1
|
Dong N, Du M, Wu Q. Molecular insights into the corin function at the uteroplacental interface. Placenta 2025:S0143-4004(25)00159-6. [PMID: 40360315 DOI: 10.1016/j.placenta.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
In pregnancy, cell-cell interactions and tissue remodeling are important physiological processes at the uteroplacental interface. To date, molecular mechanisms governing cell activities at the uteroplacental interface are not fully understood. Corin is a proteolytic enzyme responsible for activating atrial natriuretic peptide (ANP), a multifunctional hormone essential for cardiovascular and metabolic homeostasis. Upon progesterone stimulation, corin expression is induced in the uterus via a specific set of transcription factors. Uterine corin activates ANP to enhance decidualization and cell-cell interactions within the vasculature, leading to sequential vascular smooth muscle and endothelial cell death in spiral arteries. These events are crucial for uterine vascular remodeling and trophoblast invasion. Corin also functions in the decidua to regulate macrophage distribution and function in response to placental ischemia. In mice, Corin knockout impairs endometrial decidualization, vascular remodeling, and macrophage function at the uteroplacental interface, causing a preeclampsia (PE)-like phenotype. In humans, deleterious variants and impaired epigenetic modifications in the CORIN gene have been reported in women with PE, indicating that corin deficiency may be a contributing factor in the pathogenesis of PE. In this review, we describe the corin function at the uteroplacental interface and underlying molecular mechanisms. We also discuss potential implications of corin deficiency in pregnancy-associated diseases.
Collapse
Affiliation(s)
- Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Jagodzinska A, Wsol A, Gondek A, Cudnoch-Jedrzejewska A. High Serum Adrenomedullin and Mid-Regional Pro-Atrial Natriuretic Peptide Concentrations in Early Pregnancy Predict the Development of Gestational Hypertension. Diagnostics (Basel) 2024; 14:2670. [PMID: 39682578 DOI: 10.3390/diagnostics14232670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES Adrenomedullin (AM) and natriuretic peptide levels are elevated in pre-eclampsia. The aim of the present study was to determine AM and natriuretic peptide concentrations before 20 weeks of pregnancy in women who later developed gestational hypertension and in normal pregnancies. METHODS 95 pregnant Caucasian women were included in the study. Gestational hypertension (GH) was diagnosed in 18 patients. The control group consisted of 41 patients with normal pregnancies (non-GH). Blood samples were taken during the first trimester of pregnancy. RESULTS Analysis of NT-proBNP showed no significant differences between the group of patients who later developed GH and those with normal pregnancies. Patients who developed GH later in pregnancy had higher levels of both MR-proANP (p < 0.001) and adrenomedullin (p < 0.001). Higher levels of MR-proANP were found in the GH with pre-eclampsia group compared with the GH without pre-eclampsia group. Higher levels of AM (p < 0.05) and MR-proANP (p < 0.005) correlated with the risk of preterm birth. CONCLUSIONS (1) Plasma adrenomedullin and MR-proANP concentrations were higher before the 20th week of pregnancy in women who later developed GH; (2) NT-proBNP concentrations did not differ between women with pregnancy-induced hypertension and normal pregnancies; (3) MR-proANP concentrations were highest in patients who developed pre-eclampsia in advanced pregnancy; and (4) there was a correlation between higher plasma adrenomedullin, MR-proANP concentrations before the 20th week of pregnancy, and the risk of preterm birth.
