1
|
de Assis V, Kayisli UA, Ozmen A, Semerci N, Totary-Jain H, Pakasticali N, Halade GV, Lockwood CJ, Guzeloglu-Kayisli O. Decidual Cells Block Inflammation-Mediated Inhibition of 15-Hydroxyprostaglandin Dehydrogenase in Trophoblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1724-1736. [PMID: 38879084 DOI: 10.1016/j.ajpath.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024]
Abstract
Chorioamnionitis generates prostaglandin (PG) E2 and F2α, promoting fetal membrane rupture, cervical ripening, and uterine contractions. 15-Hydroxyprostaglandin dehydrogenase (HPGD) contributes to pregnancy maintenance by inactivating PGs. Herein, the role of decidual cells in the regulation of HPGD expression at the maternal-fetal interface was investigated. HPGD immunostaining was primarily detected in anchoring villi and choriodecidual extravillous trophoblasts (EVTs) during pregnancy. Chorionic EVTs adjacent to the decidua parietalis exhibited significantly higher HPGD levels than those adjacent to the amnion. HPGD histologic score levels were significantly lower in choriodecidua from chorioamnionitis versus gestational age-matched controls (means ± SEM, 132.6 ± 3.8 versus 31.2 ± 7.9; P < 0.05). Conditioned media supernatant (CMS) from in vitro decidualized term decidual cells (TDCs) up-regulated HPGD levels in differentiated EVTs, primary trophoblasts, and HTR8/SVneo cells. However, CMS from 5 μg/mL lipopolysaccharide or 10 ng/mL IL-1β pretreated TDC cultures down-regulated HPGD levels in HTR8/SVneo cultures. Similarly, direct treatment of HTR8/SVneo with lipopolysaccharide or IL-1β significantly reduced HPGD levels versus control (P < 0.05) but not in TDC-CMS pretreated HTR8/SVneo cultures. Collectively, these results uncover a novel decidual cell-mediated paracrine mechanism that stimulates levels of trophoblastic HPGD, whose function is to inactivate labor-inducing PGs, thereby promoting uterine quiescence during pregnancy. However, infectious/inflammatory stimuli in decidual cells cause a paracrine inhibition of trophoblastic HPGD expression, increasing PGE2/PGF2α levels, thereby contributing to preterm birth.
Collapse
Affiliation(s)
- Viviana de Assis
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Nagehan Pakasticali
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ganesh V Halade
- Department of Internal Medicine, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
2
|
Preston M, Hall M, Shennan A, Story L. The role of placental insufficiency in spontaneous preterm birth: A literature review. Eur J Obstet Gynecol Reprod Biol 2024; 295:136-142. [PMID: 38359634 DOI: 10.1016/j.ejogrb.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Preterm Birth (delivery before 37 weeks of gestation) is the leading cause of childhood mortality and is also associated with significant morbidity both in the neonatal period and beyond. The aetiology of spontaneous preterm birth is unclear and likely multifactorial incorporating factors such as infection/inflammation and cervical injury. Placental insufficiency is emerging as an additional contributor to spontaneous preterm delivery; however, the mechanisms by which this occurs are not fully understood. Serum biomarkers and imaging techniques have been investigated as potential predictors of placental insufficiency, however none have yet been found to have a sufficient predictive value. This review examines the evidence for the role of the placenta in preterm birth, preterm prelabour rupture of the membranes and abruption as well as highlighting areas where further research is required.
