1
|
Zhang J, Lu Q, Liu W, Zhou N. The metabolic role of lactate dehydrogenase in the growth of diffuse large B cell lymphoma. Ann Hematol 2025; 104:545-558. [PMID: 39500758 PMCID: PMC11868233 DOI: 10.1007/s00277-024-06083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/30/2024] [Indexed: 02/28/2025]
Abstract
Lactate dehydrogenase (LDHA) activation induces tumorigenesis by activating tumor proliferation, growth, invasion, and metastasis. Whether LDHA mediates tumor metabolism that upon diffuse large B-cell lymphoma (DLBCL) occur remains unknown. Here, we investigated how LDHA adopt tumor metabolism after activation to regulate DLBCL-inducible. We investigated LDHA is highly expressed in peripheral blood mononuclear cells (PBMCs) of DLBCL patients. Knockdown of LDHA results in an increase in the apoptosis of cells, suppression of cell growth and migration in OCI-Ly1 and OCI-Ly10 cells. We show that LDHA gains a canonical enzyme activity to produce lactate and triggers NAD + in DLBCL cells. Furthermore, p-STAT5 was identified as a downstream target of LDHA, and the p-STAT5 protein level was significantly reduced related to decreased LDHA protein expression. Collectively, our findings identify the oncogenic role of LDHA in DLBCL and suggest that LDHA can be considered as a pivotal prognostic biomarker and a potential therapeutic target.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Humans
- L-Lactate Dehydrogenase/metabolism
- L-Lactate Dehydrogenase/genetics
- Cell Proliferation
- Cell Line, Tumor
- Isoenzymes/genetics
- Isoenzymes/metabolism
- STAT5 Transcription Factor/metabolism
- Apoptosis
- Cell Movement
- Male
- Gene Expression Regulation, Neoplastic
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/metabolism
- Biomarkers, Tumor/metabolism
- Neoplasm Proteins/metabolism
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Qifeng Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wei Liu
- Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Na Zhou
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Willis BS, Mongeon K, Dry H, Neveras IL, Bryan N, Pandya M, Roderick-Richardson J, Xu W, Yang L, Rosen A, Reimer C, Tuskova L, Klener P, Mettetal JT, Lenz G, Barry ST. Potent combination benefit of the AKT inhibitor capivasertib and the BCL-2 inhibitor venetoclax in diffuse large B cell lymphoma. Leukemia 2024; 38:2663-2674. [PMID: 39284898 PMCID: PMC11588655 DOI: 10.1038/s41375-024-02401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/28/2024] [Indexed: 11/27/2024]
Abstract
The therapeutic potential of targeting PI3K/AKT/PTEN signalling in B-cell malignancies remains attractive. Whilst PI3K-α/δ inhibitors demonstrate clinical benefit in certain B-cell lymphomas, PI3K signalling inhibitors have been inadequate in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) in part, due to treatment related toxicities. Clinically, AKT inhibitors exhibit a differentiated tolerability profile offering an alternative approach for treating patients with B-cell malignancies. To explore how AKT inhibition complements other potential therapeutics in the treatment of DLBCL patients, an in vitro combination screen was conducted across a panel of DLCBL cell lines. The AKT inhibitor, capivasertib, in combination with the BCL-2 inhibitor, venetoclax, produced notable therapeutic benefit in preclinical models of DLBCL. Capivasertib and venetoclax rapidly induced caspase and PARP cleavage in GCB-DLBCL PTEN wildtype cell lines and those harbouring PTEN mutations or reduced PTEN protein, driving prolonged tumour growth inhibition in DLBCL cell line and patient derived xenograft lymphoma models. The addition of the rituximab further deepened the durability of capivasertib and venetoclax responses in a RCHOP refractory DLBCL in vivo models. These findings provide preclinical evidence for the rational treatment combination of AKT and BCL-2 inhibitors using capivasertib and venetoclax respectively alongside anti-CD20 antibody supplementation for treatment of patients with DLBCL.
Collapse
Affiliation(s)
| | - Kevin Mongeon
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | - Hannah Dry
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | - Nadezda Bryan
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | | | - Wendan Xu
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Li Yang
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Alan Rosen
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | - Liliana Tuskova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
3
|
Alsagaby SA. Biological roles of THRAP3, STMN1 and GNA13 in human blood cancer cells. 3 Biotech 2024; 14:248. [PMID: 39345963 PMCID: PMC11424602 DOI: 10.1007/s13205-024-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Blood cancers, such as diffuse large B-cell lymphoma (DLBCL), Burkitt's lymphoma (BL) and acute myeloid leukemia (AML), are aggressive neoplasms that are characterized by undesired clinical courses with dismal survival rates. The objective of the current work is to study the expression THRAP3, STMN1 and GNA13 in DLBCL, BL and AML, and to investigate if these proteins are implicated in the prognosis and progression of the blood cancers. Isolation of normal blood cells was performed using lymphoprep coupled with gradient centrifugation and magnetic beads. Flow-cytometric analysis showed high quality of the isolated cells. Western blotting identified THRAP3, STMN1 and GNA13 to be overexpressed in the blood cancer cells but hardly detected in normal blood cells from healthy donors. Consistently, investigations performed using genotype-tissue expression (GTEx) and gene expression profiling interactive analysis (GEPIA) showed that the three proteins had higher mRNA expression in various cancers compared with matched normal tissues (p ≤ 0.01). Furthermore, the up-regulated transcript expression of these proteins was a feature of short overall survival (OS; p ≤ 0.02) in patients with the blood cancers. Interestingly, functional profiling using gProfiler and protein-protein interaction network analysis using STRING with cytoscape reported THRAP3 to be associated with cancer-dependent proliferation and survival pathways (corrected p ≤ 0.05) and to interact with proteins (p = 1 × 10-16) implicated in tumourigenesis and chemotherapy resistance. Taken together, these findings indicated a possible implication of THRAP3, STMN1 and GNA13 in the progression and prognosis of the blood cancers. Additional work using clinical samples of the blood cancers is required to further investigate and validate the results reported here. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04093-5.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11932 Saudi Arabia
| |
Collapse
|
4
|
Nair D, Neralla M, Selvakumar SC, Preethi A. Effect of the Protein Kinase B (PKB) Gene on the Carcinogenesis of Oral Squamous Cell Carcinoma in the South Indian Population. Cureus 2024; 16:e60099. [PMID: 38860090 PMCID: PMC11164297 DOI: 10.7759/cureus.60099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/11/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION The most common head and neck cancer is oral squamous cell carcinoma (OSCC). It is also one of the most prevalent forms of cancer globally. The current pharmacological treatment strategy for oral cancer lacks specificity and is capable of causing various side effects. This fact highlights the increasing need for targeted therapy. Interestingly, protein kinase B (PKB), commonly referred to as the AKT serine/threonine kinase, is an oncogenic protein that controls cell development, proliferation, apoptosis, and glycogen metabolism. Thus, the present study analyzed the AKT gene expression in OSCC patient samples. MATERIALS AND METHODS A total of 25 OSCC tissue samples and normal tissue samples were collected from the patients who reported to the Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals in Chennai, India. The tissues were processed for H&E staining for histopathological confirmation, and expression studies of the AKT gene were done on both healthy and proven OSCC tissue samples. The data were shown as mean ± standard deviation, and p<0.05* was considered to be statistically significant. RESULTS The quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that the AKT gene had been significantly upregulated in the OSCC tissue samples when compared to normal tissues (p<0.05). Moreover, upregulated AKT is postulated to be involved in increased cell proliferation and reduced apoptosis in OSCC. CONCLUSION The gene expression analysis was done in the samples of histologically confirmed OSCC, and it revealed that the AKT gene was significantly upregulated in OSCC tissues. Thus, AKT could be postulated as a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Devika Nair
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Mahathi Neralla
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Sushmaa Chandralekha Selvakumar
- RNA Biology Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Auxzilia Preethi
- RNA Biology Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Sahanic S, Hilbe R, Dünser C, Tymoszuk P, Löffler-Ragg J, Rieder D, Trajanoski Z, Krogsdam A, Demetz E, Yurchenko M, Fischer C, Schirmer M, Theurl M, Lener D, Hirsch J, Holfeld J, Gollmann-Tepeköylü C, Zinner CP, Tzankov A, Zhang SY, Casanova JL, Posch W, Wilflingseder D, Weiss G, Tancevski I. SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19. Heliyon 2023; 9:e21893. [PMID: 38034686 PMCID: PMC10686889 DOI: 10.1016/j.heliyon.2023.e21893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). Objective We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. Methods We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. Results We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Conclusion Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Take-home message Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.