Collapse
Affiliation(s)
- Aleksandra Jagodzinska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agnieszka Wsol
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agata Gondek
- Department of Methodology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Degrelle SA, Buchrieser J, Dupressoir A, Porrot F, Loeuillet L, Schwartz O, Fournier T. IFITM1 inhibits trophoblast invasion and is induced in placentas associated with IFN-mediated pregnancy diseases. iScience 2023; 26:107147. [PMID: 37434700 PMCID: PMC10331461 DOI: 10.1016/j.isci.2023.107147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are restriction factors that block many viruses from entering cells. High levels of type I interferon (IFN) are associated with adverse pregnancy outcomes, and IFITMs have been shown to impair the formation of syncytiotrophoblast. Here, we examine whether IFITMs affect another critical step of placental development, extravillous cytotrophoblast (EVCT) invasion. We conducted experiments using in vitro/ex vivo models of EVCT, mice treated in vivo with the IFN-inducer poly (I:C), and human pathological placental sections. Cells treated with IFN-β demonstrated upregulation of IFITMs and reduced invasive abilities. Transduction experiments confirmed that IFITM1 contributed to the decreased cell invasion. Similarly, migration of trophoblast giant cells, the mouse equivalent of human EVCTs, was significantly reduced in poly (I:C)-treated mice. Finally, analysis of CMV- and bacterial-infected human placentas revealed upregulated IFITM1 expression. These data demonstrate that high levels of IFITM1 impair trophoblast invasion and could explain the placental dysfunctions associated with IFN-mediated disorders.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- Université Paris Cité, INSERM, UMR-S1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre- & Post-natal Microbiota (3PHM), 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, 75015 Paris, France
- CNRS-UMR3569, 75015 Paris, France
| | - Anne Dupressoir
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Hôpital Gustave Roussy, 94805 Villejuif, France
- UMR 9196, Université Paris-Sud, 91405 Orsay, France
| | - Françoise Porrot
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Hôpital Gustave Roussy, 94805 Villejuif, France
- UMR 9196, Université Paris-Sud, 91405 Orsay, France
| | - Laurence Loeuillet
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, 75015 Paris, France
- CNRS-UMR3569, 75015 Paris, France
- Vaccine Research Institute, 94010 Créteil, France
| | - Thierry Fournier
- Université Paris Cité, INSERM, UMR-S1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre- & Post-natal Microbiota (3PHM), 75006 Paris, France
| |
Collapse
|
5
|
Binder NK, Beard S, de Alwis N, Fato BR, Nguyen TV, Kaitu’u-Lino TJ, Hannan NJ. Investigating the Effects of Atrial Natriuretic Peptide on the Maternal Endothelium to Determine Potential Implications for Preeclampsia. Int J Mol Sci 2023; 24:ijms24076182. [PMID: 37047162 PMCID: PMC10094118 DOI: 10.3390/ijms24076182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Preeclampsia is associated with an increased lifelong risk of cardiovascular disease (CVD). It is not clear whether this is induced by persistent systemic organ and vascular damage following preeclampsia or due to a predisposition to both conditions that share cardiovascular pathophysiology. Common to both CVD and preeclampsia is the dysregulation of corin and its proteolytic product, atrial natriuretic peptide (ANP). ANP, a hypotensive hormone converted from pro-ANP by corin, is involved in blood pressure homeostasis. While corin is predominantly a cardiac enzyme, both corin and pro-ANP are significantly upregulated in the gravid uterus and dysregulated in preeclampsia. Relatively little is known about ANP function in the endothelium during a pregnancy complicated by preeclampsia. Here, we investigated the effect of ANP on endothelial cell proliferation and migration, markers of endothelial dysfunction, and receptor expression in omental arteries exposed to circulating preeclamptic toxins. ANP receptor expression is significantly upregulated in preeclamptic vasculature but not because of exposure to preeclampsia toxins tumour necrosis factor α or soluble fms-like tyrosine kinase-1. The supplementation of endothelial cells with ANP did not promote proliferation or migration, nor did ANP improve markers of endothelial dysfunction. The role of ANP in preeclampsia is unlikely to be via endothelial pathways.
