1
|
Jeong S, Cha J, Ahmed W, Kim J, Kim M, Hong KT, Choi W, Choi S, Yoo TH, An H, An SC, Lee J, Choi J, Kim S, Lee J, Lee S, Choi J, Kim JM. Development of MDM2-Targeting PROTAC for Advancing Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415626. [PMID: 40125646 PMCID: PMC12097015 DOI: 10.1002/advs.202415626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Indexed: 03/25/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) degrade target proteins through the ubiquitin-proteasome system. To date, PROTACs are primarily used to treat various diseases; however, they have not been applied in regenerative therapy. Herein, this work introduces MDM2-targeting PROTACs customized for application in bone regeneration. An MDM2-PROTAC library is constructed by combining Nutlin-3 and CRBN ligands with various linker designs. Through a multistep validation process, this work develops MDM2-PROTACs (CL144 and CL174) that presented potent degradation efficiency and a robust inductive effect on the biomineralization. Next, this work performs whole-transcriptome analysis to dissect the biological effects of the CL144, and reveals the upregulation of osteogenic marker genes. Furthermore, CL144 effectively induced bone regeneration in bone graft and ovariectomy (OVX) models after local and systemic administration, respectively. In the OVX model, the combination treatment with CL144 and alendronate induced a synergistic effect. Overall, this study demonstrates the promising role of MDM2-PROTAC in promoting bone regeneration, marking the first step toward expanding the application of the PROTAC technology.
Collapse
Affiliation(s)
- Sol Jeong
- Department of Oral Microbiology and ImmunologySchool of Dentistry and Dental Research InstituteSeoul National UniversitySeoul08826Republic of Korea
| | - Jae‐Kook Cha
- Department of PeriodontologyResearch Institute of Periodontal RegenerationCollege of DentistryYonsei UniversitySeoul03722Republic of Korea
- Department of Oral MedicineInfectionand ImmunityHarvard School of Dental MedicineBoston02115USA
| | - Wasim Ahmed
- Department of Molecular Science and TechnologyAjou UniversityGyeonggi‐do16499Republic of Korea
| | - Jaewan Kim
- Department of Molecular Science and TechnologyAjou UniversityGyeonggi‐do16499Republic of Korea
| | - Minsup Kim
- TARS ScientificSeoul01717Republic of Korea
| | - Kyung Tae Hong
- Department of PharmacologyKorea University College of MedicineKorea UniversitySeoul02841Republic of Korea
| | - Wonji Choi
- Department of Molecular Science and TechnologyAjou UniversityGyeonggi‐do16499Republic of Korea
| | - Sunjoo Choi
- Department of Molecular Science and TechnologyAjou UniversityGyeonggi‐do16499Republic of Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and TechnologyAjou UniversityGyeonggi‐do16499Republic of Korea
| | - Hyun‑Ju An
- Department of Orthopaedic SurgeryCHA Bundang Medical CenterCHA University School of MedicineGyeonggi‐do13488Republic of Korea
| | - Seung Chan An
- Department of Orthopaedic SurgeryCHA Bundang Medical CenterCHA University School of MedicineGyeonggi‐do13488Republic of Korea
| | - Jaemin Lee
- Department of Orthopaedic SurgeryCHA Bundang Medical CenterCHA University School of MedicineGyeonggi‐do13488Republic of Korea
| | - Jimin Choi
- Department of PeriodontologyResearch Institute of Periodontal RegenerationCollege of DentistryYonsei UniversitySeoul03722Republic of Korea
| | - Sun‐Young Kim
- Department of Conservative Dentistry and Dental Research InstituteSchool of DentistrySeoul National UniversitySeoul08826Republic of Korea
| | - Jun‐Seok Lee
- Department of PharmacologyKorea University College of MedicineKorea UniversitySeoul02841Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic SurgeryCHA Bundang Medical CenterCHA University School of MedicineGyeonggi‐do13488Republic of Korea
| | - Junwon Choi
- Department of Molecular Science and TechnologyAjou UniversityGyeonggi‐do16499Republic of Korea
