1
|
Mitroi DM, Balteanu MA, Cioboata R, Vlasceanu SG, Zlatian OM, Catana OM, Mirea AA, Mogos GFR, Rotaru I, Biciusca V. Hypercoagulability in Tuberculosis: Pathophysiological Mechanisms, Associated Risks, and Advances in Management-A Narrative Review. J Clin Med 2025; 14:762. [PMID: 39941433 PMCID: PMC11818899 DOI: 10.3390/jcm14030762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Tuberculosis (TB) induces a hypercoagulable state characterized by systemic inflammation, endothelial dysfunction, and alterations in the coagulation and fibrinolytic pathways. This review explores the pathophysiological mechanisms underlying hypercoagulability in TB, including increased pro-inflammatory cytokine release, endothelial damage, platelet activation, and reduced anticoagulant and fibrinolytic activity. These factors contribute to an elevated risk of venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), which complicate TB prognosis and treatment. The potential role of adjunctive anti-inflammatory therapies, such as vitamin D, NSAIDs, corticosteroids, and anti-platelet agents, is highlighted as a strategy to mitigate systemic inflammation and reduce thrombotic risks in patients with TB. The challenges of anticoagulation therapy, particularly in managing the interactions between anti-TB medications and traditional anticoagulants, are discussed, along with the potential of novel oral anticoagulants (NOAs) as alternatives. We also address therapy of hypercoagulability in TB within resource-limited settings which requires low-cost diagnostics, accessible anticoagulation options, adjunctive therapies, and preventive strategies integrated into existing healthcare systems. Effective risk stratification and individualized management strategies are vital for reducing the morbidity and mortality associated with thrombotic complications in TB.
Collapse
Affiliation(s)
- Denisa Maria Mitroi
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (D.M.M.); (O.M.C.)
| | - Mara Amalia Balteanu
- Department of Pulmonology, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania;
| | - Ramona Cioboata
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Silviu Gabriel Vlasceanu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ovidiu Mircea Zlatian
- Microbiology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Oana Maria Catana
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (D.M.M.); (O.M.C.)
| | - Adina Andreea Mirea
- Department of Oral-Dental Prevention, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | | | - Ionela Rotaru
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Viorel Biciusca
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| |
Collapse
|
2
|
Ielapi N, Caprino F, Malizia B, Sisinni A, Ssempijja L, Andreucci M, Licastro N, Serra R. Infection, Infectious Agents and Vascular Disease. Rev Recent Clin Trials 2021; 16:262-271. [PMID: 33823769 DOI: 10.2174/1574887116666210325124045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infectious agents may be involved in the pathogenesis of vascular disease and related complications. The aim of this review is to analyze the most relevant information on the common infections related to vascular disease, discussing the main pathophysiological mechanisms. METHODS In the current review, the most important evidence on the issue of infections and vascular disease is searched on Medline, Scopus, and ScienceDirect database. RESULTS Among infectious agents, herpesviruses, parvovirus B19, hepatitis viruses, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, treponema pallidum, mycobacterium tuberculosis, pseudomonas aeruginosa, staphylococcus aureus, and candida albicans seem to particularly related to vascular disease. CONCLUSION Infectious agents may affect vessel's homeostasis and functionality, both on the arterial and venous side, by means of several pathophysiological mechanisms such as dysregulation in vasomotor function, thromboembolic complications, initiation and progression of atherosclerosis, alteration of perivascular adipose tissue, recruiting inflammatory cells and molecules.
Collapse
Affiliation(s)
- Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Francesco Caprino
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Biagio Malizia
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Antonio Sisinni
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Lwanga Ssempijja
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Noemi Licastro
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Abstract
Trehalose is a disaccharide of two D-glucose molecules linked by a glycosidic linkage, which plays both structural and functional roles in bacteria. Trehalose can be synthesized and degraded by several pathways, and induction of trehalose biosynthesis is typically associated with exposure to abiotic stress. The ability of trehalose to protect against abiotic stress has been exploited to stabilize a range of bacterial vaccines. More recently, there has been interest in the role of this molecule in microbial virulence. There is now evidence that trehalose or trehalose derivatives play important roles in virulence of a diverse range of Gram-positive and Gram-negative pathogens of animals or plants. Trehalose and/or trehalose derivatives can play important roles in host colonization and growth in the host, and can modulate the interactions with host defense mechanisms. However, the roles are typically pathogen-specific. These findings suggest that trehalose metabolism may be a target for novel pathogen-specific rather than broad spectrum interventions.
Collapse
Affiliation(s)
- Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University , Bangkok, Thailand
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter , Exeter, UK
| |
Collapse
|
4
|
Hortle E, Oehlers SH. Host-directed therapies targeting the tuberculosis granuloma stroma. Pathog Dis 2020; 78:5800987. [DOI: 10.1093/femspd/ftaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Mycobacteria have co-evolved with their hosts resulting in pathogens adept at intracellular survival. Pathogenic mycobacteria actively manipulate infected macrophages to drive granuloma formation while subverting host cell processes to create a permissive niche. Granuloma residency confers phenotypic antimicrobial resistance by physically excluding or neutralising antibiotics. Host-directed therapies (HDTs) combat infection by restoring protective immunity and reducing immunopathology independent of pathogen antimicrobial resistance status. This review covers innovative research that has discovered ‘secondary’ symptoms of infection in the granuloma stroma are actually primary drivers of infection and that relieving these stromal pathologies with HDTs benefits the host. Advances in our understanding of the relationship between tuberculosis and the host vasculature, haemostatic system and extracellular matrix reorganisation are discussed. Preclinical and clinical use of HDTs against these stromal targets are summarised.
