1
|
Biancon G, Busarello E, Cheng M, Halene S, Tebaldi T. Dissecting the stress granule RNA world: dynamics, strategies, and data. RNA (NEW YORK, N.Y.) 2025; 31:743-755. [PMID: 40086831 DOI: 10.1261/rna.080409.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Stress granules (SGs) are cytoplasmic ribonucleoprotein granules that commonly nucleate from the interaction of translationally stalled mRNAs and RNA-binding proteins. SGs are involved in the cellular adaptation to stress conditions participating in the regulation of gene expression and cell signaling. While dysregulation of SG dynamics has been increasingly implicated in human disease, a comprehensive understanding of SG composition, particularly of the RNA component, across various conditions remains elusive. Here, we review the physiological and pathological aspects of SGs, discuss current and future experimental strategies to identify SG components, and provide insights into the SG RNA world through the meta-analysis of 26 human SG transcriptome data sets.
Collapse
Affiliation(s)
- Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Emma Busarello
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38123, Italy
| | - Matthew Cheng
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38123, Italy
| |
Collapse
|
2
|
Fu XP, Ji CY, Tang WQ, Yu TT, Luo L. Long non-coding RNA LOXL1-AS1: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2024; 24:93. [PMID: 38693424 PMCID: PMC11062969 DOI: 10.1007/s10238-024-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite their inability to code proteins, multiple studies have identified their important role in human cancer through different mechanisms. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1), a newly discovered lncRNA located on human chromosome 15q24.1, has recently been shown to be involved in the occurrence and progression of various malignancies, such as colorectal cancer, gastric cancer, hepatocellular carcinoma, prostate cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, breast cancer, glioma, thymic carcinoma, pancreatic carcinoma. LOXL1-AS1 acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-374b-5p, miR-21, miR-423-5p, miR-589-5p, miR-28-5p, miR-324-3p, miR-708-5p, miR-143-3p, miR-18b-5p, miR-761, miR-525-5p, miR-541-3p, miR-let-7a-5p, miR-3128, miR-3614-5p, miR-377-3p and miR-1224-5p to promote tumor cell proliferation, invasion, migration, apoptosis, cell cycle, and epithelial-mesenchymal transformation (EMT). In addition, LOXL1-AS1 is involved in the regulation of P13K/AKT and MAPK signaling pathways. This article reviews the current understanding of the biological function and clinical significance of LOXL1-AS1 in human cancers. These findings suggest that LOXL1-AS1 may be both a reliable biomarker and a potential therapeutic target for cancers.
Collapse
Affiliation(s)
- Xiao-Ping Fu
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China
| | - Chun-Yan Ji
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, 430015, People's Republic of China
| | - Wen-Qian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China
| | - Ting-Ting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, 443000, People's Republic of China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
Velasco BR, Izquierdo JM. T-Cell Intracellular Antigen 1-Like Protein in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms23147836. [PMID: 35887183 PMCID: PMC9318959 DOI: 10.3390/ijms23147836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab in relation to the development of a cell death phenotype in immune system cells, as it possesses nucleolytic activity against cytotoxic lymphocyte target cells. Similar to TIA1, it is characterized by a subcellular nucleo-cytoplasmic localization and ubiquitous expression in the cells of different tissues of higher organisms. In this paper, we review the relevant structural and functional information available about TIAR from a triple perspective (molecular, cellular and pathophysiological), paying special attention to its expression and regulation in cellular events and processes linked to human pathophysiology.