Collapse
Affiliation(s)
- Megan Preston
- Department of Women and Children's Health, St Thomas' Hospital, King's College, London, UK
| | - Megan Hall
- Department of Women and Children's Health, St Thomas' Hospital, King's College, London, UK; Department of Perinatal Imaging, St Thomas' Hospital, King's College, London, UK
| | - Andrew Shennan
- Department of Women and Children's Health, St Thomas' Hospital, King's College, London, UK
| | - Lisa Story
- Department of Women and Children's Health, St Thomas' Hospital, King's College, London, UK; Department of Perinatal Imaging, St Thomas' Hospital, King's College, London, UK.
| |
Collapse
|
3
|
Peña-Garcia PE, Morales-Ortiz J, Marrero-Palanco J, Virgillio A, Finette BA, Washington AV, Bonney EA. Decreased level of TREM like Transcript 1 (TLT-1) is associated with prematurity and promotes the in-utero inflammatory response to maternal lipopolysaccharide (LPS) exposure. Am J Reprod Immunol 2023; 90:e13772. [PMID: 37766406 PMCID: PMC10575570 DOI: 10.1111/aji.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM The occurrence of preterm birth is associated with multiple factors including bleeding, infection and inflammation. Platelets are mediators of hemostasis and can modulate inflammation through interactions with leukocytes. TREM like Transcript 1 (TLT-1) is a type 1 single Ig domain receptor on activated platelets. In adults, it plays a protective role by dampening the inflammatory response and facilitating platelet aggregation at sites of vascular injury. TLT-1 is expressed in human placenta and found in cord blood. We thus hypothesized that TLT-1 deficiency is associated with prematurity and fetal inflammation. METHOD OF STUDY To test this hypothesis, we examined cord blood levels of soluble TLT-1 (sTLT) in premature and term infants and compared the inflammatory response in C57BL/6 (WT) and TLT-1-/- (treml1-/- , KO) mice given intraperitoneal LPS mid-gestation RESULTS: The preterm infant cord blood level of sTLT was significantly lower than that found at term. On exposure to LPS, histology of KO (as compared to WT) placenta and decidua showed increased hemorrhage, and KO decidual RNA expression of IL-10 was significantly lower. KO fetal interface tissues (placenta, membranes, amniotic fluid) over time showed increased expression of inflammatory cytokines such as IL-6, IFN-γ, and TNF, but not MCP-1. However, fetal organs showed similar levels. CONCLUSION There is a potential association between insufficient TLT-1 expression and increased fetal inflammatory responses in the setting of prematurity. The data support further study of TLT-1 in the mechanistic link between bleeding, inflammation and preterm birth, and perhaps as a biomarker in human pregnancy.
Collapse
Affiliation(s)
- Paola E. Peña-Garcia
- University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| | | | | | - Ariana Virgillio
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| | - Barry A. Finette
- University of Vermont, Larner College of Medicine, Department of Pediatrics and
| | | | - Elizabeth A. Bonney
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| |
Collapse
|
4
|
Daskalakis G, Psarris A, Koutras A, Fasoulakis Z, Prokopakis I, Varthaliti A, Karasmani C, Ntounis T, Domali E, Theodora M, Antsaklis P, Pappa KI, Papapanagiotou A. Maternal Infection and Preterm Birth: From Molecular Basis to Clinical Implications. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050907. [PMID: 37238455 DOI: 10.3390/children10050907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
As the leading cause of neonatal morbidity and mortality, preterm birth is recognized as a major public health concern around the world. The purpose of this review is to analyze the connection between infections and premature birth. Spontaneous preterm birth is commonly associated with intrauterine infection/inflammation. The overproduction of prostaglandins caused by the inflammation associated with an infection could lead to uterine contractions, contributing to preterm delivery. Many pathogens, particularly Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Gardnerella vaginalis, Ureaplasma urealyticum, Mycoplasma hominis, Actinomyces, Candida spp., and Streptococcus spp. have been related with premature delivery, chorioamnionitis, and sepsis of the neonate. Further research regarding the prevention of preterm delivery is required in order to develop effective preventive methods with the aim of reducing neonatal morbidity.