- Advanced College of Bio‐convergence EngineeringAjou UniversityGyeonggi‐do16499Republic of Korea
| | - Jin Man Kim
- Department of Oral Microbiology and ImmunologySchool of Dentistry and Dental Research InstituteSeoul National UniversitySeoul08826Republic of Korea
- Dental Multiomics CenterSchool of Dentistry and Dental Research InstituteSeoul National UniversityGwanak‐ro 1, Gwanak‐guSeoul08826Republic of Korea
- Innovative Pharmaceutical Sciences ProgramCollege of Transdisciplinary InnovationsSeoul National UniversityGwanak‐ro 1, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
2
|
Harrer JA, Fulton TM, Sangadala S, Kaiser J, Devereaux EJ, Oliver C, Presciutti SM, Boden SD, Willett NJ. Local FK506 delivery induces osteogenesis in in vivo rat bone defect and rabbit spine fusion models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584163. [PMID: 38559240 PMCID: PMC10979893 DOI: 10.1101/2024.03.08.584163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and significantly increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 potentiated the effect of low dose BMP-2 to enhance osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge, produced consistent bone bridging of a rat critically-sized femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized either as a standalone treatment or in conjunction with rhBMP to treat a variety of spine disorders.
Collapse
Affiliation(s)
- Julia Andraca Harrer
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Travis M. Fulton
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sreedhara Sangadala
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jarred Kaiser
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily J. Devereaux
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Steven M. Presciutti
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Scott D. Boden
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nick J. Willett
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Park SY, Kim D, Jung JW, An HJ, Lee J, Park Y, Lee D, Lee S, Kim JM. Targeting class A GPCRs for hard tissue regeneration. Biomaterials 2024; 304:122425. [PMID: 38100905 DOI: 10.1016/j.biomaterials.2023.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play important roles in various pathogeneses and physiological regulations. Owing to their functional diversity, GPCRs are considered one of the primary pharmaceutical targets. However, drugs targeting GPCRs have not been developed yet to regenerate hard tissues such as teeth and bones. Mesenchymal stromal cells (MSCs) have high proliferation and multi-lineage differentiation potential, which are essential for hard tissue regeneration. Here, we present a strategy for targeting class A GPCRs for hard tissue regeneration by promoting the differentiation of endogenous MSCs into osteogenic and odontogenic progenitor cells. Through in vitro screening targeted at class A GPCRs, we identified six target receptors (LPAR1, F2R, F2RL1, F2RL2, S1PR1, and ADORA2A) and candidate drugs with potent biomineralization effects. Through a combination of profiling whole transcriptome and accessible chromatin regions, we identified that p53 acts as a key transcriptional activator of genes that modulate the biomineralization process. Moreover, the therapeutic potential of class A GPCR-targeting drugs was demonstrated in tooth pulpotomy and calvarial defect models. The selected drugs revealed potent regenerative effects in both tooth and bone defects, represented by newly formed highly mineralized regions. Consequently, this study provides translational evidence for a new regenerative strategy for damaged hard tissue.
Collapse
Affiliation(s)
- So Young Park
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Ju Won Jung
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Yeji Park
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dasun Lee
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea.