Collapse
Affiliation(s)
- Natalie K. Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Bianca R. Fato
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Tuong-Vi Nguyen
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Diagnostics Discovery and Reverse Translation Laboratory, Heidelberg, VIC 3084, Australia
| | - Tu’uhevaha J. Kaitu’u-Lino
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Diagnostics Discovery and Reverse Translation Laboratory, Heidelberg, VIC 3084, Australia
| | - Natalie J. Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Correspondence: ; Tel.: +613-8458-4371
| |
Collapse
|
6
|
Benzo(a)pyrene and Cerium Dioxide Nanoparticles in Co-Exposure Impair Human Trophoblast Cell Stress Signaling. Int J Mol Sci 2023; 24:ijms24065439. [PMID: 36982514 PMCID: PMC10049531 DOI: 10.3390/ijms24065439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Human placenta is a multifunctional interface between maternal and fetal blood. Studying the impact of pollutants on this organ is crucial because many xenobiotics in maternal blood can accumulate in placental cells or pass into the fetal circulation. Benzo(a)pyrene (BaP) and cerium dioxide nanoparticles (CeO2 NP), which share the same emission sources, are found in ambient air pollution and also in maternal blood. The aim of the study was to depict the main signaling pathways modulated after exposure to BaP or CeO2 NP vs. co-exposure on both chorionic villi explants and villous cytotrophoblasts isolated from human term placenta. At nontoxic doses of pollutants, BaP is bioactivated by AhR xenobiotic metabolizing enzymes, leading to DNA damage with an increase in γ-H2AX, the stabilization of stress transcription factor p53, and the induction of its target p21. These effects are reproduced in co-exposure with CeO2 NP, except for the increase in γ-H2AX, which suggests a modulation of the genotoxic effect of BaP by CeO2 NP. Moreover, CeO2 NP in individual and co-exposure lead to a decrease in Prx-SO3, suggesting an antioxidant effect. This study is the first to identify the signaling pathways modulated after co-exposure to these two pollutants, which are common in the environment.
Collapse
|
7
|
Boroń D, Kornacki J, Gutaj P, Mantaj U, Wirstlein P, Wender-Ozegowska E. Corin-The Early Marker of Preeclampsia in Pregestational Diabetes Mellitus. J Clin Med 2022; 12:61. [PMID: 36614857 PMCID: PMC9821544 DOI: 10.3390/jcm12010061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia (PE) is one of the leading causes of mortality and morbidity in pregnant women. Pregestational diabetes (PGDM) patients are prone to vascular complications and preeclampsia, whereas vascular exposure to hyperglycemia induces inflammation, vascular remodeling, and arterial stiffness. Corin is a serine protease, converting inactive pro-atrial natriuretic peptide (pro-ANP) into an active form. It also promotes salt and water excretion by activating atrial natriuretic peptide (ANP), and significantly increases trophoblast invasion. The study aimed to determine whether corin may be a predictor of PE in a high-risk group-women with long-term PGDM. The nested case-control prospective study involved 63 patients with long-term pregestational type 1 diabetes (PGDM). In total, 17 patients developed preeclampsia (the study group), whereas 43 patients without PE constituted the control group. To assess corin concentration, blood samples were collected at two time points: between 18th-22nd week of gestation and 28th-32nd week of gestation. PE patients presented significantly higher mid-gestation corin levels, urine protein loss in each trimester, serum creatinine in the third trimester, and lower creatinine clearance in the third trimester. The results of our study indicate that serum corin assessment may play a role in predicting preeclampsia. Thus, it may be included in the PE risk calculator, initially in high-risk groups, such as patients with PGDM.