Collapse
Affiliation(s)
- Elinor Hortle
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW 2050, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Mycobacterial Trehalose 6,6'-Dimycolate-Induced M1-Type Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:286-294. [PMID: 31734231 DOI: 10.1016/j.ajpath.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 01/25/2023]
Abstract
Murine models of Mycobacterium tuberculosis (Mtb) infection demonstrate progression of M1-like (proinflammatory) and M2-like (anti-inflammatory) macrophage morphology following primary granuloma formation. The Mtb cell wall cording factor, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant and useful molecule for modeling early macrophage-mediated events during establishment of the tuberculosis-induced granuloma pathogenesis. Here, it is shown that TDM is a major driver of the early M1-like macrophage response as seen during initiation of the granulomas of primary pathology. Proinflammatory cytokines tumor necrosis factor-α, IL-1β, IL-6, and IL-12p40 are produced in lung tissue after administration of TDM to mice. Furthermore, CD11b+CD45+ macrophages with a high surface expression of the M1-like markers CD38 and CD86 were found present in regions of pathology in lungs of mice at 7 days post-TDM introduction. Conversely, only low phenotypic marker expression of M2-like markers CD206 and EGR-2 were present on macrophages. These findings suggest that TDM plays a role in establishment of the M1-like shift in the microenvironment during primary tuberculosis.
Collapse
|
6
|
Hwang SA, Byerly CD, Actor JK. Mycobacterial trehalose 6,6'-dimycolate induced vascular occlusion is accompanied by subendothelial inflammation. Tuberculosis (Edinb) 2019; 116S:S118-S122. [PMID: 31072690 DOI: 10.1016/j.tube.2019.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 10/26/2022]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogen that infects and kills millions yearly. The mycobacterium's cell wall glycolipid trehalose 6,6'-dimycolate (TDM) has been used historically to model MTB induced inflammation and granuloma formation. Alterations to the model can significantly influence the induced pathology. One such method incorporates intraperitoneal pre-exposure, after which the intravenous injection of TDM generates pathological damage effectively mimicking the hypercoagulation, thrombus formation, and tissue remodeling apparent in lungs of infected individuals. The purpose of these experiments is to examine the histological inflammation involved in the TDM mouse model that induces development of the hemorrhagic response. TDM induced lungs of C57BL/6 mice to undergo granulomatous inflammation. Further histological examination of the peak response demonstrated tissue remodeling consistent with hypercoagulation. The observed vascular occlusion indicates that obstruction likely occurs due to subendothelial localized activity leading to restriction of blood vessel lumens. Trichrome staining revealed that associated damage in the hypercoagulation model is consistent with intra endothelial cell accumulation of innate cells, bordered by collagen deposition in the underlying parenchyma. Overall, the hypercoagulation model represents a comparative pathological instrument for understanding mechanisms underlying development of hemorrhage and vascular occlusion seen during MTB infection.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Caitlan D Byerly
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
7
|
Kim PM, Lee JJ, Choi D, Eoh H, Hong YK. Endothelial lineage-specific interaction of Mycobacterium tuberculosis with the blood and lymphatic systems. Tuberculosis (Edinb) 2018; 111:1-7. [PMID: 30029892 DOI: 10.1016/j.tube.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has plagued humanity for tens of thousands of years, yet still remains a threat to human health. Its pathology is largely associated with pulmonary tuberculosis with symptoms including fever, hemoptysis, and chest pain. Mtb, however, also manifests in other extrapulmonary organs, such as the pleura, bones, gastrointestinal tract, central nervous system, and lymph nodes. Compared to the knowledge of pulmonary tuberculosis, extrapulmonary pathologies of Mtb are quite understudied. Lymph node tuberculosis is one of the most common extrapulmonary manifestations of tuberculosis, and presents significant challenges in its diagnosis, management, and treatment due to its elusive etiologies and pathologies. The objective of this review is to overview the current understanding of the tropism and pathogenesis of Mtb in endothelial cells of the extrapulmonary tissues, particularly, in lymph nodes. Lymphatic endothelial cells (LECs) are derived from blood vascular endothelial cells (BECs) during development, and these two types of endothelial cells demonstrate substantial molecular, cellular and genetic similarities. Therefore, systemic comparison of the differential and common responses of BECs vs. LECs to Mtb invasion could provide new insights into its pathogenesis, and may promote new investigations into this deadly disease.
Collapse
Affiliation(s)
- Paul M Kim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jae-Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dongwon Choi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Hwang SA, Kruzel ML, Actor JK. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology. Biochem Cell Biol 2016; 95:148-154. [PMID: 28165282 DOI: 10.1139/bcb-2016-0061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse-1. At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)-1·mouse-1) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
Collapse
Affiliation(s)
- Shen-An Hwang
- a Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Marian L Kruzel
- b Department of Integrative Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Jeffrey K Actor
- a Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|