Collapse
Affiliation(s)
- Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Dünser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Krogsdam
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Yurchenko
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Schirmer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carl P. Zinner
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Yousefi Z, Sharifzadeh S, Zare F, Eskandari N. Fc receptor-like 1 (FCRL1) is a novel biomarker for prognosis and a possible therapeutic target in diffuse large B-cell lymphoma. Mol Biol Rep 2023; 50:1133-1145. [PMID: 36409389 DOI: 10.1007/s11033-022-08104-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma, which can involve various types of mature B-cells. Considering that the incidence of DLBCL has increased, additional research is required to identify novel and effective prognostic and therapeutic molecules. Fc receptor-like 1 (FCRL1) acts as an activation co-receptor of human B-cells. Aberrant expression of this molecule has been reported in a number of B-cell-related disorders. Moreover, the clinical significance and prognosis value of FCRL1 in DLBCL are not completely identified. METHODS In this study, the expression levels of FCRL1 were determined in thirty patients with DLBCL and 15 healthy controls (HCs). In addition, the correlation between FCRL1 expressions with clinicopathological variables of DLBCL patients were examined. Then, the potential roles of FCRL1 in proliferation, apoptosis, and cell cycle distribution of B-cells from DLBCL patients were determined using flow cytometry analysis, after knockdown of this marker using retroviral short hairpin RNA interference. Quantitative real time-PCR, western blotting, and enzyme-linked immunosorbent assay were also used to identify the possible effects of FCRL1 knockdown on the expression levels of BCL-2, BID, BAX, intracellular signaling pathway PI3K/p-Akt, and p65 nuclear factor-kappa B (NF-κB) in the B-cells of DLBCL. RESULTS Statistical analysis revealed higher levels of FCRL1 expression in the B-cells of DLBCL patients compared to HCs at both protein and mRNA levels. A positive correlation was observed between the FCRL1 expression and some clinicopathological parameters of DLBCL patients. In addition, FCRL1 knockdown significantly decreased cell proliferation and stimulated apoptosis as well as G1 cell cycle arrest in the B-cells of DLBCL patients. The levels of p65 NF-κB and PI3K/p-Akt expressions were markedly reduced after knockdown of FCRL1 expression. CONCLUSIONS These results suggested that FCRL1 could be a potential novel biomarker for prognosis and/or a possible effective therapeutic target for treatment of patients with DLBCL.
Collapse
Affiliation(s)
- Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sedigheh Sharifzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farahnaz Zare
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Eskandari
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Jeon B, Lee YJ, Shin J, Choi MJ, Lee CE, Son MK, Park JH, Kim BS, Kim HR, Jung KH, Cha JH, Hong SS. A combination of BR101801 and venetoclax enhances antitumor effect in DLBCL cells via c-Myc/Bcl-2/Mcl-1 triple targeting. Am J Cancer Res 2023; 13:452-463. [PMID: 36895970 PMCID: PMC9989607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 03/11/2023] Open
Abstract
Double hit diffuse large B-cell lymphoma (DLBCL) with rearrangement and overexpression of both c-Myc and Bcl-2 responds poorly to standard R-CHOP therapy. In a recent phase I study, Venetoclax (ABT-199) targeting Bcl-2 also exhibited disappointing response rates in patients with relapsed/refractory DLBCL, suggesting that targeting only Bcl-2 is not sufficient for achieving successful efficacy due to the concurrent oncogenic function of c-Myc expression and drug resistance following an increase in Mcl-1. Therefore, co-targeting c-Myc and Mcl-1 could be a key combinatorial strategy to enhance the efficacy of Venetoclax. In this study, BR101801 a novel drug for DLBCL, effectively inhibited DLBCL cell growth/proliferation, induced cell cycle arrest, and markedly inhibited G0/G1 arrest. The apoptotic effect of BR101801 was also observed by increased Cytochrome C, cleaved PARP, and Annexin V-positive cell populations. This anti-cancer effect of BR101801 was confirmed in animal models, where it effectively inhibited tumor growth by reducing the expression of both c-Myc and Mcl-1. Furthermore, BR101801 exhibited a significant synergistic antitumor effect even in late xenograft models when combined with Venetoclax. Our data strongly suggest that c-Myc/Bcl-2/Mcl-1 triple targeting through a combination of BR101801 and Venetoclax could be a potential clinical option for double-hit DLBCL.
Collapse
Affiliation(s)
- Byeongwook Jeon
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea.,Boryung Pharmaceutical 107 Neungan-ro, Danwon-gu, Ansan-si 15425, Gyeonggi-do, Korea
| | - Yun Ji Lee
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Jisoo Shin
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Min-Ji Choi
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Chae-Eun Lee
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Mi Kwon Son
- Boryung Pharmaceutical 107 Neungan-ro, Danwon-gu, Ansan-si 15425, Gyeonggi-do, Korea
| | - Jung Hee Park
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Bong-Seog Kim
- Boryung Pharmaceutical 107 Neungan-ro, Danwon-gu, Ansan-si 15425, Gyeonggi-do, Korea
| | - Hong Ro Kim
- Boryung Pharmaceutical 107 Neungan-ro, Danwon-gu, Ansan-si 15425, Gyeonggi-do, Korea
| | - Kyung Hee Jung
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Soon-Sun Hong
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences & Engineering, Inha University 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| |
Collapse
|
8
|
Chemoprevention of 4NQO-Induced Mouse Tongue Carcinogenesis by AKT Inhibitor through the MMP-9/RhoC Signaling Pathway and Autophagy. Anal Cell Pathol (Amst) 2022; 2022:3770715. [PMID: 36247874 PMCID: PMC9556259 DOI: 10.1155/2022/3770715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Oral cancer (OC), the most common cancer in the head and neck, which has a poor prognosis, histopathologically follows a stepwise pattern of hyperplasia, dysplasia, and cancer. Blocking the progression of OC in the precancer stage could greatly improve the survival and cure rates. AKT protein plays a critical role in the signal transduction of cancer cells, and we found that AKT was overexpressed in human OC samples through analysis of TCGA database. Therefore, this study is aimed at investigating the chemopreventive effect of an AKT inhibitor (MK2206 2HCl) on OC. In vivo, we established a 4-nitroquinoline-1-oxide- (4NQO-) induced mouse tongue carcinogenesis model to investigate the potential chemopreventive effect of MK2206 2HCl on mouse OC resulting from 4NQO. The results showed that MK2206 2HCl could significantly reduce the incidence rate and growth of OC, inhibit the transformation of dysplasia to cancer in the 4NQO-induced mouse tongue carcinogenesis model, and simultaneously markedly suppress cell proliferation, angiogenesis, and mast cell (MC) infiltration in 4NQO-induced mouse tongue cancers. In vitro, our results revealed that MK2206 2HCl could also inhibit oral squamous cell carcinoma (OSCC) cell malignant biological behaviors, including cell proliferation, colony formation, cell invasion, and migration, while promoting apoptosis. Mechanistic studies revealed that MK2206 2HCl suppressed matrix metalloproteinase 9 (MMP-9) and RhoC expression and promoted autophagy gene LC3 II expression. In summary, our findings demonstrated the chemopreventive effect of MK2206 2HCl on the 4NQO-induced mouse tongue carcinogenesis model, which likely has an underlying mechanism mediated by the MMP-9/RhoC signaling pathway and autophagy.
Collapse
|
9
|
Choi S, Lee YJ, Choi Y, Kim M, Kim HJ, Kim JE, Oh S, Chae SW, Cha HJ, Jo JC. Prognostic significance of BLK expression in R-CHOP treated diffuse large B-cell lymphoma. J Pathol Transl Med 2022; 56:281-288. [PMID: 36128864 PMCID: PMC9510039 DOI: 10.4132/jptm.2022.07.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background The aim of the present study was to evaluate the prognostic significance of B-cell lymphocyte kinase (BLK) expression for survival outcomes in diffuse large B-cell lymphoma (DLBCL) patients treated with R-CHOP. Methods We retrospectively analyzed the medical records of 89 patients from two tertiary referral hospitals. The expression of BLK, SYK, and CDK1 were evaluated in a semi-quantitative method using an H-score, and the proportions of BCL2 and C-MYC were evaluated. Results A total of 89 patients received R-CHOP chemotherapy as a first-line chemotherapy. The expression rates of BLK in tumor cells was 39.2% (n = 34). BLK expression status was not significantly associated with clinical variables; however, BLK expression in tumor cells was significantly associated with the expression of both C-MYC and BCL2 (p = .003). With a median follow-up of 60.4 months, patients with BLK expression had significantly lower 5-year progression-free survival (PFS) and overall survival rates (49.8% and 60.9%, respectively) than patients without BLK expression (77.3% and 86.7%, respectively). In multivariate analysis for PFS, BLK positivity was an independent poor prognostic factor (hazard ratio, 2.208; p = .040). Conclusions Here, we describe the clinicopathological features and survival outcome according to expression of BLK in DLBCL. Approximately 39% of DLBCL patients showed BLK positivity, which was associated as a predictive marker for poor prognosis in patients who received R-CHOP chemotherapy.
Collapse
Affiliation(s)
- Soyeon Choi
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Yoo Jin Lee
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Yunsuk Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Misung Kim
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hyun-Jung Kim
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Ji Eun Kim
- Department of Pathology, Seoul National University Boramae Hospital, Seoul, Korea
| | - Sukjoong Oh
- Department of Hematology and Oncology, Hanyang University Medical Center, Seoul, Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jae-Cheol Jo
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
10
|
Dai S, Venturini E, Yadav S, Lin X, Clapp D, Steckiewicz M, Gocher-Demske AM, Hardie DG, Edelman AM. Calcium/calmodulin-dependent protein kinase kinase 2 mediates pleiotropic effects of epidermal growth factor in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119252. [PMID: 35271909 DOI: 10.1016/j.bbamcr.2022.119252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
AIMS Engagement of epidermal growth factor (EGF) with its receptor (EGFR) produces a broad range of cancer phenotypes. The overriding aim of this study was to understand EGFR signaling and its regulation by the Ca2+/calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) in cancer cells. RESULTS In ovarian cancer cells and other cancer cell types, EGF-induced activation of oncogenic Akt is mediated by both the canonical PI3K-PDK1 pathway and by CaMKK2. Akt activation induced by EGF occurs by both calcium-dependent and calcium-independent mechanisms. In contrast to the canonical pathway, CaMKK2 neither binds to, nor is regulated by phosphoinositides but is activated by Ca2+/CaM. Akt activation at its primary activation site, T308 occurs by direct phosphorylation by CaMKK2, but activation at its secondary site (S473), is through an indirect mechanism requiring mTORC2. In cells in which another CaMKK2 target, 5'AMP-dependent protein kinase (AMPK) was deleted, Akt activation and calcium-dependency of activation were still observed. CaMKK2 accumulates in the nucleus in response to EGF and regulates transcription of phosphofructokinase platelet (PFKP) a glycolytic regulator. CaMKK2 is required for optimal PFK activity. CaMKK2 regulates transcription of plasminogen activator, urokinase (PLAU) a metastasis regulator. The EGFR inhibitor gefitinib synergizes with CaMKK2 inhibition in the regulation of cell survival and increases the dose-reduction index. CRISPR/Cas9 knockout of CaMKK2 leads to compensatory PTEN downregulation and upregulation of Akt activation. CONCLUSIONS CaMKK2-mediation of EGFR action may enable cancer cells to use intracellular calcium elevation as a signal for growth and survival.