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Panos JA, Coenen MJ, Nagelli CV, McGlinch EB, Atasoy-Zeybek A, De Padilla CL, Coghlan RF, Johnstone B, Ferreira E, Porter RM, De la Vega RE, Evans CH. IL-1Ra gene transfer potentiates BMP2-mediated bone healing by redirecting osteogenesis toward endochondral ossification. Mol Ther 2023; 31:420-434. [PMID: 36245128 PMCID: PMC9931547 DOI: 10.1016/j.ymthe.2022.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
An estimated 100,000 patients each year in the United States suffer severe disability from bone defects that fail to heal, a condition where bone-regenerative therapies could provide substantial clinical benefits. Although recombinant human bone morphogenetic protein-2 (rhBMP2) is an osteogenic growth factor that is clinically approved for this purpose, it is only effective when used at exceedingly high doses that incur substantial costs, induce severe inflammation, produce adverse side effects, and form morphologically abnormal bone. Using a validated rat femoral segmental defect model, we show that bone formed in response to clinically relevant doses of rhBMP2 is accompanied by elevated expression of interleukin-1 (IL-1). Local delivery of cDNA encoding the IL-1 receptor antagonist (IL-1Ra) achieved bridging of segmental, critical size defects in bone with a 90% lower dose of rhBMP2. Unlike use of high-dose rhBMP2, bone formation in the presence of IL-1Ra occurred via the native process of endochondral ossification, resulting in improved quality without sacrificing the mechanical properties of the regenerated bone. Our results demonstrate that local immunomodulation may permit effective use of growth factors at lower doses to recapitulate more precisely the native biology of healing, leading to higher-quality tissue regeneration.
Collapse
Affiliation(s)
- Joseph A Panos
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA; Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Michael J Coenen
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Christopher V Nagelli
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Erin B McGlinch
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA; Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA; Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Aysegul Atasoy-Zeybek
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Consuelo Lopez De Padilla
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Ryan F Coghlan
- Research Center, Shriners Hospitals for Children, Portland, OR, USA
| | - Brian Johnstone
- Research Center, Shriners Hospitals for Children, Portland, OR, USA; Department of Orthopedics and Rehabilitation, Oregon Health & Science University, Portland, OR, USA
| | - Elisabeth Ferreira
- Center for Musculoskeletal Disease Research, Departments of Internal Medicine and Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ryan M Porter
- Center for Musculoskeletal Disease Research, Departments of Internal Medicine and Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rodolfo E De la Vega
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute, Maastricht, the Netherlands
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Alejo AL, McDermott S, Khalil Y, Ball HC, Robinson GT, Solorzano E, Alejo AM, Douglas J, Samson TK, Young JW, Safadi FF. A Pre-clinical Standard Operating Procedure for Evaluating Orthobiologics in an In Vivo Rat Spinal Fusion Model. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2022; 4:224-240. [PMID: 36203492 PMCID: PMC9534599 DOI: 10.26502/josm.511500060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rat animal model is a cost effective and reliable model used in spinal pre-clinical research. Complications from various surgical procedures in humans often arise that were based on these pre-clinical animal models. Therefore safe and efficacious pre-clinical animal models are needed to establish continuity into clinical trials. A Standard Operating Procedure (SOP) is a validated method that allows researchers to safely and carefully replicate previously successful surgical techniques. Thus, the aim of this study is to describe in detail the procedures involved in a common rat bilateral posterolateral intertransverse spinal fusion SOP used to test the efficacy and safety different orthobiologics using a collagen-soaked sponge as an orthobiologic carrier. Only two orthobiologics are currently FDA approved for spinal fusion surgery which include recombinant bone morphogenetic protein 2 (rhBMP-2), and I-FACTOR. While there are many additional orthobiologics currently being tested, one way to show their safety profile and gain FDA approval, is to use well established pre-clinical animal models. A preoperative, intraoperative, and postoperative surgical setup including specific anesthesia and euthanasia protocols are outlined. Furthermore, we describe different postoperative methods used to validate the spinal fusion SOP, which include μCT analysis, histopathology, biomechanical testing, and blood analysis. This SOP can help increase validity, transparency, efficacy, and reproducibly in future rat spinal fusion surgery procedures.