Collapse
Affiliation(s)
- Daniel Boroń
- Department of Reproduction, Poznań University of Medical Sciences, 61-701 Poznan, Poland
- PUMS Doctoral School, 61-701 Poznan, Poland
| | - Jakub Kornacki
- Department of Reproduction, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Paweł Gutaj
- Department of Reproduction, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Urszula Mantaj
- Department of Reproduction, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Przemysław Wirstlein
- Department of Reproduction, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznań University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
8
|
Biomarker screening in preeclampsia: an RNA-sequencing approach based on data from multiple studies. J Hypertens 2022; 40:2022-2036. [PMID: 36052525 DOI: 10.1097/hjh.0000000000003226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Biomarkers have become important in the prognosis and diagnosis of various diseases. High-throughput methods, such as RNA sequencing facilitate the detection of differentially expressed genes (DEGs), hence potential biomarker candidates. Individual studies suggest long lists of DEGs, hampering the identification of clinically relevant ones. Concerning preeclampsia - a major obstetric burden with high risk for adverse maternal and/or neonatal outcomes - limitations in diagnosis and prediction are still important issues. We, therefore, developed a workflow to facilitate the screening for biomarkers. METHODS On the basis of the tool DESeq2, a comprehensive workflow for identifying DEGs was established, analyzing data from several publicly available RNA-sequencing studies. We applied it to four RNA-sequencing datasets (one blood, three placenta) analyzing patients with preeclampsia and normotensive controls. We compared our results with other published approaches and evaluated their performance. RESULTS We identified 110 genes that are dysregulated in preeclampsia, observed in at least three of the studies analyzed, six even in all four studies. These included FLT-1, TREM-1, and FN1, which either represent established biomarkers at protein level, or promising candidates based on recent studies. For comparison, using a published meta-analysis approach, 5240 DEGs were obtained. CONCLUSION This study presents a data analysis workflow for preeclampsia biomarker screening, capable of identifying promising biomarker candidates, while drastically reducing the numbers of candidates. Moreover, we were also able to confirm its performance for heart failure. This approach can be applied to additional diseases for biomarker identification, and the set of DEGs identified in preeclampsia represents a resource for further studies.
Collapse
|
9
|
Chen L, Zhang Q, Zhang M, Yu J, Ren L, Li J, Ma S, He Y, Hu W, Peng H. Soluble Corin Predicts the Risk of Cardiovascular Disease. JACC: ASIA 2022; 2:490-501. [PMID: 36339355 PMCID: PMC9627939 DOI: 10.1016/j.jacasi.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/04/2022]
Abstract
Background As a key enzyme of the natriuretic peptides system, corin may participate in the development of cardiovascular disease (CVD). Its level in circulation predicted CVD recurrence in patients with myocardial infarction and heart failure, but no study examined this prediction in general populations. Objectives This study sought to examine the prospective association between corin and CVD in a community-based population of Chinese adults. Methods The Gusu cohort included 2,498 participants (mean age 53 years, 39% men) who were free of CVD at baseline. Serum corin was measured by enzyme-linked immunosorbent assay kits at baseline and CVD events were followed every 2 years for all participants. A competing-risks survival regression model was used to examine the association between serum corin and CVD. Results During 10 years of follow-up, 210 participants developed CVD including 88 stroke events. A higher serum corin (after log-transformation) at baseline was significantly associated with an increased risk of CVD (HR: 1.88; P = 0.019) and stroke (HR: 3.19; P = 0.014). Analysis using categorical serum corin (in quartiles) showed that participants in the highest quartile had a 62% and 179% increased risk for CVD (HR: 1.62; P = 0.024) and stroke (HR: 2.79; P = 0.004), respectively, compared with those in the lowest quartile. We did not find a significant association between serum corin and coronary heart disease. Conclusions A higher serum corin at baseline predicted a higher risk of CVD events and stroke, but not coronary heart disease, in Chinese adults, independent of conventional risk factors. Serum corin may be a predictor for stroke but the underlying mechanism needs further investigation.
Collapse
|
10
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
11
|
Corin: A Key Mediator in Sodium Homeostasis, Vascular Remodeling, and Heart Failure. BIOLOGY 2022; 11:biology11050717. [PMID: 35625445 PMCID: PMC9138375 DOI: 10.3390/biology11050717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is an important hormone that regulates many physiological and pathological processes, including electrolyte and body fluid balance, blood volume and pressure, cardiac channel activity and function, inflammatory response, lipid metabolism, and vascular remodeling. Corin is a transmembrane serine protease that activates ANP. Variants in the CORIN gene are associated with cardiovascular disease, including hypertension, cardiac hypertrophy, atrial fibrillation, heart failure, and preeclampsia. The current data indicate a key role of corin-mediated ANP production and signaling in the maintenance of cardiovascular homeostasis. In this review, we discuss the latest findings regarding the molecular and cellular mechanisms underlying the role of corin in sodium homeostasis, uterine spiral artery remodeling, and heart failure. Abstract Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues, including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling act locally to promote sodium excretion and vascular remodeling. These results indicate that corin and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients, impaired natriuretic peptide processing is a common pathological mechanism that contributes to sodium and body fluid retention. In this review, we discuss most recent findings regarding the role of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess the potential of corin-based approaches to enhance natriuretic peptide production and activity as a treatment of heart failure.