Collapse
Affiliation(s)
- Shuhang Dai
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Elisa Venturini
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Saveg Yadav
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Xiaoxuan Lin
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Dylan Clapp
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Martin Steckiewicz
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Angela M Gocher-Demske
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America; Department of Immunology School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 1521, United States of America
| | - D Grahame Hardie
- Division of Cell Signaling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Arthur M Edelman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America.
| |
Collapse
|
11
|
Yeh SJ, Yeh TY, Chen BS. Systems Drug Discovery for Diffuse Large B Cell Lymphoma Based on Pathogenic Molecular Mechanism via Big Data Mining and Deep Learning Method. Int J Mol Sci 2022; 23:ijms23126732. [PMID: 35743172 PMCID: PMC9224183 DOI: 10.3390/ijms23126732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive heterogeneous disease. The most common subtypes of DLBCL include germinal center b-cell (GCB) type and activated b-cell (ABC) type. To learn more about the pathogenesis of two DLBCL subtypes (i.e., DLBCL ABC and DLBCL GCB), we firstly construct a candidate genome-wide genetic and epigenetic network (GWGEN) by big database mining. With the help of two DLBCL subtypes’ genome-wide microarray data, we identify their real GWGENs via system identification and model order selection approaches. Afterword, the core GWGENs of two DLBCL subtypes could be extracted from real GWGENs by principal network projection (PNP) method. By comparing core signaling pathways and investigating pathogenic mechanisms, we are able to identify pathogenic biomarkers as drug targets for DLBCL ABC and DLBCL GCD, respectively. Furthermore, we do drug discovery considering drug-target interaction ability, drug regulation ability, and drug toxicity. Among them, a deep neural network (DNN)-based drug-target interaction (DTI) model is trained in advance to predict potential drug candidates holding higher probability to interact with identified biomarkers. Consequently, two drug combinations are proposed to alleviate DLBCL ABC and DLBCL GCB, respectively.
Collapse
|
12
|
Alsagaby SA. Transcriptomics-Based Investigation of Molecular Mechanisms Underlying Apoptosis Induced by ZnO Nanoparticles in Human Diffuse Large B-Cell Lymphoma. Int J Nanomedicine 2022; 17:2261-2281. [PMID: 35611214 PMCID: PMC9124502 DOI: 10.2147/ijn.s355408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO NPs) show anti-cancer activity. Diffuse Large B-cell Lymphoma (DLBCL) is a type of B-cell malignancies with unsatisfying treatment outcomes. This study was set to assess the potential of ZnO NPs to selectively induce apoptosis in human DLBCL cells (OCI-LY3), and to describe possible molecular mechanisms of action. Methods The impact of ZnO NPs on DLBCL cells and normal peripheral blood mononuclear cells (PBMCs) was studied using cytotoxicity assay and flow-cytometry. Transcriptomics analysis was conducted to identify ZnO NPs-dependent changes in the transcriptomic profiles of DLBCL cells. Results ZnO NPs selectively induced apoptosis in DLBCL cells, and caused changes in their transcriptomes. Deferential gene expression (DGE) with fold change (FC) ≥3 and p ≤ 0.008 with corrected p ≤ 0.05 was identified for 528 genes; 125 genes were over-expressed and 403 genes were under-expressed in ZnO NPs-treated DLBCL cells. The over-expressed genes involved in biological processes and pathways like stress response to metal ion, cellular response to zinc ion, metallothioneins bind metals, oxidative stress, and negative regulation of growth. In contrast, the under-expressed genes were implicated in DNA packaging complex, signaling by NOTCH, negative regulation of gene expression by epigenetic, signaling by WNT, M phase of cell cycle, and telomere maintenance. Setting the FC to ≥1.5 with p ≤ 0.05 and corrected p ≤ 0.1 showed ZnO NPs to induce over-expression of anti-oxidant genes and under-expression of oncogenes; target B-cell receptor (BCR) signaling pathway and NF-κB pathway; and promote apoptosis by intrinsic and extrinsic pathways. Discussion Overall, ZnO NPs selectively induced apoptosis in DLBCL cells, and possible molecular mechanisms of action were described.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11932, Saudi Arabia
- Correspondence: Suliman A Alsagaby, Email
| |
Collapse
|
13
|
El-Dydamony NM, Abdelnaby RM, Abdelhady R, Ali O, Fahmy MI, R. Fakhr Eldeen R, Helwa AA. Pyrimidine-5-carbonitrile based potential anticancer agents as apoptosis inducers through PI3K/AKT axis inhibition in leukaemia K562. J Enzyme Inhib Med Chem 2022; 37:895-911. [PMID: 35345960 PMCID: PMC8967206 DOI: 10.1080/14756366.2022.2051022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel series of 4-(4-Methoxyphenyl)-2-(methylthio)pyrimidine-5-carbonitrile was developed linked to an aromatic moiety via N-containing bridge and then evaluated for their cytotoxic activity against MCF-7 and K562 cell lines. Seven compounds exhibited the highest activity against both cell lines where compounds 4d and 7f were the most active against K562 cell line. Exploring their molecular mechanisms by enzyme inhibition assay on PI3Kδ/γ and AKT-1 showed that compound 7f was promising more than 4d with IC50 = 6.99 ± 0.36, 4.01 ± 0.55, and 3.36 ± 0.17 uM, respectively. Also, flowcytometric analysis revealed that 7f caused cell cycle arrest at S-phase followed by caspase 3 dependent apoptosis induction. Mechanistically, compound 7f proved to modulate the expression of PI3K, p-PI3K, AKT, p-AKT, Cyclin D1, and NFΚβ. Furthermore, in-vivo toxicity study indicated good safety profile for 7f. These findings suggest that the trimethoxy derivative 7f has strong potential as a multi-acting inhibitor on PI3K/AKT axis targeting breast cancer and leukaemia.
Collapse
Affiliation(s)
- Nehad M. El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Omaima Ali
- Cell Line Unit, Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Mohamed I. Fahmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rasha R. Fakhr Eldeen
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Amira A. Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| |
Collapse
|
14
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
15
|
Ahmad Z, Somanath PR. AKT Isoforms in the Immune Response in Cancer. Curr Top Microbiol Immunol 2022; 436:349-366. [PMID: 36243852 DOI: 10.1007/978-3-031-06566-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
AKT is a protein kinase that exists in three isoforms: AKT1, AKT2, and AKT3. Though similar in structure, these isoforms display different effects. AKT is activated downstream of PI3K, and together, this signaling pathway helps regulate cellular processes including cell growth, proliferation, metabolism, survival, and apoptosis. Disruption in these pathways has been associated with disorders including cardiovascular diseases, developmental disorders, inflammatory responses, autoimmune diseases, neurologic disorders, type 2 diabetes, and several cancers. In cancer, deregulation in the PI3K/AKT pathway can be manifested as tumorigenesis, pathological angiogenesis, and metastasis. Increased activity has been correlated with tumor progression and resistance to cancer treatments. Recent studies have suggested that inhibition of the PI3K/AKT pathway plays a significant role in the development, expansion, and proliferation of cells of the immune system. Additionally, AKT has been found to play an important role in differentiating regulatory T cells, activating B cells, and augmenting tumor immunosurveillance. This emphasizes AKT as a potential target for inhibition in cancer therapy. This chapter reviews AKT structure and regulation, its different isoforms, its role in immune cells, and its modulation in oncotherapy.