Collapse
Affiliation(s)
- Andrew L Alejo
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Scott McDermott
- Roper St. Francis Physician Partners Orthopaedics, Summerville, SC, USA
| | - Yusuf Khalil
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Hope C Ball
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Gabrielle T Robinson
- College of Graduate Studies, NEOMED, Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Ernesto Solorzano
- College of Graduate Studies, NEOMED, Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Amanda M Alejo
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Jacob Douglas
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Trinity K Samson
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- College of Graduate Studies, NEOMED, Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Jesse W Young
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- College of Graduate Studies, NEOMED, Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
| | - Fayez F Safadi
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- College of Graduate Studies, NEOMED, Rootstown, OH, USA
- Musculoskeletal Research Group, NEOMED, Rootstown, OH, USA
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA
- GPN Therapeutics Inc., Redi Zone NEOMED, Rootstown, OH, USA
| |
Collapse
|
6
|
Zhang H, Wang Z, Wang Y, Li Z, Chao B, Liu S, Luo W, Jiao J, Wu M. Biomaterials for Interbody Fusion in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:900992. [PMID: 35656196 PMCID: PMC9152360 DOI: 10.3389/fbioe.2022.900992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, interbody fusion cages have played an important role in interbody fusion surgery for treating diseases like disc protrusion and spondylolisthesis. However, traditional cages cannot achieve satisfactory results due to their unreasonable design, poor material biocompatibility, and induced osteogenesis ability, limiting their application. There are currently 3 ways to improve the fusion effect, as follows. First, the interbody fusion cage is designed to facilitate bone ingrowth through the preliminary design. Second, choose interbody fusion cages made of different materials to meet the variable needs of interbody fusion. Finally, complete post-processing steps, such as coating the designed cage, to achieve a suitable osseointegration microstructure, and add other bioactive materials to achieve the most suitable biological microenvironment of bone tissue and improve the fusion effect. The focus of this review is on the design methods of interbody fusion cages, a comparison of the advantages and disadvantages of various materials, the influence of post-processing techniques and additional materials on interbody fusion, and the prospects for the future development of interbody fusion cages.
Collapse
Affiliation(s)
- Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Wangwang Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
An HJ, Ko KR, Baek M, Jeong Y, Lee HH, Kim H, Kim DK, Lee SY, Lee S. Pro-Angiogenic and Osteogenic Effects of Adipose Tissue-Derived Pericytes Synergistically Enhanced by Nel-like Protein-1. Cells 2021; 10:cells10092244. [PMID: 34571892 PMCID: PMC8470876 DOI: 10.3390/cells10092244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
An important objective of vascularized tissue regeneration is to develop agents for osteonecrosis. We aimed to identify the pro-angiogenic and osteogenic efficacy of adipose tissue-derived (AD) pericytes combined with Nel-like protein-1 (NELL-1) to investigate the therapeutic effects on osteonecrosis. Tube formation and cell migration were assessed to determine the pro-angiogenic efficacy. Vessel formation was evaluated in vivo using the chorioallantoic membrane assay. A mouse model with a 2.5 mm necrotic bone fragment in the femoral shaft was used as a substitute for osteonecrosis in humans. Bone formation was assessed radiographically (plain radiographs, three-dimensional images, and quantitative analyses), and histomorphometric analyses were performed. To identify factors related to the effects of NELL-1, analysis using microarrays, qRT-PCR, and Western blotting was performed. The results for pro-angiogenic efficacy evaluation identified synergistic effects of pericytes and NELL-1 on tube formation, cell migration, and vessel formation. For osteogenic efficacy analysis, the mouse model for osteonecrosis was treated in combination with pericytes and NELL-1, and the results showed maximum bone formation using radiographic images and quantitative analyses, compared with other treatment groups and showed robust bone and vessel formation using histomorphometric analysis. We identified an association between FGF2 and the effects of NELL-1 using array-based analysis. Thus, combinatorial therapy using AD pericytes and NELL-1 may have potential as a novel treatment for osteonecrosis.
