robert Steele
- Department of Pathology Saint Louis University St Louis MO
| | - Ratna B Ray
- Department of Pathology Saint Louis University St Louis MO.,Saint Louis University Liver Center Saint Louis University St Louis MO
| |
Collapse
|
45
|
Świtlik WZ, Bielecka-Kowalska A, Karbownik MS, Kordek R, Jabłkowski M, Szemraj J. Forms of diagnostic material as sources of miRNA biomarkers in hepatocellular carcinoma: a preliminary study. Biomark Med 2019; 13:523-534. [PMID: 30854869 DOI: 10.2217/bmm-2018-0485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: To assess the diagnostic value of selected miRNAs from various material collected from hepatocellular carcinoma (HCC) patients. Patients & methods: Tissue, serum, urine and fecal samples from HCC patients and healthy individuals were screened for associated miRNAs using microarray analysis; the selected miRNAs were then validated by real time-quantitative PCR on 65 patients. Results: Serum miR-122, a combination of serum miR-155 with miR-885-5p, a combination of urinary miR-532-3p with miR-765, and fecal miR-320a displayed 100% efficiency in discriminating patients from controls. A combination of urinary miR-532-3p and miR-765 allowed patients with neoplastic grade G3 to be distinguished from those with G1 and G2. Conclusion: Additionally to serum, urine and feces also appeared to be valuable source of potential HCC noninvasive miRNA biomarkers.
Collapse
Affiliation(s)
- Weronika Zofia Świtlik
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka Street 6/8 92-215 Lodz, Poland.,Department of Biochemistry, Faculty of Agriculture & Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | | | - Michał Seweryn Karbownik
- Department of Pharmacology & Toxicology, Medical University of Lodz, Zeligowskiego Street 7/9, 90-752 Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology Chair of Oncology, Medical University of Lodz, Pomorska Street 251, 92-213 Lodz, Poland
| | - Maciej Jabłkowski
- Department of Infectious & Liver Diseases, Medical University of Lodz, Kniaziewicza Street 1/5, 91-347 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka Street 6/8 92-215 Lodz, Poland.,BioNanoPark Laboratories, Lodz Regional Park of Science & Technologies, Dubois Street 114/116, 93-465, Lodz, Poland
| |
Collapse
|
46
|
Downregulation of miR-4443 and miR-5195-3p in ovarian cancer tissue contributes to metastasis and tumorigenesis. Arch Gynecol Obstet 2019; 299:1453-1458. [PMID: 30810880 DOI: 10.1007/s00404-019-05107-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE Ovarian cancer (OC) is one of the most fatal malignancies in women. High mortality rate may be due to problems with diagnosis in the early stages. The use of new biomarkers for faster diagnosis and selection of more efficient therapies is one of the main concerns in this area. miRNAs are non-coding and conserved molecules that are involved in regulating gene expression throughout different cell processes. Few studies have been conducted on the effects of miR-4443 and miR-5195-3p in cancer. Therefore, to determine the role of these miRNAs in OC, this study was directed to investigate the expression rate in OC tissue samples and its relationship with clinical factors. METHODS Expression levels of miR-4443 and miR-5195 were evaluated in 45 ovarian tumor and 45 ovarian non-tumor tissue samples paraffin embedded using qPCR. Expression was investigated by miRNA-specific primers and then statistical analysis was performed to determine the significance. In the next step, the relationship between clinopathologic factors and miRNA expression was investigated. RESULTS The results showed that miR-4443 decreased in OC in metastatic and serous OC samples (0.154-fold, P < 0.0001). As well as, significant reduction in miR-5195-3p was observed in cancer samples (0.373-fold, P < 0.0001) and its reduction was associated with metastasis. CONCLUSION As a result, the two studied miRNAs may contribute to suppressing tumor, so that decrease in their expression is associated with increased cell proliferation and invasion. Further investigation can help to suggest these miRNAs as diagnostic biomarkers or therapeutic targets in OC.