Collapse
Affiliation(s)
- Zayd Ahmad
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Vascular Biology Center and Department of Medicine, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
16
|
Cooperative miRNA-dependent PTEN regulation drives resistance to BTK inhibition in B-cell lymphoid malignancies. Cell Death Dis 2021; 12:1061. [PMID: 34750354 PMCID: PMC8575967 DOI: 10.1038/s41419-021-04353-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023]
Abstract
Aberrant microRNA (miR) expression plays an important role in pathogenesis of different types of cancers, including B-cell lymphoid malignancies and in the development of chemo-sensitivity or -resistance in chronic lymphocytic leukemia (CLL) as well as diffuse large B-cell lymphoma (DLBCL). Ibrutinib is a first-in class, oral, covalent Bruton's tyrosine kinase (BTK) inhibitor (BTKi) that has shown impressive clinical activity, yet many ibrutinib-treated patients relapse or develop resistance over time. We have reported that acquired resistance to ibrutinib is associated with downregulation of tumor suppressor protein PTEN and activation of the PI3K/AKT pathway. Yet how PTEN mediates chemoresistance in B-cell malignancies is not clear. We now show that the BTKi ibrutinib and a second-generation compound, acalabrutinib downregulate miRNAs located in the 14q32 miRNA cluster region, including miR-494, miR-495, and miR-543. BTKi-resistant CLL and DLBCL cells had striking overexpression of miR-494, miR-495, miR-543, and reduced PTEN expression, indicating further regulation of the PI3K/AKT/mTOR pathway in acquired BTKi resistance. Additionally, unlike ibrutinib-sensitive CLL patient samples, those with resistance to ibrutinib treatment, demonstrated upregulation of 14q32 cluster miRNAs, including miR-494, miR-495, and miR-543 and decreased pten mRNA expression. Luciferase reporter gene assay showed that miR-494 directly targeted and suppressed PTEN expression by recognizing two conserved binding sites in the PTEN 3'-UTR, and subsequently activated AKTSer473. Importantly, overexpression of a miR-494 mimic abrogated both PTEN mRNA and protein levels, further indicating regulation of apoptosis by PTEN/AKT/mTOR. Conversely, overexpression of a miR-494 inhibitor in BTKi-resistant cells restored PTEN mRNA and protein levels, thereby sensitizing cells to BTKi-induced apoptosis. Inhibition of miR-494 and miR-495 sensitized cells by cooperative targeting of pten, with additional miRNAs in the 14q32 cluster that target pten able to contribute to its regulation. Therefore, targeting 14q32 cluster miRNAs may have therapeutic value in acquired BTK-resistant patients via regulation of the PTEN/AKT/mTOR signaling axis.
Collapse
|
17
|
Lai ZY, Tsai KY, Chang SJ, Chuang YJ. Gain-of-Function Mutant TP53 R248Q Overexpressed in Epithelial Ovarian Carcinoma Alters AKT-Dependent Regulation of Intercellular Trafficking in Responses to EGFR/MDM2 Inhibitor. Int J Mol Sci 2021; 22:ijms22168784. [PMID: 34445495 PMCID: PMC8395913 DOI: 10.3390/ijms22168784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/27/2023] Open
Abstract
As the most common gene mutation found in cancers, p53 mutations are detected in up to 96% of high-grade serous ovarian carcinoma (HGSOC). Meanwhile, mutant p53 overexpression is known to drive oncogenic phenotypes in cancer patients and to sustain the activation of EGFR signaling. Previously, we have demonstrated that the combined inhibition of EGFR and MDM2-p53 pathways, by gefitinib and JNJ-26854165, exerts a strong synergistic lethal effect on HGSOC cells. In this study, we investigated whether the gain-of-function p53 mutation (p53R248Q) overexpression could affect EGFR-related signaling and the corresponding drug inhibition outcome in HGSOC. The targeted inhibition responses of gefitinib and JNJ-26854165, in p53R248Q-overexpressing cells, were extensively evaluated. We found that the phosphorylation of AKT increased when p53R248Q was transiently overexpressed. Immunocytochemistry analysis further showed that upon p53R248Q overexpression, several AKT-related regulatory proteins translocated in unique intracellular patterns. Subsequent analysis revealed that, under the combined inhibition of gefitinib and JNJ-26854165, the cytonuclear trafficking of EGFR and MDM2 was disrupted. Next, we analyzed the gefitinib and JNJ-26854165 responses and found differential sensitivity to the single- or combined-drug inhibitions in p53R248Q-overexpressing cells. Our findings suggested that the R248Q mutation of p53 in HGSOC caused significant changes in signaling protein function and trafficking, under EGFR/MDM2-targeted inhibition. Such knowledge could help to advance our understanding of the role of mutant p53 in ovarian carcinoma and to improve the prognosis of patients receiving EGFR/MDM2-targeted therapies.
Collapse
Affiliation(s)
- Zih-Yin Lai
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
| | - Kai-Yun Tsai
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu 30071, Taiwan
- Correspondence: (S.-J.C.); (Y.-J.C.); Tel.: +886-3-6119595 (S.-J.C.); +886-3-5742764 (Y.-J.C.); Fax: +886-3-6110900 (S.-J.C.); +886-3-5715934 (Y.-J.C.)
| | - Yung-Jen Chuang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
- Correspondence: (S.-J.C.); (Y.-J.C.); Tel.: +886-3-6119595 (S.-J.C.); +886-3-5742764 (Y.-J.C.); Fax: +886-3-6110900 (S.-J.C.); +886-3-5715934 (Y.-J.C.)
| |
Collapse
|
18
|
Liu L, Yan H, Ruan M, Yang H, Wang L, Lei B, Sun X, Chang C, Huang G, Xie W. An AKT/PRMT5/SREBP1 axis in lung adenocarcinoma regulates de novo lipogenesis and tumor growth. Cancer Sci 2021; 112:3083-3098. [PMID: 34033176 PMCID: PMC8353903 DOI: 10.1111/cas.14988] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Protein kinase B (AKT) hyperactivation and de novo lipogenesis are both common in tumor progression. Sterol regulatory element‐binding protein 1 (SREBP1) is the master regulator for tumor lipid metabolism, and protein arginine methyltransferase 5 (PRMT5) is an enzyme that can catalyze symmetric dimethyl arginine (SDMA) modification of the mature form of SREBP1 (mSREBP1) to induce its hyperactivation. Here, we report that SDMA‐modified mSREBP1 (mSREBP1‐SDMA) was overexpressed and correlated with Ser473‐phosphorylated AKT (AKT‐473P) expression and poor patient outcomes in human lung adenocarcinomas. Furthermore, patients with AKT‐473P and mSREBP1‐SDMA coexpression showed the worst prognosis. Mechanistic investigation revealed that AKT activation upregulated SREBP1 at both the transcriptional and post‐translational levels, whereas PRMT5 knockdown reversed AKT signaling‐mediated mSREBP1 ubiquitin‐proteasome pathway stabilization at the post‐translational level. Meanwhile, AKT activation promoted nuclear PRMT5 to the cytoplasm without changing total PRMT5 expression, and the transported cytoplasmic PRMT5 (cPRMT5) induced by AKT activation showed a strong mSREBP1‐binding ability. Immunohistochemical assay indicated that AKT‐473P and mSREBP1‐SDMA were positively correlated with cPRMT5 in lung adenocarcinomas, and high cPRMT5 levels in tumors were associated with poor patient outcomes. Additionally, PRMT5 knockdown reversed AKT activation‐induced lipid synthesis and growth advantage of lung adenocarcinoma cells both in vitro and in vivo. Finally, we defined an AKT/PRMT5/SREBP1 axis involved in de novo lipogenesis and the growth of lung cancer. Our data also support that cPRMT5 is a potential therapeutic target for hyperactive AKT‐driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
19
|
Ma YS, Wu TM, Qian B, Liu YS, Ding H, Fan MM, Liu JB, Yu F, Wang HM, Shi Y, Gu LP, Li L, Tian LL, Wang PY, Wang GR, Wu ZJ, Zou QF, Ling CC, Fu D. KDM5A silencing transcriptionally suppresses the FXYD3-PI3K/AKT axis to inhibit angiogenesis in hepatocellular cancer via miR-433 up-regulation. J Cell Mol Med 2021; 25:4040-4052. [PMID: 33621431 PMCID: PMC8051710 DOI: 10.1111/jcmm.16371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular cancer (HCC) has been reported to belong to one of the highly vascularized solid tumours accompanied with angiogenesis of human umbilical vein endothelial cells (HUVECs). KDM5A, an attractive drug target, plays a critical role in diverse physiological processes. Thus, this study aims to investigate its role in angiogenesis and underlying mechanisms in HCC. ChIP‐qPCR was utilized to validate enrichment of H3K4me3 and KDM5A on the promotor region of miR‐433, while dual luciferase assay was carried out to confirm the targeting relationship between miR‐433 and FXYD3. Scratch assay, transwell assay, Edu assay, pseudo‐tube formation assay and mice with xenografted tumours were conducted to investigate the physiological function of KDM5A‐miR‐433‐FXYD3‐PI3K‐AKT axis in the progression of HCC after loss‐ and gain‐function assays. KDM5A p‐p85 and p‐AKT were highly expressed but miR‐433 was down‐regulated in HCC tissues and cell lines. Depletion of KDM5A led to reduced migrative, invasive and proliferative capacities in HCC cells, including growth and a lowered HUVEC angiogenic capacity in vitro. Furthermore, KDM5A suppressed the expression of miR‐433 by demethylating H3K4me3 on its promoterregion. miR‐433 negatively targeted FXYD3. Depleting miR‐433 or re‐expressing FXYD3 restores the reduced migrative, invasive and proliferative capacities, and lowers the HUVEC angiogenic capacity caused by silencing KDM5A. Therefore, KDM5A silencing significantly suppresses HCC tumorigenesis in vivo, accompanied with down‐regulated miR‐433 and up‐regulated FXYD3‐PI3K‐AKT axis in tumour tissues. Lastly, KDM5A activates the FXYD3‐PI3K‐AKT axis to enhance angiogenesis in HCC by suppressing miR‐433.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Ting-Miao Wu
- Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Qian
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Yu-Shan Liu
- Department of Pathology, Nantong Tumor Hospital, Nantong, China
| | - Hua Ding
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Ming-Ming Fan
- Department of Biliary Surgery IV, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liu Li
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin-Lin Tian
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gao-Ren Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Zhi-Jun Wu
- Department of Oncology, Nantong Second People's Hospital, Nantong, China
| | - Qi-Fei Zou
- Department of Biliary Surgery IV, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chang-Chun Ling
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Deng M, Xu-Monette ZY, Pham LV, Wang X, Tzankov A, Fang X, Zhu F, Visco C, Bhagat G, Dybkaer K, Chiu A, Tam W, Zu Y, Hsi ED, You H, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, Hagemeister F, van Krieken JH, Piris MA, Winter JN, Li Y, Xu B, Liu P, Young KH. Aggressive B-cell Lymphoma with MYC/TP53 Dual Alterations Displays Distinct Clinicopathobiological Features and Response to Novel Targeted Agents. Mol Cancer Res 2021; 19:249-260. [PMID: 33154093 PMCID: PMC8092941 DOI: 10.1158/1541-7786.mcr-20-0466] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the major type of aggressive B-cell lymphoma. High-grade B-cell lymphoma (HGBCL) with MYC/BCL2 double-hit (DH) represents a distinct entity with dismal prognosis after standard immunochemotherapy in the current WHO lymphoma classification. However, whether TP53 mutation synergizes with MYC abnormalities (MYC rearrangement and/or Myc protein overexpression) contributing to HGBCL-like biology and prognosis is not well investigated. In this study, patients with DLBCL with MYC/TP53 abnormalities demonstrated poor clinical outcome, high-grade morphology, and distinct gene expression signatures. To identify more effective therapies for this distinctive DLBCL subset, novel MYC/TP53/BCL-2-targeted agents were investigated in DLBCL cells with MYC/TP53 dual alterations or HGBCL-MYC/BCL2-DH. A BET inhibitor INCB057643 effectively inhibited cell viability and induced apoptosis in DLBCL/HGBCL cells regardless of MYC/BCL2/TP53 status. Combining INCB057643 with a MDM2-p53 inhibitor DS3032b significantly enhanced the cytotoxic effects in HGBCL-DH without TP53 mutation, while combining with the BCL-2 inhibitor venetoclax displayed potent therapeutic synergy in DLBCL/HGBCL cells with and without concurrent TP53 mutation. Reverse-phase protein arrays revealed the synergistic molecular actions by INCB057643, DS3032b and venetoclax to induce cell-cycle arrest and apoptosis and to inhibit AKT/MEK/ERK/mTOR pathways, as well as potential drug resistance mechanisms mediated by upregulation of Mcl-1 and RAS/RAF/MEK/ERK pathways. In summary, these findings support subclassification of DLBCL/HGBCL with dual MYC/TP53 alterations, which demonstrates distinct pathobiologic features and dismal survival with standard therapy, therefore requiring additional targeted therapies. IMPLICATIONS: The clinical and pharmacologic studies suggest recognizing DLBCL with concomitant TP53 mutation and MYC abnormalities as a distinctive entity necessary for precision oncology practice. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/2/249/F1.large.jpg.