Collapse
Affiliation(s)
- Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Seongnam-si 13496, Gyeonggi-do, Korea; (H.-J.A.); (M.B.); (Y.J.); (H.H.L.)
| | - Kyung Rae Ko
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Korea;
| | - Minjung Baek
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Seongnam-si 13496, Gyeonggi-do, Korea; (H.-J.A.); (M.B.); (Y.J.); (H.H.L.)
| | - Yoonhui Jeong
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Seongnam-si 13496, Gyeonggi-do, Korea; (H.-J.A.); (M.B.); (Y.J.); (H.H.L.)
| | - Hyeon Hae Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Seongnam-si 13496, Gyeonggi-do, Korea; (H.-J.A.); (M.B.); (Y.J.); (H.H.L.)
| | - Hyungkyung Kim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, College of Medicine, 892 Dongnam-Ro, Gangdong-gu, Seoul 05278, Korea;
| | - Do Kyung Kim
- CHA Graduate School of Medicine, 120 Hyeryong-Ro, Pocheon-si 11160, Gyeonggi-do, Korea;
| | - So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Seongnam-si 13496, Gyeonggi-do, Korea;
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Seongnam-si 13496, Gyeonggi-do, Korea; (H.-J.A.); (M.B.); (Y.J.); (H.H.L.)
- Correspondence: ; Tel.: +82-317-805-289; Fax: +82-317-083-578
| |
Collapse
|
8
|
Ouyang X, Ding Y, Yu L, Xin F, Yang X, Sha P, Tong S, Cheng Q, Xu Y. Effects of BMP-2 compound with fibrin on osteoporotic vertebral fracture healing in rats. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:149-156. [PMID: 33657766 PMCID: PMC8020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To investigate the effects of bone morphogenetic protein-2 (BMP-2) compound with fibrin on osteoporotic vertebral fracture healing in rats. METHODS For the present study 160 Specific-Pathogen Free 32-week-old female Sprague-Dawley rats were used. 120 rats were randomly divided in three groups (experimental, model and sham operation group- n=40 per group) and were ovariectomized to establish the osteoporosis model. 40 rats served as a control group without treatment. The expression of BMP-2 in the fracture zone at the 4th, 6th, 8th, and 12th weeks was detected by qRT-PCR. The expression of BALP and CTX-I in serum at the 12th week was detected by Elisa. RESULTS At week 8, the morphology of the sham operation group was the same and the fracture healing occurred more slowly than in the other groups. At week 12, the expression of BMP-2 in the model group was significantly higher than that in the other three groups (p<0.05). At week 12, the maximum load, maximum strain, and elastic modulus of model group were significantly lower than those of the other three groups. CONCLUSIONS BMP-2 compound with fibrin can enhance the timing and quality of bone fracture healing in rats.
Collapse
Affiliation(s)
- Xiao Ouyang
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Yunzhi Ding
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Li Yu
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Feng Xin
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Xiaowei Yang
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China,Corresponding author: Dr Xiao Ouyang, Department of Orthopedics, Xuzhou Third Hospital, Affiliated Hospital of Jiangsu University,131 Huancheng Road, Xuzhou, Jiangsu 221005, P.R. China E-mail:
| | - Peng Sha
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Songming Tong
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Qi Cheng
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Yiqi Xu
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| |
Collapse
|
9
|
Lin C, Zhang N, Waldorff EI, Punsalan P, Wang D, Semler E, Ryaby JT, Yoo J, Johnstone B. Comparing cellular bone matrices for posterolateral spinal fusion in a rat model. JOR Spine 2020; 3:e1084. [PMID: 32613160 PMCID: PMC7323463 DOI: 10.1002/jsp2.1084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Cellular bone matrices (CBM) are allograft products that provide three components essential to new bone formation: an osteoconductive scaffold, extracellular growth factors for cell proliferation and differentiation, and viable cells with osteogenic potential. This is an emerging technology being applied to augment spinal fusion procedures as an alternative to autografts. METHODS We aim to compare the ability of six commercially-available human CBMs (Trinity ELITE®, ViviGen®, Cellentra®, Osteocel® Pro, Bio4® and Map3®) to form a stable spinal fusion using an athymic rat model of posterolateral fusion. Iliac crest bone from syngeneic rats was used as a control to approximate the human gold standard. The allografts were implanted at L4-5 according to vendor specifications in male athymic rats, with 15 rats in each group. MicroCT scans were performed at 48 hours and 6 weeks post-implantation. The rats were euthanized 6 weeks after surgery and the lumbar spines were harvested for X-ray, manual palpation and histology analysis by blinded reviewers. RESULTS By manual palpation, five of 15 rats of the syngeneic bone group were fused at 6 weeks. While Trinity ELITE had eight of 15 and Cellentra 11 of 15 rats with stable fusion, only 2 of 15 of ViviGen-implanted spines were fused and zero of 15 of the Osteocel Pro, Bio4 and Map3 produced stable fusion. MicroCT analysis indicated that total bone volume increased from day 0 to week 6 for all groups except syngeneic bone group. Trinity ELITE (65%) and Cellentra (73%) had significantly greater bone volume increases over all other implants, which was consistent with the histological analysis. CONCLUSION Trinity ELITE and Cellentra were significantly better than other implants at forming new bone and achieving spinal fusion in this rat model at week 6. These results suggest that there may be large differences in the ability of different CBMs to elicit a successful fusion in the posterolateral spine.