Collapse
Affiliation(s)
- George Daskalakis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Alexandros Psarris
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Antonios Koutras
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Zacharias Fasoulakis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Ioannis Prokopakis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Antonia Varthaliti
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Christina Karasmani
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Thomas Ntounis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Marianna Theodora
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Panos Antsaklis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Kalliopi I Pappa
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Angeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| |
Collapse
|
5
|
Herrera CL, Maiti K, Smith R. Preterm Birth and Corticotrophin-Releasing Hormone as a Placental Clock. Endocrinology 2022; 164:bqac206. [PMID: 36478045 PMCID: PMC10583728 DOI: 10.1210/endocr/bqac206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Preterm birth worldwide remains a significant cause of neonatal morbidity and mortality, yet the exact mechanisms of preterm parturition remain unclear. Preterm birth is not a single condition, but rather a syndrome with a multifactorial etiology. This multifactorial nature explains why individual predictive measures for preterm birth have had limited sensitivity and specificity. One proposed pathway for preterm birth is via placentally synthesized corticotrophin-releasing hormone (CRH). CRH is a peptide hormone that increases exponentially in pregnancy and has been implicated in preterm birth because of its endocrine, autocrine, and paracrine roles. CRH has actions that increase placental production of estriol and of the transcription factor nuclear factor-κB, that likely play a key role in activating the myometrium. CRH has been proposed as part of a placental clock, with early activation of placental production resulting in preterm birth. This article will review the current understanding of preterm birth, CRH as an initiator of human parturition, and the evidence regarding the use of CRH in the prediction of preterm birth.
Collapse
Affiliation(s)
- Christina L Herrera
- Department of Obstetrics & Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9032, USA
| | - Kaushik Maiti
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2305, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2305, Australia
| |
Collapse
|
6
|
Ozmen A, Guzeloglu-Kayisli O, Tabak S, Guo X, Semerci N, Nwabuobi C, Larsen K, Wells A, Uyar A, Arlier S, Wickramage I, Alhasan H, Totary-Jain H, Schatz F, Odibo AO, Lockwood CJ, Kayisli UA. Preeclampsia is Associated With Reduced ISG15 Levels Impairing Extravillous Trophoblast Invasion. Front Cell Dev Biol 2022; 10:898088. [PMID: 35837332 PMCID: PMC9274133 DOI: 10.3389/fcell.2022.898088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 01/29/2023] Open
Abstract
Among several interleukin (IL)-6 family members, only IL-6 and IL-11 require a gp130 protein homodimer for intracellular signaling due to lack of intracellular signaling domain in the IL-6 receptor (IL-6R) and IL-11R. We previously reported enhanced decidual IL-6 and IL-11 levels at the maternal-fetal interface with significantly higher peri-membranous IL-6 immunostaining in adjacent interstitial trophoblasts in preeclampsia (PE) vs. gestational age (GA)-matched controls. This led us to hypothesize that competitive binding of these cytokines to the gp130 impairs extravillous trophoblast (EVT) differentiation, proliferation and/or invasion. Using global microarray analysis, the current study identified inhibition of interferon-stimulated gene 15 (ISG15) as the only gene affected by both IL-6 plus IL-11 vs. control or IL-6 or IL-11 treatment of primary human cytotrophoblast cultures. ISG15 immunostaining was specific to EVTs among other trophoblast types in the first and third trimester placental specimens, and significantly lower ISG15 levels were observed in EVT from PE vs. GA-matched control placentae (p = 0.006). Induction of primary trophoblastic stem cell cultures toward EVT linage increased ISG15 mRNA levels by 7.8-fold (p = 0.004). ISG15 silencing in HTR8/SVneo cultures, a first trimester EVT cell line, inhibited invasion, proliferation, expression of ITGB1 (a cell migration receptor) and filamentous actin while increasing expression of ITGB4 (a receptor for hemi-desmosomal adhesion). Moreover, ISG15 silencing further enhanced levels of IL-1β-induced pro-inflammatory cytokines (CXCL8, IL-6 and CCL2) in HTR8/SVneo cells. Collectively, these results indicate that ISG15 acts as a critical regulator of EVT morphology and function and that diminished ISG15 expression is associated with PE, potentially mediating reduced interstitial trophoblast invasion and enhancing local inflammation at the maternal-fetal interface. Thus, agents inducing ISG15 expression may provide a novel therapeutic approach in PE.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Selcuk Tabak