Collapse
Affiliation(s)
- Manman Deng
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zijun Y Xu-Monette
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
| | - Lan V Pham
- Phamacyclics, an Abbvie Company, San Francisco, California
| | - Xudong Wang
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
| | | | - Xiaosheng Fang
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
| | - Feng Zhu
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina
| | - Carlo Visco
- Department of Medicine and Division of Hematology, University of Verona, Verona, Italy
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | | | | | - Wayne Tam
- Weill Medical College of Cornell University, New York, New York
| | - Youli Zu
- The Methodist Hospital, Houston, Texas
| | | | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | - Fredrick Hagemeister
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Phillip Liu
- Applied Technology Group, Incyte Research Institute, Wilmington, Delaware.
| | - Ken H Young
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, North Carolina.
- Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
21
|
Matsumura-Kimoto Y, Tsukamoto T, Shimura Y, Chinen Y, Tanba K, Kuwahara-Ota S, Fujibayashi Y, Nishiyama D, Isa R, Yamaguchi J, Kawaji-Kanayama Y, Kobayashi T, Horiike S, Taniwaki M, Kuroda J. Serine-227 in the N-terminal kinase domain of RSK2 is a potential therapeutic target for mantle cell lymphoma. Cancer Med 2020; 9:5185-5199. [PMID: 32420699 PMCID: PMC7367644 DOI: 10.1002/cam4.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
RSK2 is a serine/threonine kinase downstream signaling mediator in the RAS/ERK signaling pathway and may be a therapeutic target in mantle cell lymphoma (MCL), an almost incurable disease subtype of non‐Hodgkin lymphoma. In this study, serine‐227 (RSK2Ser227) in the N‐terminal kinase domain (NTKD) of RSK2 was found to be ubiquitously active in five MCL‐derived cell lines and in tumor tissues derived from five MCL patients. BI‐D1870, an inhibitor specific to RSK2‐NTKD, caused RSK2Ser227 dephosphorylation, and thereby, induced dose‐dependent growth inhibition via G2/M cell cycle blockade and apoptosis in four of the five cell lines, while one cell line showed only modest sensitivity. In addition, RSK2 gene knockdown caused growth inhibition in the four BI‐D1870‐sensitive cell lines. Comparative gene expression profiling of the MCL‐derived cell lines showed that inhibition of RSK2Ser227 by BI‐D1870 caused downregulation of oncogenes, such as c‐MYC and MYB; anti‐apoptosis genes, such as BCL2 and BCL2L1; genes for B cell development, including IKZF1, IKZF3, and PAX5; and genes constituting the B cell receptor signaling pathway, such as CD19, CD79B, and BLNK. These findings show that targeting of RSK2Ser227 enables concomitant blockade of pathways that are critically important in B cell tumorigenesis. In addition, we found favorable combinatory growth inhibitory effects of BI‐D1870 with inhibitors of BTK (ibrutinib), AKT (ipatasertib), and BCL2 (venetoclax) in cell characteristic‐dependent manners. These results provide a rationale for RSK2Ser227 in the NTKD as a potential therapeutic target in MCL and for future development of a novel bioavailable RSK2 NTKD‐specific inhibitor.
Collapse
Affiliation(s)
- Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuna Tanba
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saeko Kuwahara-Ota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuto Fujibayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daichi Nishiyama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junko Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuka Kawaji-Kanayama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Zhou H, Xu-Monette ZY, Xiao L, Strati P, Hagemeister FB, He Y, Chen H, Li Y, Manyam GC, Li Y, Montes-Moreno S, Piris MA, Young KH. Prognostic factors, therapeutic approaches, and distinct immunobiologic features in patients with primary mediastinal large B-cell lymphoma on long-term follow-up. Blood Cancer J 2020; 10:49. [PMID: 32366834 PMCID: PMC7198569 DOI: 10.1038/s41408-020-0312-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBCL) is a rare and distinct subtype of diffuse large B-cell lymphoma (DLBCL) without prognostic factors or a single standard of treatment clearly defined. In this study we performed retrospective analysis for clinical outcomes of 166 patients with PMBCL. In overall PMBCL, higher International Prognostic Index, stage, Ki-67 proliferation index, and positron emission tomography (PET) maximum standardized uptake values (SUVmax) at diagnosis were significantly associated with poorer survival, whereas MUM1 expression and higher peripheral blood lymphocyte/monocyte ratios were significantly associated with better survival. Patients who received R-HCVAD or R-EPOCH had better clinical outcome than did those who received the standard treatment R-CHOP. Treatment response and end-of-treatment PET SUVmax had remarkable correlations with survival outcome. In patients with refractory or relapsed PMBCL, stem cell transplant significantly improved overall survival. PMBCL had distinct gene expression signatures compared with overall DLBCL-NOS but not with DLBCL with PD-L1/PD-L2 amplification. PMBCL also showed higher PD-L2 expression in B-cells, lower PD-1 expression in T-cells, and higher CTLA-4 expression in T-cells and distinct miRNA signatures compared with DLBCL-NOS. The prognostic factors, effectiveness of treatment, transcriptional and epigenetic signatures, and immunologic features revealed by this study enrich our understanding of PMBCL biology and support future treatment strategy.
Collapse
Affiliation(s)
- Hui Zhou
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, NC, USA
| | - Zijun Y Xu-Monette
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, NC, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Xiao
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fredrick B Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yizi He
- Department of Lymphoma and Hematology, the Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Huan Chen
- Department of Lymphoma and Hematology, the Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Yajun Li
- Department of Lymphoma and Hematology, the Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Montes-Moreno
- Servicio de Anatomía Patológica, Translational Hematopathology Lab, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| | | | - Ken H Young
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, NC, USA.
- Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
23
|
TCL1 as a hub protein associated with the PI3K/AKT signaling pathway in diffuse large B-cell lymphoma based on proteomics methods. Pathol Res Pract 2020; 216:152799. [PMID: 31932115 DOI: 10.1016/j.prp.2019.152799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022]
Abstract
This study aimed to investigate the hub protein related to the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in diffuse large B-cell lymphoma (DLBCL). We used proteomics methods (iTRAQ) to explore the differentially expressed proteins in the non-germinal center B-cell -like (non-GCB) DLBCL in our previous study. In this study, a total of 137 formalin-fixed paraffin-embedded DLBCL tissue samples were analyzed via immunohistochemistry to verify the expression of TCL1, AKT1 + 2+3, IKKβ and to determine the differentially expressed proteins associated with the PI3K/AKT signaling pathway. Spearman correlation was used to analyze the relationship between these proteins, and survival analysis was used to investigate their effects on prognosis. Immunohistochemistry analysis indicated that TCL1, AKT1 + 2+3, and IKKβ were highly positively expressed in DLBCL. Results showed that the expression of TCL1 was related to ethnicity (p = 0.022), primary site (p = 0.045), Ann Arbor stage (p = 0.037), the International Prognostic Index (p = 0.005), β2-microglobulin (p = 0.030), BCL2 expression (p < 0.001), and Ki-67 expression (p = 0.008). A positive correlation was found between TCL1 and AKT1 + 2+3 (p < 0.001; r = 0.475). A positive correlation was also found between AKT1 + 2+3 and IKKβ (p < 0.001; r = 0.342). In survival analysis, anemia, non-treatment with R‑CHOP, positive TCL1 expression, and Ki-67 expression≥50% independently predicted short progression-free survival and overall survival in the total cohort (p < 0.05). Thus, TCL1 as a hub protein is associated with the PI3K/AKT signaling pathway in DLBCL. TCL1 expression indicated a poor prognosis in patients with DLBCL. With further studies, TCL1 may be established as a reliable prognostic biomarker and potential immunotherapeutic target for improving therapeutic efficacy for DLBCL in the future.