Collapse
Affiliation(s)
- Cliff Lin
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | | | | | - Paolo Punsalan
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | | | | | | | - Jung Yoo
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | - Brian Johnstone
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
10
|
Liu L, Lam WMR, Naidu M, Yang Z, Wang M, Ren X, Hu T, Kumarsing R, Ting K, Goh JCH, Wong HK. Synergistic Effect of NELL-1 and an Ultra-Low Dose of BMP-2 on Spinal Fusion. Tissue Eng Part A 2019; 25:1677-1689. [PMID: 31337284 DOI: 10.1089/ten.tea.2019.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) is widely used in spinal fusion but it can cause adverse effects such as ectopic bone and adipose tissue in vivo. Neural epidermal growth factor like-like molecule-1 (NELL-1) has been shown to suppress BMP-2-induced adverse effects. However, no optimum carriers that control both NELL-1 and BMP-2 releases to elicit long-term bioactivity have been developed. In this study, we employed polyelectrolyte complex (PEC) as a control release carrier for NELL-1 and BMP-2. An ultra-low dose of BMP-2 synergistically functioned with NELL-1 on bone marrow mesenchymal stem cells osteogenic differentiation with greater mineralization in vitro. The osteoinductive ability of NELL-1 and an ultra-low dose of BMP-2 in PEC was investigated in rat posterolateral spinal fusion. Our results showed increased fusion rate, bone architecture, and improved bone stiffness at 8 weeks after surgery in the combination groups compared with NELL-1 or BMP-2 alone. Moreover, the formation of ectopic bone and adipose tissue was negligible in all the PEC groups. In summary, dual delivery of NELL-1 and an ultra-low dose of BMP-2 in the PEC control release carrier has greater fusion efficiency compared with BMP-2 alone and could potentially be a better alternative to the currently used BMP-2 treatments for spinal fusion. Impact Statement In this study, polyelectrolyte complex was used to absorb neural epidermal growth factor like-like molecule-1 (NELL-1) and bone morphogenetic protein 2 (BMP-2) to achieve controlled dual release. The addition of NELL-1 significantly reduced the effective dose of BMP-2 to 2.5% of its conventional dose in absorbable collagen sponge, to produce solid spinal fusion without significant adverse effects. This study was the first to identify the efficacy of combination NELL-1 and BMP-2 in a control release carrier in spinal fusion, which could be potentially used clinically to increase fusion rate and avoid the adverse effects commonly associated with conventional BMP-2.