Collapse
|
12
|
Zhang W, Zhou Y, Dong Y, Liu W, Li H, Song W. Correlation between N-terminal pro-atrial natriuretic peptide, corin, and target organ damage in hypertensive disorders of pregnancy. J Clin Hypertens (Greenwich) 2022; 24:644-651. [PMID: 35199942 PMCID: PMC9106090 DOI: 10.1111/jch.14450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
The objective was to evaluate the correlation between N‐terminal pro‐atrial natriuretic peptide (NT‐proANP), corin and the severity of target organ injury in hypertensive disorders of pregnancy. A total of 78 women with hypertensive disorders of pregnancy and 49 normotensive pregnancies were enrolled. The clinical characteristics, laboratory index and echocardiogram results were collected. NT‐proANP, corin, sFlt‐1 and PlGF levels were measured. A receiver's operating characteristics (ROC) curve was performed to evaluate the efficacy of predicting target organ injury in the HDP group. The NT‐proANP, corin, and sFlt‐1/PlGF ratio were increased in the HDP group (p < .05). The area under the curve (AUC) predicted by NT‐proANP and corin were larger than sFlt‐1/PlGF ratio (0.779, 0.867, and 0.766, respectively). The creatinine and urine protein were significantly increased, while the estimated glomerular filtration rate (eGFR) was dramatically decreased in the HDP group (p < .05 each). The left atrial diameter (LAD), left atrial volume index (LAVI), left ventricular posterior wall thickness (LVPWT), and left ventricular septal thickness (LVST) were larger in the HDP group (p < .001 each). The NT‐proANP/corin levels were positively correlated with LAD, creatinine, and urine protein, and negatively correlated with eGFR in HDP group (p < .05 each). Multiple regressions demonstrated that NT‐proANP was an independent risk factor of LAD and urine protein, and corin was an independent risk factor of creatinine and eGFR in HDP group. NT‐proANP and corin may be reliable biomarkers for evaluating the severity of target organ damage in the hypertensive disorders of pregnant patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| | - Ying Zhou
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| | - Yubing Dong
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| | - Wanyu Liu
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| | - Haiying Li
- The Dalian Obstetrics and Gynecology Hospital, DaLian Liaoning, China
| | - Wei Song
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| |
Collapse
|
13
|
Function and regulation of corin in physiology and disease. Biochem Soc Trans 2021; 48:1905-1916. [PMID: 33125488 DOI: 10.1042/bst20190760] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) is of major importance in the maintenance of electrolyte balance and normal blood pressure. Reduced plasma ANP levels are associated with the increased risk of cardiovascular disease. Corin is a type II transmembrane serine protease that converts the ANP precursor to mature ANP. Corin deficiency prevents ANP generation and alters electrolyte and body fluid homeostasis. Corin is synthesized as a zymogen that is proteolytically activated on the cell surface. Factors that disrupt corin folding, intracellular trafficking, cell surface expression, and zymogen activation are expected to impair corin function. To date, CORIN variants that reduce corin activity have been identified in hypertensive patients. In addition to the heart, corin expression has been detected in non-cardiac tissues, where corin and ANP participate in diverse physiological processes. In this review, we summarize the current knowledge in corin biosynthesis and post-translational modifications. We also discuss tissue-specific corin expression and function in physiology and disease.
Collapse
|