Collapse
|
24
|
Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death Dis 2019; 10:924. [PMID: 31801949 PMCID: PMC6892912 DOI: 10.1038/s41419-019-2158-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Chronic activation of the Bruton’s tyrosine kinase (BTK)-mediated B-cell receptor (BCR) signaling is a hallmark of many B-cell lymphoid malignancies, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL). Ibrutinib, an FDA approved, orally administered BTK inhibitor, has demonstrated high response rates, however, complete responses are infrequent and acquired resistance to BTK inhibition can emerge. In this study, we generated ibrutinib-resistant (IB-R) cell lines by chronic exposure of CLL and activated B-cell (ABC)-DLBCL cells to ibrutinib in order to investigate the mechanism of acquired resistance to ibrutinib. IB-R cell lines demonstrated downregulation of FOXO3a and PTEN levels and activation of AKT, with their levels being low in the nuclei of resistant cells in comparison to the sensitive counterparts. Inhibition of PI3K and AKT using idelalisib and MK2206, respectively increased ibrutinib-induced apoptosis in IB-R cells by downregulation of pAKT473 and restoring FOXO3a levels, demonstrating the importance of these cell survival factors for ibrutinib-resistance. Notably, the exportin 1 inhibitor, selinexor synergized with ibrutinib in IB-R cells and restored nuclear abundance of FOXO3a and PTEN, suggesting that nuclear accumulation of FOXO3a and PTEN facilitates increase in ibrutinib-induced apoptosis in IB-R cells. These data demonstrate that reactivation of FOXO3a nuclear function enhances the efficacy of ibrutinib and overcomes acquired resistance to ibrutinib. Together, these findings reveal a novel mechanism that confers ibrutinib resistance via aberrant nuclear/cytoplasmic subcellular localization of FOXO3a and could be exploited by rational therapeutic combination regimens for effectively treating lymphoid malignancies.
Collapse
|
25
|
Qu Q, Li Y, Fang X, Zhang L, Xue C, Ge X, Wang X, Jiang Y. Differentially expressed tRFs in CD5 positive relapsed & refractory diffuse large B cell lymphoma and the bioinformatic analysis for their potential clinical use. Biol Direct 2019; 14:23. [PMID: 31775867 PMCID: PMC6882323 DOI: 10.1186/s13062-019-0255-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 02/14/2023] Open
Abstract
Background Patients diagnosed as diffuse large B cell lymphoma (DLBCL) with CD5 positive normally have a worse outcome and poorly respond to the regulatory treatment strategy. Results We recently reported differently expressed tRFs and their potential target-genes of tRFs in patients with CD5+ R/R DLBCL. Differently expressed tRFs were detected by Illumina NextSeq instrument and the results were verified by quantitative real-time reverse transcription-PCR. tRF2Cancer database was searched to compared with the results. Further research was performed through bio-informatic analysis including gene ontology (GO) and pathway enrichment analyses, etc. A total of 308 tRFs were identified. Two sequences (AS-tDR-008946, AS-tDR-013492) were chosen for further investigated. Conclusions The results of Bioinformatics analysis revealed that the target genes including NEDD4L and UBA52 and several associated pathways including PI3K/AKT and MAPK/ERK might be involved in the development of CD5+ R/R DLBCL. Our preliminary study on the associated tRFs might provide a valuable measure to explore the pathogenesis and progression of CD5+ R/R DLBCL. Reviewers This article was reviewed by Zhen Qing Ye, Nagarajan Raju and Jin Zhuang Dou.
Collapse
Affiliation(s)
- Qingyuan Qu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Lingyan Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Chao Xue
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
26
|
Miao Y, Medeiros LJ, Li Y, Li J, Young KH. Genetic alterations and their clinical implications in DLBCL. Nat Rev Clin Oncol 2019; 16:634-652. [PMID: 31127191 DOI: 10.1038/s41571-019-0225-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous lymphoid neoplasm with variations in gene expression profiles and genetic alterations, which lead to substantial variations in clinical course and response to therapy. The advent of high-throughput genome sequencing platforms, and especially whole-exome sequencing, has helped to define the genetic landscape of DLBCL. In the past 10 years, these studies have identified many genetic alterations in DLBCL, some of which are specific to B cell lymphomas, whereas others can also be observed in other types of cancer. These aberrations result in altered activation of a wide range of signalling pathways and other cellular processes, including those involved in B cell differentiation, B cell receptor signalling, activation of the NF-κB pathway, apoptosis and epigenetic regulation. Further elaboration of the genetics of DLBCL will not only improve our understanding of disease pathogenesis but also provide further insight into disease classification, prognostication and therapeutic targets. In this Review, we describe the current understanding of the prevalence and causes of specific genetic alterations in DLBCL and their role in disease development and progression. We also summarize the available clinical data on therapies designed to target the aberrant pathways driven by these alterations.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
27
|
Quantitative proteomics analysis of differentially expressed proteins in activated B-cell-like diffuse large B-cell lymphoma using quantitative proteomics. Pathol Res Pract 2019; 215:152528. [DOI: 10.1016/j.prp.2019.152528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
|
28
|
Batham J, Lim PS, Rao S. SETDB-1: A Potential Epigenetic Regulator in Breast Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11081143. [PMID: 31405032 PMCID: PMC6721492 DOI: 10.3390/cancers11081143] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The full epigenetic repertoire governing breast cancer metastasis is not completely understood. Here, we discuss the histone methyltransferase SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) and its role in breast cancer metastasis. SETDB1 serves as an exemplar of the difficulties faced when developing therapies that not only specifically target cancer cells but also the more elusive and aggressive stem cells that contribute to metastasis via epithelial-to-mesenchymal transition and confer resistance to therapies.
Collapse
Affiliation(s)
- Jacob Batham
- Melanie Swan Memorial Translational Centre, Faculty of Sci-Tech, University of Canberra, Bruce ACT 2617, Australia
| | - Pek Siew Lim
- Melanie Swan Memorial Translational Centre, Faculty of Sci-Tech, University of Canberra, Bruce ACT 2617, Australia.
| | - Sudha Rao
- Melanie Swan Memorial Translational Centre, Faculty of Sci-Tech, University of Canberra, Bruce ACT 2617, Australia.
| |
Collapse
|
29
|
Zhang S, Wang L, Cheng L. Aberrant ERG expression associates with downregulation of miR-4638-5p and selected genomic alterations in a subset of diffuse large B-cell lymphoma. Mol Carcinog 2019; 58:1846-1854. [PMID: 31237044 DOI: 10.1002/mc.23074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
ERG (avian v-ets erythroblastosis virus E26 oncogene homolog), an oncoprotein in prostate carcinoma and Ewing's sarcoma is associated with poor prognosis in patients with acute myeloid leukemia and T lymphoblastic leukemia. However little is known about ERG in lymphoma. Here we studied ERG in diffuse large B-cell lymphoma (DLBCL) by immunohistochemistry, fluorescence in situ hybridization (FISH), genome-wide microRNA (miRNA) expression profiling, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and whole exome sequencing (WES). Approximately 30% of de novo DLBCLs (37 of 118) expressed ERG (ERG+). ERG expression showed no significant correlation with DLBCL cell-of-origin classification, patient's age, sex, nodal, or extranodal disease status, tumor expression of p53 or p63. There was no ERG rearrangement in 10 randomly selected ERG+ DLBCLs by FISH. Forty-three miRNAs showed significant differential expression between ERG+ and ERG- DLBCLs. Downregulation of miR-4638-5p was confirmed by real-time RT-PCR. WES not only confirmed known gene mutations in DLBCLs but also revealed multiple novel gene mutations in POLA1, E2F1, PSMD8, AXIN1, GAB2, and GNB2L1, which occur more frequently in ERG+ DLBCLs. In conclusion, our studies demonstrated aberrant ERG expression in a subset of DLBCL, which is associated with downregulation of miR-4638-5p. In comparison with ERG-negative DLBCL, ERG+ DLBCL more likely harbors mutations in genes important in cell cycle control, B-cell receptor-mediated signaling and degradation of β-catenin. Further clinicopathological correlation and functional studies of ERG-related miRNAs and pathways may provide new insight into the pathogenesis of DLBCL and reveal novel targets for better management of patients with DLBCL.