Collapse
Affiliation(s)
- Ling Liu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wing Moon Raymond Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mathanapriya Naidu
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zheng Yang
- NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiafei Ren
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Shanghai, China
| | - Ramruttun Kumarsing
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kang Ting
- Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California
| | - James Cho-Hong Goh
- NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Wang C, Tanjaya J, Shen J, Lee S, Bisht B, Pan HC, Pang S, Zhang Y, Berthiaume EA, Chen E, Da Lio AL, Zhang X, Ting K, Guo S, Soo C. Peroxisome Proliferator-Activated Receptor-γ Knockdown Impairs Bone Morphogenetic Protein-2-Induced Critical-Size Bone Defect Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:648-664. [PMID: 30593824 PMCID: PMC6412314 DOI: 10.1016/j.ajpath.2018.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/13/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
The Food and Drug Administration-approved clinical dose (1.5 mg/mL) of bone morphogenetic protein-2 (BMP2) has been reported to induce significant adverse effects, including cyst-like adipose-infiltrated abnormal bone formation. These undesirable complications occur because of increased adipogenesis, at the expense of osteogenesis, through BMP2-mediated increases in the master regulatory gene for adipogenesis, peroxisome proliferator-activated receptor-γ (PPARγ). Inhibiting PPARγ during osteogenesis has been suggested to drive the differentiation of bone marrow stromal/stem cells toward an osteogenic, rather than an adipogenic, lineage. We demonstrate that knocking down PPARγ while concurrently administering BMP2 can reduce adipogenesis, but we found that it also impairs BMP2-induced osteogenesis and leads to bone nonunion in a mouse femoral segmental defect model. In addition, in vitro studies using the mouse bone marrow stromal cell line M2-10B4 and mouse primary bone marrow stromal cells confirmed that PPARγ knockdown inhibits BMP2-induced adipogenesis; attenuates BMP2-induced cell proliferation, migration, invasion, and osteogenesis; and escalates BMP2-induced cell apoptosis. More important, BMP receptor 2 and 1B expression was also significantly inhibited by the combined BMP2 and PPARγ knockdown treatment. These findings indicate that PPARγ is critical for BMP2-mediated osteogenesis during bone repair. Thus, uncoupling BMP2-mediated osteogenesis and adipogenesis using PPARγ inhibition to combat BMP2's adverse effects may not be feasible.
Collapse
Affiliation(s)
- Chenchao Wang
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China; Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Justine Tanjaya
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Jia Shen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Soonchul Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bharti Bisht
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Hsin Chuan Pan
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shen Pang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Yulong Zhang
- Departments of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, Los Angeles, California
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric Chen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Andrew L Da Lio
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
12
|
Chen Z, Zhang Z, Feng J, Guo Y, Yu Y, Cui J, Li H, Shang L. Influence of Mussel-Derived Bioactive BMP-2-Decorated PLA on MSC Behavior in Vitro and Verification with Osteogenicity at Ectopic Sites in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11961-11971. [PMID: 29561589 DOI: 10.1021/acsami.8b01547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Osteoinductive activity of the implant in bone healing and regeneration is still a challenging research topic. Therapeutic application of recombinant human bone morphogenetic protein-2 (BMP-2) is a promising approach to enhance osteogenesis. However, high dose and uncontrolled burst release of BMP-2 may introduce edema, bone overgrowth, cystlike bone formation, and inflammation. In this study, low-dose BMP-2 of 1 μg was used to design PLA-PD-BMP for functionalization of polylactic acid (PLA) implants via mussel-inspired polydopamine (PD) assist. For the first time, the binding property and efficiency of the PD coating with BMP-2 were directly demonstrated and analyzed using an antigen-antibody reaction. The obtained PLA-PD-BMP surface immobilized with this low BMP-2 dose can endow the implants with abilities of introducing strong stem cell adhesion and enhanced osteogenicity. Furthermore, in vivo osteoinduction of the PLA-PD-BMP-2 scaffolds was confirmed by a rat ectopic bone model, which is marked as the "gold standard" for the evidence of osteoinductive activity. The microcomputed tomography, Young's modulus, and histology analyses were also employed to demonstrate that PLA-PD-BMP grafted with 1 μg of BMP-2 can induce bone formation. Therefore, the method in this study can be used as a model system to immobilize other growth factors onto various different types of polymer substrates. The highly biomimetic mussel-derived strategy can therefore improve the clinical outcome of polymer-based medical implants in a facile, safe, and effective way.
Collapse
|