1
|
Gupta MB, Biggar KK, Li C, Nathanielsz PW, Jansson T. Increased Colocalization and Interaction Between Decidual Protein Kinase A and Insulin-like Growth Factor-Binding Protein-1 in Intrauterine Growth Restriction. J Histochem Cytochem 2022; 70:515-530. [PMID: 35801847 DOI: 10.1369/00221554221112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased phosphorylation of decidual insulin-like growth factor-binding protein-1 (IGFBP-1) can contribute to intrauterine growth restriction (IUGR) by decreasing the bioavailability of insulin-like growth factor-1 (IGF-1). However, the molecular mechanisms regulating IGFBP-1 phosphorylation at the maternal-fetal interface are poorly understood. Protein kinase A (PKA) is required for normal decidualization. Consensus sequences for PKA are present in IGFBP-1. We hypothesized that the expression/interaction of PKA with decidual IGFBP-1 is increased in IUGR. Parallel reaction monitoring-mass spectrometry (PRM-MS) identified multiple PKA peptides (n=>30) co-immunoprecipitating with IGFBP-1 in decidualized primary human endometrial stromal cells (HESC). PRM-MS also detected active PKApThr197 and greater site-specific IGFBP-1 phosphorylation(pSer119), (pSer98+pSer101) (pSer169+pSer174) in response to hypoxia. Hypoxia promoted colocalization [dual immunofluorescence (IF)] of PKA with IGFBP-1 in decidualized HESC. Colocalization (IF) and interaction (proximity ligation assay) of PKA and IGFBP-1 were increased in decidua collected from placenta of human IUGR pregnancies (n=8) compared with decidua from pregnancies with normal fetal growth. Similar changes were detected in decidual PKA/IGFBP-1 using placenta from baboons subjected to maternal nutrient reduction (MNR) vs controls (n=3 each). In baboons, these effects were evident in MNR at gestational day 120 prior to IUGR onset. Increased PKA-mediated phosphorylation of decidual IGFBP-1 may contribute to decreased IGF-1 bioavailability in the maternal-fetal interface in IUGR.
Collapse
Affiliation(s)
- Madhulika B Gupta
- Department of Biochemistry and Department of Pediatrics, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Cun Li
- University of Wyoming, Laramie, Wyoming
| | | | - Thomas Jansson
- Southwest National Primate Research Center, San Antonio, Texas.,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Chen AW, Biggar K, Nygard K, Singal S, Zhao T, Li C, Nathanielsz PW, Jansson T, Gupta MB. IGFBP-1 hyperphosphorylation in response to nutrient deprivation is mediated by activation of protein kinase Cα (PKCα). Mol Cell Endocrinol 2021; 536:111400. [PMID: 34314739 PMCID: PMC8634829 DOI: 10.1016/j.mce.2021.111400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Fetal growth restriction (FGR) is associated with decreased nutrient availability and reduced insulin-line growth factor (IGF)-I bioavailability via increased IGF binding protein (IGFBP)-1 phosphorylation. While protein kinase C (PKC) is implicated in IGFBP-1 hyperphosphorylation in nutrient deprivation, the mechanisms remain unclear. We hypothesised that the interaction of PKCα with protein kinase CK2β and activation of PKCα under leucine deprivation (L0) mediate fetal hepatic IGFBP-1 hyperphosphorylation. Parallel Reaction Monitoring Mass Spectrometry (PRM-MS) followed by PKCα knockdown demonstrated the PKCα isoform interacts with IGFBP-1 and CK2β under L0. Pharmacological PKCα activation with phorbol 12-myristate 13-acetate (PMA) increased whereas inhibition with bisindolylmaleimide II (Bis II) decreased IGFBP-1 phosphorylation (Ser101/119/169, Ser98 + 101 and Ser169 + 174), respectively. Furthermore, PMA mimicked L0-induced PKCα translocation and IGFBP-1 expression. PKCα expression was increased in baboon fetal liver in FGR, providing biological relevance in vivo. In summary, we report a novel nutrient-sensitive mechanism for PKCα in mediating IGFBP-1 hyperphosphorylation in FGR.