Collapse
|
4
|
Peng S, Wang J, Chen Y, Hei N, Zhao J, Wu X, Cui Z. High expression of ECT2 and E2F1 is associated with worse clinical manifestations and prognosis in patients with oral squamous cell carcinoma. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221136794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
To detect the expression, prognostic value, and possible effects of epithelial cell transforming sequence 2 (ECT2) and E2F1 in patients with oral squamous cell carcinoma (OSCC). Seventy subjects hospitalized for OSCC surgical treatment in the Fourth Hospital of Hebei Medical University were selected for this study. Expression levels of ECT2 and E2F1 were detected by qRT-PCR, Western blot, and immunohistochemistry. The Kaplan-Meier method and Cox risk proportional regression analysis were used to analyze the relationship between different expression levels of ECT2 or E2F1 and the survival of patients with OSCC in 3 years. Relative expression levels of E2F1 mRNA (1.31 ± 0.15) and ECT2 mRNA (3.95 ± 0.72) in OSCC tissues, compared to adjacent normal tissues (0.87 ± 0.11, 1.03 ± 0.23, all p < 0.05). ECT2 was highly expressed in 42 (60.00%) OSCC samples and E2F1 was highly expressed in 45 (64.29%) samples. The expression of ECT2 and E2F1 was related to clinical stage, lymphatic metastasis, tumor differentiation grade, and tumor diameter in OSCC patients. The higher the expression of ECT2 and E2F1, the lower the 3-year survival rate of patients. ECT2 high expression (HR=2.407, p < 0.001), E2F1 high expression of E2F1 (HR = 2.159, p = 0.013), Clinical stages (III+IV) (HR = 1.362, p = 0.012), medium and low differentiation (HR = 1.522, p = 0.015), lymphatic metastasis (HR = 1.951, p < 0.001), and tumor diameter (≥3 cm) (HR = 1.824, p = 0.002) could be independent factors for 3-year survival of patients with OSCC. The expression of ECT2 and E2F1 in OSCC was significantly up-regulated, which was closely related to clinical stage, lymph node metastasis, tumor size, and 3-year survival of OSCC patients.
Collapse
Affiliation(s)
- Shixiong Peng
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinhang Wang
- Department of Stomatology, Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Yanping Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Naiheng Hei
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianguang Zhao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinjuan Wu
- Department of Stomatology, Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Zifeng Cui
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Yi B, Li H, Cai H, Lou X, Yu M, Li Z. LOXL1-AS1 communicating with TIAR modulates vasculogenic mimicry in glioma via regulation of the miR-374b-5p/MMP14 axis. J Cell Mol Med 2021; 26:475-490. [PMID: 34890108 PMCID: PMC8743654 DOI: 10.1111/jcmm.17106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
At present, growing evidence indicates that long non‐coding RNAs (lncRNAs) participate in the progression of glioma. The function of LOXL1‐AS1 in vasculogenic mimicry (VM) in glioma remains unclear. First, the expressions of TIAR, the lncRNA LOXL1‐AS1, miR‐374b‐5p and MMP14 were examined by qRT‐PCR and Western blot in both, glioma tissues and glioma cell lines. Proliferation, migration, invasion and tube formation assays were conducted to evaluate the roles of TIAR, LOXL1‐AS1, miR‐374b‐5p and MMP14 in malignant cellular behaviours in glioma cells. A nude mouse xenograft model and dual staining for CD34 and PAS were used to assess whether VM was affected by TIAR, LOXL1‐AS1 or miR‐374b‐5p in vivo. In this study, low levels of TIAR and high levels of LOXL1‐AS1 were found in glioma cells and tissues. TIAR downregulated the expression of LOXL1‐AS1 by destabilizing it. LOXL1‐AS1 acted like a miRNA sponge towards miR‐374b‐5p so that downregulation of the former greatly inhibited cell proliferation, migration, invasion and VM. Additionally, miR‐374b‐5p overexpression repressed malignant biological behaviours and VM in glioma by modifying MMP14. In summary, we demonstrated that TIAR combined with LOXL1‐AS1 modulates VM in glioma via the miR‐374b‐5p/MMP14 axis, revealing novel targets for glioma therapy.