Collapse
Affiliation(s)
- Shanxiang Zhang
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lin Wang
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
30
|
Vockerodt M, Vrzalikova K, Ibrahim M, Nagy E, Margielewska S, Hollows R, Lupino L, Tooze R, Care M, Simmons W, Schrader A, Perry T, Abdullah M, Foster S, Reynolds G, Dowell A, Rudzki Z, Krappmann D, Kube D, Woodman C, Wei W, Taylor G, Murray PG. Regulation of S1PR2 by the EBV oncogene LMP1 in aggressive ABC-subtype diffuse large B-cell lymphoma. J Pathol 2019; 248:142-154. [PMID: 30666658 DOI: 10.1002/path.5237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
The Epstein-Barr virus (EBV) is found almost exclusively in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), yet its contribution to this tumour remains poorly understood. We have focused on the EBV-encoded latent membrane protein-1 (LMP1), a constitutively activated CD40 homologue expressed in almost all EBV-positive DLBCLs and which can disrupt germinal centre (GC) formation and drive lymphomagenesis in mice. Comparison of the transcriptional changes that follow LMP1 expression with those that follow transient CD40 signalling in human GC B cells enabled us to define pathogenic targets of LMP1 aberrantly expressed in ABC-DLBCL. These included the down-regulation of S1PR2, a sphingosine-1-phosphate (S1P) receptor that is transcriptionally down-regulated in ABC-DLBCL, and when genetically ablated leads to DLBCL in mice. Consistent with this, we found that LMP1-expressing primary ABC-DLBCLs were significantly more likely to lack S1PR2 expression than were LMP1-negative tumours. Furthermore, we showed that the down-regulation of S1PR2 by LMP1 drives a signalling loop leading to constitutive activation of the phosphatidylinositol-3-kinase (PI3-K) pathway. Finally, core LMP1-PI3-K targets were enriched for lymphoma-related transcription factors and genes associated with shorter overall survival in patients with ABC-DLBCL. Our data identify a novel function for LMP1 in aggressive DLBCL. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
MESH Headings
- CD40 Antigens/genetics
- CD40 Antigens/metabolism
- Cell Line, Tumor
- Cell Transformation, Viral
- Databases, Genetic
- Epstein-Barr Virus Infections/mortality
- Epstein-Barr Virus Infections/virology
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Host-Pathogen Interactions
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/virology
- Phosphatidylinositol 3-Kinase/metabolism
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Sphingosine-1-Phosphate Receptors/genetics
- Sphingosine-1-Phosphate Receptors/metabolism
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Martina Vockerodt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Department of Anatomy and Cell Biology, University Medical Centre, Georg-August University of Göttingen, Göttingen, Germany
| | - Katerina Vrzalikova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Maha Ibrahim
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Eszter Nagy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sandra Margielewska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert Hollows
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Lauren Lupino
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Reuben Tooze
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew Care
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - William Simmons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra Schrader
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Department of Anatomy and Cell Biology, University Medical Centre, Georg-August University of Göttingen, Göttingen, Germany
- Department of Hematology & Oncology and GRK 1034 of the Deutsche Forschungsgemeinschaft, Georg-August University of Göttingen, Göttingen, Germany
| | - Tracey Perry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Maizaton Abdullah
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Department of Pathology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Stephen Foster
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gary Reynolds
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Alexander Dowell
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Zbigniew Rudzki
- Department of Histopathology, Heartlands Hospital, Birmingham, UK
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dieter Kube
- Department of Hematology & Oncology and GRK 1034 of the Deutsche Forschungsgemeinschaft, Georg-August University of Göttingen, Göttingen, Germany
| | - Ciaran Woodman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul G Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
31
|
Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D. AKT and ERK dual inhibitors: The way forward? Cancer Lett 2019; 459:30-40. [PMID: 31128213 DOI: 10.1016/j.canlet.2019.05.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K)/AKT pathway regulates cell growth, proliferation, survival, mobility and invasion. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is also an important mitogenic signaling pathway involved in various cellular progresses. AKT, also named protein kinase B (PKB), is a primary mediator of the PI3K signaling pathway; and ERK at the end of MAPK signaling is the unique substrate and downstream effector of mitogen-activated protein/extracellular signal-regulated kinase (MEK). The AKT and ERK signaling are both aberrantly activated in a wide range of human cancers and have long been targeted for cancer therapy, but the clinical benefits of these targeted therapies have been limited due to complex cross-talk. Novel strategies, such as AKT/ERK dual inhibitors, may be needed.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Kai Huang
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Deliang Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China; Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL, 62794, USA.
| |
Collapse
|
32
|
Chung J, Karkhanis V, Baiocchi RA, Sif S. Protein arginine methyltransferase 5 (PRMT5) promotes survival of lymphoma cells via activation of WNT/β-catenin and AKT/GSK3β proliferative signaling. J Biol Chem 2019; 294:7692-7710. [PMID: 30885941 DOI: 10.1074/jbc.ra119.007640] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/04/2019] [Indexed: 02/02/2023] Open
Abstract
Epigenetic regulation by the type II protein arginine methyltransferase, PRMT5, plays an essential role in the control of cancer cell proliferation and tumorigenesis. In this report, we investigate the relationship between PRMT5 and WNT/β-CATENIN as well as AKT/GSK3β proliferative signaling in three different types of non-Hodgkin's lymphoma cell lines, clinical samples, and mouse primary lymphoma cells. We show that PRMT5 stimulates WNT/β-CATENIN signaling through direct epigenetic silencing of pathway antagonists, AXIN2 and WIF1, and indirect activation of AKT/GSK3β signaling. PRMT5 inhibition with either shRNA-mediated knockdown or a specific small molecule PRMT5 inhibitor, CMP-5, not only leads to derepression of WNT antagonists and decreased levels of active phospho-AKT (Thr-450 and Ser-473) and inactive phospho-GSK3β (Ser-9) but also results in decreased transcription of WNT/β-CATENIN target genes, CYCLIN D1, c-MYC, and SURVIVIN, and enhanced lymphoma cell death. Furthermore, PRMT5 inhibition leads to reduced recruitment of co-activators CBP, p300, and MLL1, as well as enhanced recruitment of co-repressors HDAC2 and LSD1 to the WNT/β-CATENIN target gene promoters. These results indicate that PRMT5 governs expression of prosurvival genes by promoting WNT/β-CATENIN and AKT/GSK3β proliferative signaling and that its inhibition induces lymphoma cell death, which warrants further clinical evaluation.
Collapse
Affiliation(s)
- Jihyun Chung
- From the Division of Hematology, Department of Internal Medicine, the Ohio State University, Columbus, Ohio 43210 and
| | - Vrajesh Karkhanis
- From the Division of Hematology, Department of Internal Medicine, the Ohio State University, Columbus, Ohio 43210 and
| | - Robert A Baiocchi
- From the Division of Hematology, Department of Internal Medicine, the Ohio State University, Columbus, Ohio 43210 and
| | - Saïd Sif
- the Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
33
|
Miao Y, Medeiros LJ, Xu-Monette ZY, Li J, Young KH. Dysregulation of Cell Survival in Diffuse Large B Cell Lymphoma: Mechanisms and Therapeutic Targets. Front Oncol 2019; 9:107. [PMID: 30881917 PMCID: PMC6406015 DOI: 10.3389/fonc.2019.00107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of lymphoma worldwide, representing 30-40% of non-Hodgkin lymphomas, and is clinically aggressive. Although more than half of patients with DLBCL are cured by using standard first-line immunochemotherapy, the remaining patients are refractory to the first-line therapy or relapse after complete remission and these patients require novel therapeutic approaches. Understanding the pathogenesis of DLBCL is essential for identifying therapeutic targets to tackle this disease. Cell survival dysregulation, a hallmark of cancer, is a characteristic feature of DLBCL. Intrinsic signaling aberrations, tumor microenvironment dysfunction, and viral factors can all contribute to the cell survival dysregulation in DLBCL. In recent years, several novel drugs that target abnormal cell survival pathways, have been developed and tested in clinical trials of patients with DLBCL. In this review, we discuss cell survival dysregulation, the underlying mechanisms, and how to target abnormal cell survival therapeutically in DLBCL patients.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
34
|
Song M, Bode AM, Dong Z, Lee MH. AKT as a Therapeutic Target for Cancer. Cancer Res 2019; 79:1019-1031. [PMID: 30808672 DOI: 10.1158/0008-5472.can-18-2738] [Citation(s) in RCA: 531] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022]
Abstract
Many cellular processes in cancer are attributed to kinase signaling networks. V-akt murine thymoma viral oncogene homolog (AKT) plays a major role in the PI3K/AKT signaling pathways. AKT is activated by PI3K or phosphoinositide-dependent kinases (PDK) as well as growth factors, inflammation, and DNA damage. Signal transduction occurs through downstream effectors such as mTOR, glycogen synthase kinase 3 beta (GSK3β), or forkhead box protein O1 (FOXO1). The abnormal overexpression or activation of AKT has been observed in many cancers, including ovarian, lung, and pancreatic cancers, and is associated with increased cancer cell proliferation and survival. Therefore, targeting AKT could provide an important approach for cancer prevention and therapy. In this review, we discuss the rationale for targeting AKT and also provide details regarding synthetic and natural AKT-targeting compounds and their associated studies.