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Chinedu Nwabuobi
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ali Wells
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Asli Uyar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ishani Wickramage
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hasan Alhasan
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anthony O. Odibo
- Divisions of Maternal-Fetal Medicine and Ultrasound, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles J. Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Umit A. Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,*Correspondence: Umit A. Kayisli,
| |
Collapse
|
7
|
Ticconi C, Di Simone N, Campagnolo L, Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell 2021; 72:101586. [PMID: 34217128 DOI: 10.1016/j.tice.2021.101586] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Decidualization is characterized by a series of genetic, metabolic, morphological, biochemical, vascular and immune changes occurring in the endometrial stroma in response to the implanting embryo or even before conception and involves the stromal cells of the endometrium. It is a fundamental reproductive event occurring in mammalian species with hemochorial placentation. A growing body of experimental and clinical evidence strongly suggests that defective or disrupted decidualization contributes to the establishment of an inappropriate maternal-fetal interface. This has relevant clinical consequences, ranging from recurrent implantation failure and recurrent pregnancy loss in early pregnancy to several significant complications of advanced gestation. Moreover, recent evidence indicates that selected diseases of the endometrium, such as chronic endometritis and endometriosis, can have a detrimental impact on the decidualization response in the endometrium and may help explain some aspects of the reduced reproductive outcome associated with these conditions. Further research efforts are needed to fully understand the biomolecular mechanisms ans events underlying an abnormal decidualization response. This will permit the development of new diagnostic and therapeutic strategies aimed to improve the likelihood of achieveing a successful pregnancy.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
8
|
Molecular Changes on Maternal-Fetal Interface in Placental Abruption-A Systematic Review. Int J Mol Sci 2021; 22:ijms22126612. [PMID: 34205566 PMCID: PMC8235312 DOI: 10.3390/ijms22126612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
Placental abruption is the separation of the placenta from the lining of the uterus before childbirth. It is an infrequent perinatal complication with serious after-effects and a marked risk of maternal and fetal mortality. Despite the fact that numerous placental abruption risk factors are known, the pathophysiology of this issue is multifactorial and not entirely clear. The aim of this review was to examine the current state of knowledge concerning the molecular changes on the maternal–fetal interface occurring in placental abruption. Only original research articles describing studies published in English until the 15 March 2021 were considered eligible. Reviews, book chapters, case studies, conference papers and opinions were excluded. The systematic literature search of PubMed/MEDLINE and Scopus databases identified 708 articles, 22 of which were analyzed. The available evidence indicates that the disruption of the immunological processes on the maternal–fetal interface plays a crucial role in the pathophysiology of placental abruption. The features of chronic non-infectious inflammation and augmented immunological cytotoxic response were found to be present in placental abruption samples in the reviewed studies. Various molecules participate in this process, with only a few being examined. More advanced research is needed to fully explain this complicated process.