Collapse
Affiliation(s)
- Bolong Yi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Department of Anesthesiology, General Hospital of Shenyang Commend, Shenyang
| | - Hao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xin Lou
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
6
|
Asadi MR, Rahmanpour D, Moslehian MS, Sabaie H, Hassani M, Ghafouri-Fard S, Taheri M, Rezazadeh M. Stress Granules Involved in Formation, Progression and Metastasis of Cancer: A Scoping Review. Front Cell Dev Biol 2021; 9:745394. [PMID: 34604242 PMCID: PMC8485071 DOI: 10.3389/fcell.2021.745394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The assembly of stress granules (SGs) is a well-known cellular strategy for reducing stress-related damage and promoting cell survival. SGs have become important players in human health, in addition to their fundamental role in the stress response. The critical role of SGs in cancer cells in formation, progression, and metastasis makes sense. Recent researchers have found that several SG components play a role in tumorigenesis and cancer metastasis via tumor-associated signaling pathways and other mechanisms. Gene-ontology analysis revealed the role of these protein components in the structure of SGs. Involvement in the translation process, regulation of mRNA stability, and action in both the cytoplasm and nucleus are among the main features of SG proteins. The present scoping review aimed to consider all studies on the effect of SGs on cancer formation, proliferation, and metastasis and performed based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted before July 2021. Publications were screened, and quantitative and qualitative analysis was performed on the extracted data. Go analysis was performed on seventy-one SGs protein components. Remarkably G3BP1, TIA1, TIAR, and YB1 have the largest share among the proteins considered in the studies. Altogether, this scoping review tries to demonstrate and provide a comprehensive summary of the role of SGs in the formation, progression, and metastasis of cancer by reviewing all studies.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Attwood KM, Robichaud A, Westhaver LP, Castle EL, Brandman DM, Balgi AD, Roberge M, Colp P, Croul S, Kim I, McCormick C, Corcoran JA, Weeks A. Raloxifene prevents stress granule dissolution, impairs translational control and promotes cell death during hypoxia in glioblastoma cells. Cell Death Dis 2020; 11:989. [PMID: 33203845 PMCID: PMC7673037 DOI: 10.1038/s41419-020-03159-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, and it has a uniformly poor prognosis. Hypoxia is a feature of the GBM microenvironment, and previous work has shown that cancer cells residing in hypoxic regions resist treatment. Hypoxia can trigger the formation of stress granules (SGs), sites of mRNA triage that promote cell survival. A screen of 1120 FDA-approved drugs identified 129 candidates that delayed the dissolution of hypoxia-induced SGs following a return to normoxia. Amongst these candidates, the selective estrogen receptor modulator (SERM) raloxifene delayed SG dissolution in a dose-dependent manner. SG dissolution typically occurs by 15 min post-hypoxia, however pre-treatment of immortalized U251 and U3024 primary GBM cells with raloxifene prevented SG dissolution for up to 2 h. During this raloxifene-induced delay in SG dissolution, translational silencing was sustained, eIF2α remained phosphorylated and mTOR remained inactive. Despite its well-described role as a SERM, raloxifene-mediated delay in SG dissolution was unaffected by co-administration of β-estradiol, nor did β-estradiol alone have any effect on SGs. Importantly, the combination of raloxifene and hypoxia resulted in increased numbers of late apoptotic/necrotic cells. Raloxifene and hypoxia also demonstrated a block in late autophagy similar to the known autophagy inhibitor chloroquine (CQ). Genetic disruption of the SG-nucleating proteins G3BP1 and G3BP2 revealed that G3BP1 is required to sustain the raloxifene-mediated delay in SG dissolution. Together, these findings indicate that modulating the stress response can be used to exploit the hypoxic niche of GBM tumors, causing cell death by disrupting pro-survival stress responses and control of protein synthesis.
Collapse
Affiliation(s)
| | - Aaron Robichaud
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | | | - Elizabeth L Castle
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - David M Brandman
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Aruna D Balgi
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michel Roberge
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Patricia Colp
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Sidney Croul
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Inhwa Kim
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer A Corcoran
- Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adrienne Weeks
- Department of Surgery, Dalhousie University, Halifax, NS, Canada.