Collapse
Affiliation(s)
- Mengqiu Song
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China.,The Hormel Institute, University of Minnesota, Austin, Minnesota.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
35
|
Li Y, Zhou X, Zhang Y, Yang J, Xu Y, Zhao Y, Wang X. CUL4B regulates autophagy via JNK signaling in diffuse large B-cell lymphoma. Cell Cycle 2019; 18:379-394. [PMID: 30612524 DOI: 10.1080/15384101.2018.1560718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aberrant expression of CUL4B was identified in various types of solid cancers. Cumulative evidences support the oncogenic role of CUL4B in cancers, including regulation of cell proliferation and signal transduction. However, its clinical value and potential pathogenic mechanism in diffuse large B-cell lymphoma (DLBCL) have not been described previously. Therefore, we hypothesize that overexpressed CUL4B may contribute to the pathogenesis of DLBCL. The aim of this study is to assess the expression and the biological function of CUL4B in DLBCL progression. In our study, CUL4B overexpression was observed in DLBCL tissues, and its upregulation was closely associated with poor prognosis in patients. Furthermore, the functional roles of CUL4B was detected both in vitro and in vivo. We demonstrated that silencing CUL4B could not only induce cell proliferation inhibition, cell cycle arrest, and motility attenuation of DLBCL cells in vitro, but also decrease tumor growth in DLBCL xenografts mice. In addition, we identified that CUL4B may act as a potent inductor of JNK phosphorylation in regulation of autophagy. Our findings demonstrated a significant role of CUL4B in the development and progression of DLBCL. CUL4B may act as a useful biomarker and a novel therapeutic target in DLBCL.
Collapse
Affiliation(s)
- Ying Li
- a Department of Hematology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , People's Republic of China
| | - Xiangxiang Zhou
- a Department of Hematology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , People's Republic of China
| | - Ya Zhang
- a Department of Hematology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , People's Republic of China
| | - Juan Yang
- a Department of Hematology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , People's Republic of China
| | - Yangyang Xu
- a Department of Hematology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , People's Republic of China
| | - Yi Zhao
- a Department of Hematology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , People's Republic of China
| | - Xin Wang
- a Department of Hematology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , People's Republic of China.,b School of Medicine , Shandong University , Jinan , Shandong , People's Republic of China
| |
Collapse
|
36
|
Wang X, Cao X, Sun R, Tang C, Tzankov A, Zhang J, Manyam GC, Xiao M, Miao Y, Jabbar K, Tan X, Pang Y, Visco C, Xie Y, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, Winter JN, Piris MA, Li S, Miranda RN, Medeiros LJ, Li Y, Xu-Monette ZY, Young KH. Clinical Significance of PTEN Deletion, Mutation, and Loss of PTEN Expression in De Novo Diffuse Large B-Cell Lymphoma. Neoplasia 2018; 20:574-593. [PMID: 29734016 PMCID: PMC5994742 DOI: 10.1016/j.neo.2018.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
Abstract
PTEN loss has been associated with poorer prognosis in many solid tumors. However, such investigation in lymphomas is limited. In this study, PTEN cytoplasmic and nuclear expression, PTEN gene deletion, and PTEN mutations were evaluated in two independent cohorts of diffuse large B-cell lymphoma (DLBCL). Cytoplasmic PTEN expression was found in approximately 67% of total 747 DLBCL cases, more frequently in the activated B-cell-like subtype. Nuclear PTEN expression was less frequent and at lower levels, which significantly correlated with higher PTEN mRNA expression. Remarkably, loss of PTEN protein expression was associated with poorer survival only in DLBCL with AKT hyperactivation. In contrast, high PTEN expression was associated with Myc expression and poorer survival in cases without abnormal AKT activation. Genetic and epigenetic mechanisms for loss of PTEN expression were investigated. PTEN deletions (mostly heterozygous) were detected in 11.3% of DLBCL, and showed opposite prognostic effects in patients with AKT hyperactivation and in MYC rearranged DLBCL patients. PTEN mutations, detected in 10.6% of patients, were associated with upregulation of genes involved in central nervous system function, metabolism, and AKT/mTOR signaling regulation. Loss of PTEN cytoplasmic expression was also associated with TP53 mutations, higher PTEN-targeting microRNA expression, and lower PD-L1 expression. Remarkably, low PTEN mRNA expression was associated with down-regulation of a group of genes involved in immune responses and B-cell development/differentiation, and poorer survival in DLBCL independent of AKT activation. Collectively, multi-levels of PTEN abnormalities and dysregulation may play important roles in PTEN expression and loss, and that loss of PTEN tumor-suppressor function contributes to the poor survival of DLBCL patients with AKT hyperactivation.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xin Cao
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Ruifang Sun
- Tumor Biobank, Department of Pathology, Shanxi Cancer Hospital, Taiyuan, China
| | | | | | - Jun Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Xiao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Xiaohong Tan
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuyang Pang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yan Xie
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, Texas, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | - Ben M Parsons
- Gundersen Lutheran Health System, La Crosse, Wisconsin, USA
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yong Li
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
37
|
Bhatti M, Ippolito T, Mavis C, Gu J, Cairo MS, Lim MS, Hernandez-Ilizaliturri F, Barth MJ. Pre-clinical activity of targeting the PI3K/Akt/mTOR pathway in Burkitt lymphoma. Oncotarget 2018; 9:21820-21830. [PMID: 29774105 PMCID: PMC5955151 DOI: 10.18632/oncotarget.25072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Though outcomes for pediatric Burkitt lymphoma (BL) have improved significantly in recent decades with intensive multi-agent chemotherapy and the addition of rituximab, chemotherapy resistance remains a significant impediment to cure following relapse. Activation of the PI3K/AKT pathway has been implicated in Burkitt lymphomagenesis and increased PI3K/AKT activation has been associated with worse outcomes in adults with aggressive B-cell non-Hodgkin lymphoma (B-NHL). Inhibitors of the PI3K/AKT pathway have been approved for the treatment of refractory indolent B-NHL and continue to be investigated for treatment of aggressive B-NHLs. We investigated the activation of the PI3K/AKT pathway in a cell line model of resistant BL and the ability to target this pathway with small molecule inhibitors in BL cell lines. We found that cell lines resistant to rituximab and chemotherapy exhibited increased activation of PI3K/AKT and that inhibition of AKT or PI3K results in in vitro anti-lymphoma activity. To investigate the role of PI3K/AKT activation on the efficacy of cytotoxic chemotherapy, we exposed cells to inhibitors in combination with chemotherapy and noted a synergistic increase in response to chemotherapy. Overall these findings highlight the role of PI3K/AKT in chemotherapy resistance in BL cells and may represent a tractable therapeutic target.
Collapse
Affiliation(s)
- Maria Bhatti
- Department of Pediatric Hematology/Oncology, University at Buffalo, Buffalo, NY, USA.,Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Thomas Ippolito
- Department of Pediatric Hematology/Oncology, University at Buffalo, Buffalo, NY, USA
| | - Cory Mavis
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Juan Gu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mitchell S Cairo
- Department of Pediatrics, Medicine, Pathology, Microbiology and Immunology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Matthew J Barth
- Department of Pediatric Hematology/Oncology, University at Buffalo, Buffalo, NY, USA.,Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
38
|
Abstract
Conventional treatments for acute leukemia include chemotherapy, radiation therapy, and intensive combined treatments (including bone marrow transplant or stem cell transplants). Novel treatment approaches are in active development. Recently, protein kinase inhibitors are on clinical trials and offer hope as new drugs for acute leukemia treatment. This review will provide a brief summary of the protein kinase inhibitors in clinical applications for acute leukemia treatment.
Collapse
|
39
|
Chadly DM, Best J, Ran C, Bruska M, Woźniak W, Kempisty B, Schwartz M, LaFleur B, Kerns BJ, Kessler JA, Matsuoka AJ. Developmental profiling of microRNAs in the human embryonic inner ear. PLoS One 2018; 13:e0191452. [PMID: 29373586 PMCID: PMC5786302 DOI: 10.1371/journal.pone.0191452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Due to the extreme inaccessibility of fetal human inner ear tissue, defining of the microRNAs (miRNAs) that regulate development of the inner ear has relied on animal tissue. In the present study, we performed the first miRNA sequencing of otic precursors in human specimens. Using HTG miRNA Whole Transcriptome assays, we examined miRNA expression in the cochleovestibular ganglion (CVG), neural crest (NC), and otic vesicle (OV) from paraffin embedded (FFPE) human specimens in the Carnegie developmental stages 13-15. We found that in human embryonic tissues, there are different patterns of miRNA expression in the CVG, NC and OV. In particular, members of the miR-183 family (miR-96, miR-182, and miR-183) are differentially expressed in the CVG compared to NC and OV at Carnegie developmental stage 13. We further identified transcription factors that are differentially targeted in the CVG compared to the other tissues from stages 13-15, and we performed gene set enrichment analyses to determine differentially regulated pathways that are relevant to CVG development in humans. These findings not only provide insight into the mechanisms governing the development of the human inner ear, but also identify potential signaling pathways for promoting regeneration of the spiral ganglion and other components of the inner ear.
Collapse
Affiliation(s)
- Duncan M. Chadly
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jennifer Best
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Cong Ran
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | - Witold Woźniak
- Department of Anatomy, Poznań University, Poznań, Poland
| | | | - Mark Schwartz
- HTG Molecular Diagnostics, Inc., Tucson, Arizona, United States of America
| | - Bonnie LaFleur
- HTG Molecular Diagnostics, Inc., Tucson, Arizona, United States of America
| | - B. J. Kerns
- HTG Molecular Diagnostics, Inc., Tucson, Arizona, United States of America
| | - John A. Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Akihiro J. Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
40
|
van Krieken JH. New developments in the pathology of malignant lymphoma: a review of the literature published from May to August 2017. J Hematop 2017; 10:65-73. [PMID: 29057015 PMCID: PMC5630645 DOI: 10.1007/s12308-017-0303-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- J H van Krieken
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500, HB Nijmegen, The Netherlands
| |
Collapse
|