Collapse
|
9
|
Kumar D, Moore RM, Mercer BM, Mansour JM, Moore JJ. Mechanism of Human Fetal Membrane Biomechanical Weakening, Rupture and Potential Targets for Therapeutic Intervention. Obstet Gynecol Clin North Am 2021; 47:523-544. [PMID: 33121643 DOI: 10.1016/j.ogc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Using a novel in vitro model system combining biochemical/histologic with bioengineering approaches has provided significant insights into the physiology of fetal membrane weakening and rupture along with potential mechanistic reasons for lack of efficacy of currently clinically used agents to prevent preterm premature rupture of the membranes (pPROM) and preterm births. Likewise, the model has also facilitated screening of agents with potential for preventing pPROM and preterm birth.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| | - Robert M Moore
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Brian M Mercer
- Department of Reproductive Biology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Joseph M Mansour
- Mechanical and Aerospace Engineering, Case Western Reserve University, Glennan 617, Cleveland, OH 44106, USA
| | - John J Moore
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Reproductive Biology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
10
|
Varghese PM, Tsolaki AG, Yasmin H, Shastri A, Ferluga J, Vatish M, Madan T, Kishore U. Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology 2020; 225:152008. [PMID: 33130519 PMCID: PMC7434692 DOI: 10.1016/j.imbio.2020.152008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The current coronavirus pandemic, COVID-19, is the third outbreak of disease caused by the coronavirus family, after Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. It is an acute infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This severe disease is characterised by acute respiratory distress syndrome, septic shock, metabolic acidosis, coagulation dysfunction, and multiple organ dysfunction syndromes. Currently, no drugs or vaccines exist against the disease and the only course of treatment is symptom management involving mechanical ventilation, immune suppressants, and repurposed drugs. The severe form of the disease has a relatively high mortality rate. The last six months have seen an explosion of information related to the host receptors, virus transmission, virus structure-function relationships, pathophysiology, co-morbidities, immune response, treatment and the most promising vaccines. This review takes a critically comprehensive look at various aspects of the host-pathogen interaction in COVID-19. We examine the genomic aspects of SARS-CoV-2, modulation of innate and adaptive immunity, complement-triggered microangiopathy, and host transmission modalities. We also examine its pathophysiological impact during pregnancy, in addition to emphasizing various gaps in our knowledge. The lessons learnt from various clinical trials involving repurposed drugs have been summarised. We also highlight the rationale and likely success of the most promising vaccine candidates.
Collapse
Affiliation(s)
- Praveen Mathews Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Manu Vatish
- Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Oxford University Hospital, Oxford, OX3 9DU, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR - National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom.
| |
Collapse
|
11
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
12
|
Moore RM, Katri R, Kumar D, Mansour JM, Mercer B, Moore JJ. α-Lipoic acid blocks the GMCSF induced protease/protease inhibitor spectrum associated with fetal membrane weakening in-vitro. Placenta 2020; 97:79-88. [PMID: 32792069 DOI: 10.1016/j.placenta.2020.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION We use an in-vitro human fetal membrane (FM) explant-based model to study inflammation-induced FM weakening, a prerequisite for PPROM. In this system, GMCSF is a critical intermediate, both necessary and sufficient for TNFα and thrombin induced FM weakening. α-Lipoic-acid (LA) blocks TNFα and thrombin, as well as GMCSF-induced weakening. Recently, we reported LA concomitantly blocks GMCSF-induction of MMPs 2, 9 and 10 and inhibition of TIMPs 1-3. The aim of this study was to show that LA blocks GMCSF-induced increases in additional proteases and reductions in additional protease inhibitors. METHODS FM fragments were cultured±LA and then±GMCSF. In other experiments, weak versus strong, fresh FM were cultured without additions. Fragments were strength tested and media analyzed by multiplex protein ELISA for proteases and protease inhibitors. RESULTS GMCSF induced FM weakening and concomitantly increased several Proteases (Cathepsin-S, Proteinase-3, Elastase-2) and decreased several protease inhibitors (NGAL, Cystatin-C, HE4 and Thrombospondin1). LA inhibited GMCSF-induced FM weakening and all enzymatic changes. Untreated weaker versus stronger regions of fresh FM showed comparable differences in proteases and protease inhibitor patterns to GMCSF-stimulated versus controls. CONCLUSION LA blocks GMCSF-induced human FM weakening and associated protease increases and inhibitor decreases. The GMCSF-induced spectrum of protease/protease-inhibitor changes is similar to that in the natural weak FM fragments. In concert with previously reported GMCSF-induced changes in MMPs & TIMPs, these other protease and protease-inhibitor changes presumably facilitate FM weakening and rupture. LA blocks these GMCSF effects and therefore may be a useful agent to prevent PPROM.
Collapse
Affiliation(s)
- R M Moore
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - R Katri
- Miami University, MetroHealth Medical Center, 44109, Oxford, OH, USA
| | - D Kumar
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - J M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 100900 Euclid Ave, 44106, Cleveland, OH, USA
| | - B Mercer
- Department of Reproductive Biology, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - J J Moore
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA; Department of Reproductive Biology, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA.
| |
Collapse
|