Collapse
Affiliation(s)
- Allan W Chen
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, ON, Canada
| | - Sahil Singal
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Tiffany Zhao
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Cun Li
- University of Wyoming, Laramie, WY, USA; Southwest National Primate Research Center, San Antonio, TX, USA
| | - Peter W Nathanielsz
- University of Wyoming, Laramie, WY, USA; Southwest National Primate Research Center, San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, ON, Canada; Department of Pediatrics, University of Western Ontario, London, ON, Canada; Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
3
|
Kakadia J, Biggar K, Jain B, Chen AW, Nygard K, Li C, Nathanielsz PW, Jansson T, Gupta MB. Mechanisms linking hypoxia to phosphorylation of insulin-like growth factor binding protein-1 in baboon fetuses with intrauterine growth restriction and in cell culture. FASEB J 2021; 35:e21788. [PMID: 34425031 DOI: 10.1096/fj.202100397r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
Hypoxia increases fetal hepatic insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation mediated by mechanistic target of rapamycin (mTOR) inhibition. Whether maternal nutrient restriction (MNR) causes fetal hypoxia remains unclear. We used fetal liver from a baboon (Papio sp.) model of intrauterine growth restriction due to MNR (70% global diet of Control) and liver hepatocellular carcinoma (HepG2) cells as a model for human fetal hepatocytes and tested the hypothesis that mTOR-mediated IGFBP-1 hyperphosphorylation in response to hypoxia requires hypoxia-inducible factor-1α (HIF-1α) and regulated in development and DNA-damage responses-1 (REDD-1) signaling. Western blotting (n = 6) and immunohistochemistry (n = 3) using fetal liver indicated greater expression of HIF-1α, REDD-1 as well as erythropoietin and its receptor, and vascular endothelial growth factor at GD120 (GD185 term) in MNR versus Control. Moreover, treatment of HepG2 cells with hypoxia (1% pO2 ) (n = 3) induced REDD-1, inhibited mTOR complex-1 (mTORC1) activity and increased IGFBP-1 secretion/phosphorylation (Ser101/Ser119/Ser169). HIF-1α inhibition by echinomycin or small interfering RNA silencing prevented the hypoxia-mediated inhibition of mTORC1 and induction of IGFBP-1 secretion/phosphorylation. dimethyloxaloylglycine (DMOG) induced HIF-1α and also REDD-1 expression, inhibited mTORC1 and increased IGFBP-1 secretion/phosphorylation. Induction of HIF-1α (DMOG) and REDD-1 by Compound 3 inhibited mTORC1, increased IGFBP-1 secretion/ phosphorylation and protein kinase PKCα expression. Together, our data demonstrate that HIF-1α induction, increased REDD-1 expression and mTORC1 inhibition represent the mechanistic link between hypoxia and increased IGFBP-1 secretion/phosphorylation. We propose that maternal undernutrition limits fetal oxygen delivery, as demonstrated by increased fetal liver expression of hypoxia-responsive proteins in baboon MNR. These findings have important implications for our understanding of the pathophysiology of restricted fetal growth.
Collapse
Affiliation(s)
- Jenica Kakadia
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Bhawani Jain
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Allan W Chen
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, ON, Canada
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada.,Department of Pediatrics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
5
|
Lin YW, Weng XF, Huang BL, Guo HP, Xu YW, Peng YH. IGFBP-1 in cancer: expression, molecular mechanisms, and potential clinical implications. Am J Transl Res 2021; 13:813-832. [PMID: 33841624 PMCID: PMC8014352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factor binding protein-1 (IGFBP-1) belongs to the insulin-like growth factor (IGF) system, which plays an indispensable role in normal growth and development, and in the pathophysiology of various tumors. IGFBP-1 has been shown to be associated with the risk of various tumors, and has a vital function in regulating tumor behaviors such as proliferation, migration, invasion and adhesion through different molecular mechanisms. The biological actions of IGFBP-1 in cancer are found to be related to its phosphorylation state, and the IGF-dependent and -independent mechanisms. In this review, we provided an overview of IGFBP-1 in normal physiology, and its aberrantly expression and the underlying molecular mechanisms in a range of common tumors, as well as discussed the potential clinical implications of IGFBP-1 as diagnostic or prognostic biomarkers in cancer.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Xue-Fen Weng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Bin-Liang Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Hai-Peng Guo