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
8
|
Alafate W, Wang M, Zuo J, Wu W, Sun L, Liu C, Xie W, Wang J. Targeting Aurora kinase B attenuates chemoresistance in glioblastoma via a synergistic manner with temozolomide. Pathol Res Pract 2019; 215:152617. [DOI: 10.1016/j.prp.2019.152617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 02/01/2023]
|
9
|
Noutsios GT, Thorenoor N, Zhang X, Phelps DS, Umstead TM, Durrani F, Floros J. Major Effect of Oxidative Stress on the Male, but Not Female, SP-A1 Type II Cell miRNome. Front Immunol 2019; 10:1514. [PMID: 31354704 PMCID: PMC6635478 DOI: 10.3389/fimmu.2019.01514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/17/2019] [Indexed: 11/15/2022] Open
Abstract
Pulmonary surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. In humans there are two proteins, SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, respectively, which are produced by the alveolar type II cells (T2C). We sought to investigate the differential influence of SP-A1 and SP-A2 in T2C miRNome under oxidative stress (OxS). SP-A knock out (KO) and hTG male and female mice expressing SP-A1 or SP-A2 as well as gonadectomized (Gx) mice were exposed to O3-induced oxidative stress (OxS) or filtered air (FA). Expression of miRNAs and mRNAs was measured in the T2C of experimental animals. (a) In SP-A1 males after normalizing to KO males, significant changes were observed in the miRNome in terms of sex-OxS effects, with 24 miRNAs being differentially expressed under OxS. (b) The mRNA targets of the dysregulated miRNAs included Ago2, Ddx20, Plcg2, Irs1, Elf2, Jak2, Map2k4, Bcl2, Ccnd1, and Vhl. We validated the expression levels of these transcripts, and observed that the mRNA levels of all of these targets were unaffected in SP-A1 T2C but six of these were significantly upregulated in the KO (except Bcl2 that was downregulated). (c) Gondadectomy had a major effect on the expression of miRNAs and in three of the mRNA targets (Irs1, Bcl2, and Vhl). Ccnd1 was upregulated in KO regardless of Gx. (d) The targets of the significantly changed miRNAs are involved in several pathways including MAPK signaling pathway, cell cycle, anti-apoptosis, and other. In conclusion, in response to OxS, SP-A1 and male hormones appear to have a major effect in the T2C miRNome.
Collapse
Affiliation(s)
- George T Noutsios
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - David S Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Todd M Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Faryal Durrani
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States.,Department of Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
10
|
Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochem J 2017; 474:2009-2026. [PMID: 28476776 DOI: 10.1042/bcj20170258] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022]
Abstract
The enigmatic methyltransferase, DNMT2 (DNA methyltransferase 2), structurally resembles a DNA methyltransferase, but has been shown to be a tRNA methyltransferase targeting cytosine within a specific CpG in different tRNA molecules. We had previously shown that, during environmental stress conditions, DNMT2 is re-localized from the nucleus to the cytoplasmic stress granules (SGs) and is associated with RNA-processing proteins. In the present study, we show that DNMT2 binds and methylates various mRNA species in a sequence-independent manner and gets re-localized to SGs in a phosphorylation-dependent manner. Importantly, our results indicate that HIV-1 enhances its survivability in the host cell by utilizing this RNA methylation capability of DNMT2 to increase the stability of its own genome. Upon infection, DNMT2 re-localizes from the nucleus to the SGs and methylates HIV-1 RNA. This DNMT2-dependent methylation provided post-transcriptional stability to the HIV-1 RNA. Furthermore, DNMT2 overexpression increased the HIV-1 viral titre. This would suggest that HIV hijacks the RNA-processing machinery within the SGs to ensure its own survival in the host cell. Thus, our findings provide for a novel mechanism by which virus tries to modulate the host cell machinery to its own advantage.
Collapse
|