Collapse
|
47
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Huang Q, Ding J, Gong M, Wei M, Zhao Q, Yang J. Effect of miR-30e regulating NK cell activities on immune tolerance of maternal-fetal interface by targeting PRF1. Biomed Pharmacother 2018; 109:1478-1487. [PMID: 30551399 DOI: 10.1016/j.biopha.2018.09.172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022] Open
Abstract
AIM Natural killer (NK) cells, as key regulatory cells, accumulate at the maternal-fetal interface in large numbers. This study explored the effect of miR-30e on regulating the activity and function of peripheral blood NK cells (PB-NK cells) and decidua NK cells (D-NK cells) by targeting PRF1 in immune tolerance of maternal-fetal interface. METHODS Expressions of miR-30e in PB and decidua tissues from 49 patients with recurrent spontaneous abortion and 52 normal pregnant women were measured using PCR. NK cells were isolated from PB and decidua tissues and identified by flow cytometry (FCM). In PB-NK cells and D-NK cells activated by IFN-α, expressions of miR-30e and PRF1 were determined by PCR and Western blot. Negative controls of miR-30e mimics/inhibitors and siRNA against PRF1 were transfected in PB-NK cells and D-NK cells. Expressions of miR-30e and PRF1 were determined and their relationship was verified. Expressions of KIR2DL1, NKp44, IFN-γ, TNF-α, IL-4 and IL-10 were determined by FCM. Cytotoxicity kit was used to identify the cytotoxicity of NK cells. PCR and ELISA were employed to measure expression of VEGF, Ang-2 and PGF in D-NK cells. RESULTS After activation by IFN-α, D-NK cells and PB-NK cells showed decreased miR-30e expression and increased PRF1 expression in normal non-pregnant women. PRF1 is a target gene of miR-30e and miR-30e negatively regulated PRF1 expression. The treatment of miR-30e mimics elevated KIR2DL1 expression and decreased NKp44 expression in PB-NK or D-NK cells. Moreover, up-regulation of miR-30e expression suppressed cytotoxicity, corresponding to increased expression of IL-4and IL-10 and reduced expression of IFN-γ and TNF-α in PB-NK and D-NK cells, as well as enhanced expression of VEGF, Ang-2 and PGF in D-NK cells. Transfection of miR-30e inhibitors could reverse the tendencies. CONCLUSION Up-regulated miR-30e can reduce the cytotoxicity of PB-NK cells and D-NK cells by targeting PRF1, whereby inhibiting Th1 tolerance phenotype and inducing Th2 immunodominance. miR-30e may be contributive to creating a micro-immune tolerance environment of maternal-fetal interface.
Collapse
Affiliation(s)
- Qin Huang
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Meng Gong
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Min Wei
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Qinghong Zhao
- Department of Obstetrics and Gynecology, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hosptial of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
49
|
Su YH, Kim AK, Jain S. Liquid biopsies for hepatocellular carcinoma. Transl Res 2018; 201:84-97. [PMID: 30056068 PMCID: PMC6483086 DOI: 10.1016/j.trsl.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the world's second leading cause of cancer death; 82.4% of patients die within 5 years. This grim prognosis is the consequence of a lack of effective early detection tools, limited treatment options, and the high frequency of HCC recurrence. Advances in the field of liquid biopsy hold great promise in improving early detection of HCC, advancing patient prognosis, and ultimately increasing the survival rate. In an effort to address the current challenges of HCC screening and management, several studies have identified and evaluated liver-cancer-associated molecular signatures such as genetic alterations, methylation, and noncoding RNA expression in the form of circulating biomarkers in body fluids and circulating tumor cells of HCC patients. In this review, we summarize the recent progress in HCC liquid biopsy, organized by the intended clinical application of the reported study.
Collapse
Affiliation(s)
- Ying-Hsiu Su
- The Baruch S. Blumberg Institute, Doylestown, Pennsylvania.
| | - Amy K Kim
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore Maryland.
| | - Surbhi Jain
- JBS Science, Inc., Doylestown, Pennsylvania.
| |
Collapse
|
50
|
Role of miR-223 in the pathophysiology of liver diseases. Exp Mol Med 2018; 50:1-12. [PMID: 30258086 PMCID: PMC6158210 DOI: 10.1038/s12276-018-0153-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023] Open
Abstract
MiRNAs are small, noncoding RNAs, which can regulate gene expression posttranscriptionally, and they have emerged as key factors in disease biology by aiding in disease development and progression. MiR-223 is highly conserved during evolution and it was first described as a modulator of hematopoietic lineage differentiation. MiR-223 has an essential part in inflammation by targeting the nuclear factor-κB pathway and the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome. Recent studies have shown that miR-223 expression is deregulated in various types of liver diseases, including hepatitis virus infections, alcohol-induced liver injury, drug-induced liver injury, non-alcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma. As inflammatory and immune factors are involved in the occurrence and progress of liver diseases, deregulated miR-223 may participate in the pathogenesis of these conditions by influencing neutrophil infiltration, macrophage polarization, and inflammasome activation. This review first summarizes the present understanding of the biological functions of miR-223, including its gene location and transcription regulation, as well as its physiological role in hematopoietic differentiation. This review then focuses on the role of miR-223 in liver pathophysiology and its potential applications as a diagnostic biomarker and therapeutic target in liver diseases. A tiny RNA molecule involved with gene regulation may offer an appealing target for diagnosing and treating various liver diseases. MicroRNA-223 (miR-223) was first identified as controlling gene activity in a wide variety of immune cells. A review from researchers led by Yanning Liu at China’s Zhejiang University in Hangzhou details how abnormal miR-223 also contributes to liver damage in a variety of conditions, although questions still remain about how it functions in different liver disorders. The authors highlight studies linking miR-223 with the development of fibrosis and cirrhosis, and with the inflammatory response to injury from drugs, alcohol, or infection. This could make this microRNA a useful diagnostic biomarker. The authors also identify therapeutic opportunities to modulate this molecule, referring to several studies on the manipulation of miR-223 to treat hepatitis.
Collapse
|