- Department of Head and Neck Surgery, The Cancer Hospital of Shantou University Medical CollegeShantou 515041, People’s Republic of China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Kakadia JH, Jain BB, Biggar K, Sutherland A, Nygard K, Li C, Nathanielsz PW, Jansson T, Gupta MB. Hyperphosphorylation of fetal liver IGFBP-1 precedes slowing of fetal growth in nutrient-restricted baboons and may be a mechanism underlying IUGR. Am J Physiol Endocrinol Metab 2020; 319:E614-E628. [PMID: 32744097 PMCID: PMC7642856 DOI: 10.1152/ajpendo.00220.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In cultured fetal liver cells, insulin-like growth factor (IGF) binding protein (IGFBP)-1 hyperphosphorylation in response to hypoxia and amino acid deprivation is mediated by inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling and casein kinase (CK)2. We hypothesized that fetal liver mTOR inhibition, activation of AAR and CK2, and IGFBP-1 hyperphosphorylation occur before development of intrauterine growth restriction (IUGR). Pregnant baboons were fed a control (C) or a maternal nutrient restriction (MNR; 70% calories of control) diet starting at gestational day (GD) 30 (term GD 185). Umbilical blood and fetal liver tissue were obtained at GD 120 (C, n = 7; MNR, n = 10) and 165 (C, n = 7; MNR, n = 8). Fetal weights were unchanged at GD 120 but decreased at GD 165 in the MNR group (-13%, P = 0.03). IGFBP-1 phosphorylation, as determined by parallel reaction monitoring mass spectrometry (PRM-MS), immunohistochemistry, and/or Western blot, was enhanced in MNR fetal liver and umbilical plasma at GD 120 and 165. IGF-I receptor autophosphorylationTyr1135 (-64%, P = 0.05) was reduced in MNR fetal liver at GD 120. Furthermore, fetal liver CK2 (α/α'/β) expression, CK2β colocalization, proximity with IGFBP-1, and CK2 autophosphorylationTyr182 were greater at GD 120 and 165 in MNR vs. C. Additionally, mTOR complex (mTORC)1 (p-P70S6KThr389, -52%, P = 0.05) and mTORC2 (p-AktSer473, -56%, P < 0.001) activity were decreased and AAR was activated (p-GCN2Thr898, +117%, P = 0.02; p-eIF2αSer51, +294%, P = 0.002; p-ERKThr202, +111%, P = 0.03) in MNR liver at GD 120. Our data suggest that fetal liver IGFBP-1 hyperphosphorylation, mediated by mTOR inhibition and both AAR and CK2 activation, is a key link between restricted nutrient and oxygen availability and the development of IUGR.
Collapse
Affiliation(s)
- Jenica H Kakadia
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Bhawani B Jain
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Austen Sutherland
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, Ontario, Canada
| | - Cun Li
- University of Wyoming, Laramie, Wyoming
- Southwest National Primate Research Center, San Antonio, Texas
| | - Peter W Nathanielsz
- University of Wyoming, Laramie, Wyoming
- Southwest National Primate Research Center, San Antonio, Texas
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
7
|
Abu Shehab M, Biggar K, Kakadia JH, Dhruv M, Jain B, Nandi P, Nygard K, Jansson T, Gupta MB. Inhibition of decidual IGF-1 signaling in response to hypoxia and leucine deprivation is mediated by mTOR and AAR pathways and increased IGFBP-1 phosphorylation. Mol Cell Endocrinol 2020; 512:110865. [PMID: 32502935 DOI: 10.1016/j.mce.2020.110865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 01/04/2023]
Abstract
Decidual mechanistic target of rapamycin (mTOR) is inhibited, amino acid response (AAR) and protein kinase CK2 are activated, and IGF (insulin-like growth factor) binding protein (IGFBP)-1 is hyperphosphorylated in human intrauterine growth restriction (IUGR). Using decidualized human immortalized endometrial stromal cells (HIESC), we hypothesized that hypoxia and leucine deprivation causing inhibition of decidual IGF-1 signaling is mediated by mTOR, AAR, CK2 and IGFBP-1 phosphorylation. Mass spectrometry demonstrated that hypoxia (1% O2) or rapamycin increased IGFBP-1 phosphorylation singly at Ser101/119/169 (confirmed using immunoblotting) and dually at pSer169 + 174. Hypoxia resulted in mTOR inhibition, AAR and CK2 activation, and decreased IGF-1 bioactivity, with no additional changes with rapamycin + hypoxia. Rapamycin and/or hypoxia promoted colocalization of IGFBP-1 and CK2 (dual-immunofluorescence and proximity ligation assay). Leucine deprivation showed similar outcomes. Changes in IGFBP-1 phosphorylation regulated by mTOR/AAR signaling and CK2 may represent a novel mechanism linking oxygen and nutrient availability to IGF-1 signaling in the decidua.
Collapse
Affiliation(s)
- Majida Abu Shehab
- Department of Pediatrics, University of Western Ontario, London, ON, Canada
| | - Kyle Biggar
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| | - Jenica H Kakadia
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Manthan Dhruv
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Bhawani Jain
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Pinki Nandi
- Department of Pediatrics, University of Western Ontario, London, ON, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, ON, Canada
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Department of Pediatrics, University of Western Ontario, London, ON, Canada; Department of Biochemistry, University of Western Ontario, London, ON, Canada; Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
8
|
Liu Y, Xiao J, Zhang B, Shelite TR, Su Z, Chang Q, Judy B, Li X, Drelich A, Bei J, Zhou Y, Zheng J, Jin Y, Rossi SL, Tang SJ, Wakamiya M, Saito T, Ksiazek T, Kaphalia B, Gong B. Increased talin-vinculin spatial proximities in livers in response to spotted fever group rickettsial and Ebola virus infections. J Transl Med 2020; 100:1030-1041. [PMID: 32238906 PMCID: PMC7111589 DOI: 10.1038/s41374-020-0420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.
Collapse
Affiliation(s)
- Yakun Liu
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jie Xiao
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Ben Zhang
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Thomas R. Shelite
- 0000 0001 1547 9964grid.176731.5Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Zhengchen Su
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Qing Chang
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Barbara Judy
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Xiang Li
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Aleksandra Drelich
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jiani Bei
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0004 0532 1428grid.265231.1Present Address: Life Science Department, Tunghai University, Taichung City, Taiwan
| | - Yixuan Zhou
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0004 0369 1599grid.411525.6Present Address: Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Junying Zheng
- 0000 0001 1547 9964grid.176731.5Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Yang Jin
- 0000 0004 1936 7558grid.189504.1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA USA
| | - Shannan L. Rossi
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Shao-Jun Tang
- 0000 0001 1547 9964grid.176731.5Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Maki Wakamiya
- 0000 0001 1547 9964grid.176731.5Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Tais Saito
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Thomas Ksiazek
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Bhupendra Kaphalia
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
9
|
Gupta MB, Jansson T. Novel roles of mechanistic target of rapamycin signaling in regulating fetal growth†. Biol Reprod 2019; 100:872-884. [PMID: 30476008 PMCID: PMC6698747 DOI: 10.1093/biolre/ioy249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling functions as a central regulator of cellular metabolism, growth, and survival in response to hormones, growth factors, nutrients, energy, and stress signals. Mechanistic TOR is therefore critical for the growth of most fetal organs, and global mTOR deletion is embryonic lethal. This review discusses emerging evidence suggesting that mTOR signaling also has a role as a critical hub in the overall homeostatic control of fetal growth, adjusting the fetal growth trajectory according to the ability of the maternal supply line to support fetal growth. In the fetus, liver mTOR governs the secretion and phosphorylation of insulin-like growth factor binding protein 1 (IGFBP-1) thereby controlling the bioavailability of insulin-like growth factors (IGF-I and IGF-II), which function as important growth hormones during fetal life. In the placenta, mTOR responds to a large number of growth-related signals, including amino acids, glucose, oxygen, folate, and growth factors, to regulate trophoblast mitochondrial respiration, nutrient transport, and protein synthesis, thereby influencing fetal growth. In the maternal compartment, mTOR is an integral part of a decidual nutrient sensor which links oxygen and nutrient availability to the phosphorylation of IGFBP-1 with preferential effects on the bioavailability of IGF-I in the maternal-fetal interface and in the maternal circulation. These new roles of mTOR signaling in the regulation fetal growth will help us better understand the molecular underpinnings of abnormal fetal growth, such as intrauterine growth restriction and fetal overgrowth, and may represent novel avenues for diagnostics and intervention in important pregnancy complications.
Collapse
Affiliation(s)
- Madhulika B Gupta
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado | Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Gupta MB, Abu Shehab M, Nygard K, Biggar K, Singal SS, Santoro N, Powell TL, Jansson T. IUGR Is Associated With Marked Hyperphosphorylation of Decidual and Maternal Plasma IGFBP-1. J Clin Endocrinol Metab 2019; 104:408-422. [PMID: 30124960 PMCID: PMC6306389 DOI: 10.1210/jc.2018-00820] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/13/2018] [Indexed: 01/03/2023]
Abstract
CONTEXT The mechanisms underpinning intrauterine growth restriction (IUGR), as a result of placental insufficiency, remain poorly understood, no specific treatment is available, and clinically useful biomarkers for early detection are lacking. OBJECTIVE We hypothesized that human IUGR is associated with inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling, increased protein kinase casein kinase-2 (CK2) activity, and increased insulin-like growth factor-binding protein 1 (IGFBP-1) expression and phosphorylation in decidua and that maternal plasma IGFBP-1 hyperphosphorylation in the first trimester predicts later development of IUGR. DESIGN, SETTING, AND PARTICIPANTS Decidua [n = 16 appropriate-for-gestational age (AGA); n = 16 IUGR] and maternal plasma (n = 13 AGA; n = 13 IUGR) were collected at delivery from two different cohorts. In addition, maternal plasma was obtained in the late first trimester from a third cohort of women (n = 7) who later delivered an AGA or IUGR infant. MAIN OUTCOME MEASURES Total IGFBP-1 expression and phosphorylation (Ser101/Ser119/Ser169), mTOR, AAR, and CK2 activity in decidua and IGFBP-1 concentration and phosphorylation in maternal plasma. RESULTS We show that decidual IGFBP-1 expression and phosphorylation are increased, mTOR is markedly inhibited, and AAR and CK2 are activated in IUGR. Moreover, IGFBP-1 hyperphosphorylation in first-trimester maternal plasma is associated with the development of IUGR. CONCLUSIONS These data are consistent with the possibility that the decidua functions as a nutrient sensor linking limited oxygen and nutrient availability to increased IGFBP-1 phosphorylation, possibly mediated by mTOR and AAR signaling. IGFBP-1 hyperphosphorylation in first-trimester maternal plasma may serve as a predictive IUGR biomarker, allowing early intervention.
Collapse
Affiliation(s)
- Madhulika B Gupta
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Correspondence and Reprint Requests: Madhulika B. Gupta, PhD, Children’s Health Research Institute, VRL Room A5-136 (WC), 800 Commissioners Road E., London, Ontario N6C 2VD, Canada. E-mail:
| | - Majida Abu Shehab
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Laboratory, University of Western Ontario, London, Ontario, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Sahil S Singal
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Nanette Santoro
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
11
|
Montenarh M, Götz C. Ecto-protein kinase CK2, the neglected form of CK2. Biomed Rep 2018; 8:307-313. [PMID: 29556379 DOI: 10.3892/br.2018.1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Abstract
Ecto-protein kinases, including protein kinase CK2 (former name, casein kinase 2), have been the focus of research for more than 30 years. At the beginning of the ecto-kinase research their identification was performed with substrates and inhibitors whose specificity under the current knowledge was rather limited. Since all currently known ecto-kinases, including ecto-CK2, have intracellular counterparts, one has to exclude that an ecto-localization originates from intracellular counterparts after cell damage. Protein kinase CK2 is involved in cellular key processes such as cell cycle progression, inhibition of apoptosis, DNA damage repair, differentiation and many other processes. CK2 is composed of two catalytic CK2α or CK2α' subunits and two non-catalytic CK2β subunits. Progress in the ecto-kinase and in particular ecto-CK2 studies was made with the use of transfected tagged CK2 subunits, which allowed to follow their individual transport and localization on the cell surface after transfection. Furthermore, immunofluorescence studies with antibodies against CK2 subunits as well as affinity chromatography with a binding partner of CK2 subunits have improved ecto-kinase research. The use of new and more specific inhibitors as well as of substrates, which do not cross the plasma membrane, have further improved the specificity for ecto-CK2. From the various substrates of ecto-CK2, it can be concluded that ecto-CK2 plays a role in Alzheimer disease, cell adhesion, platelet aggregation, immune response and cellular signalling. New tools and techniques, to study ecto-CK2 activity, are required to identify new substrates and thereby new functional implications for ecto-CK2.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|