1
|
Intonti S, Kokona D, Zinkernagel MS, Enzmann V, Stein JV, Conedera FM. Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways. Glia 2025; 73:822-839. [PMID: 39873321 PMCID: PMC11845847 DOI: 10.1002/glia.24656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia. Glial cells act as sentinels, detecting antigens released during degeneration and interacting with T-cells via MHC molecules, which are essential for immune responses. Microglia function as APCs via the MHC Class II pathway, upregulating key molecules such as Csf1r and cytokines. In contrast, Müller cells act through the MHC Class I pathway, exhibiting upregulated antigen processing genes and promoting a CD8+ T-cell response. Distinct cytokine signaling pathways, including TNF-α and IFN Type I, contribute to the immune balance. Human retinal specimens corroborate these findings, demonstrating glial activation and MHC expression correlating with degenerative changes. In vitro assays also confirmed differential T-cell migration responses to activated microglia and Müller cells, highlighting their role in shaping the immune milieu within the retina. In summary, our study emphasizes the involvement of retinal glial cells in modulating the immune response after insults to the retinal parenchyma. Unraveling the intricacies of glia-mediated antigen presentation in RD is essential for developing precise therapeutic interventions for retinal pathologies.
Collapse
Affiliation(s)
- Simona Intonti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and ImmunologyUniversity of FribourgFribourgSwitzerland
| | - Federica M. Conedera
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Oncology, Microbiology and ImmunologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
2
|
Lei Y, Wang Y, Tang S, Yang J, Lai D, Qiu Q. The adaptive immune system in the retina of diabetics. Surv Ophthalmol 2025; 70:241-254. [PMID: 39566563 DOI: 10.1016/j.survophthal.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
As the prevalence of diabetes mellitus increases each year, its most common microvascular complication, diabetic retinopathy (DR), is also on the rise. DR is now regarded as an inflammatory disease in which innate immunity plays a crucial role, and a large number of innate immune cells with associated cytokines are involved in the pathologic process of DR. The role of adaptive immunity in DR is seldom mentioned, probably due to the general perception of the immune privileged environment of the retina; however, in recent years there has been a gradual increase in research on the role of adaptive immunity in DR, and with the discovery of the retinal lymphatic system, it seems that the role of adaptive immunity can no longer be ignored. Here, we discuss the immunosuppressive environment of the retina, the phenomenon and potential mechanisms of lymphocyte infiltration in DR, and the role of the adaptive immune system in the diabetic retina, which may point the way for future research.
Collapse
Affiliation(s)
- Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Hu T, Meng S, Liu C, Fang W, Xia Z, Hu Y, Luo J, Xia X. LCN2 deficiency mitigates the neuroinflammatory damage following acute glaucoma. Theranostics 2025; 15:2967-2990. [PMID: 40083945 PMCID: PMC11898297 DOI: 10.7150/thno.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: Acute high intraocular pressure (IOP) induces retinal ischemia/reperfusion (RI/R) that further initiates neuroinflammatory responses. This event can cause retinal tissue damage and neuronal death, ultimately resulting in irreversible blindness worldwide that lacks effective therapies, validated treatment targets and underlying mechanisms. We sought to explore the potential mechanisms on the causal link between the neuroinflammatory response and neurodegeneration following acute high IOP. Methods: A rat model of RI/R induced by acute high IOP was used to investigate the spatiotemporal profiles of blood-retinal barrier (BRB) disruption, peripheral immune cell infiltration, and innate immune cell response following acute glaucomatous injury. RNA sequencing and in vivo transfection with adeno-associated virus (AAV) were used to explore the pathogenic mechanisms of acute high IOP-induced neuroinflammation. Results: Disruption of the inner BRB and infiltration of macrophages and lymphocytes occurred during the early stage after acute high IOP. These events were accompanied by an innate immune response. RNA sequencing revealed that Lipocalin-2 (Lcn2) was one of the most significantly up-regulated inflammation-related genes. Lcn2 knockdown ameliorated inner BRB disruption, peripheral immune cell infiltration, and innate immune cell response, resulting in neuroprotective effects. Furthermore, we found that acute glaucomatous injury triggers high expression of LCN2 in the peripheral serum, which is strongly associated with the severity of the neuroinflammatory response in the retina. Conclusions: A "neuroinflammatory cascade" characterized by breakdown of inner BRB, peripheral immune cell infiltration, and innate immune cell response occurs during the initial stage following glaucomatous injury. We also identified a novel mechanism for LCN2 in acute high IOP-induced neuroinflammation. LCN2 has the potential to serve as a candidate biomarker for predicting the severity of the neuroinflammatory response following acute glaucoma, which may provide new evidence to retinal repair strategies for better visual function recovery at intervention time points and new targets.
Collapse
Affiliation(s)
- Tu Hu
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Shuhan Meng
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Can Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China 410013
| | - Weizhou Fang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Zhaohua Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Yiqun Hu
- Xiangya Medical School, Central South University, Changsha, Hunan, China 410013
| | - Jia Luo
- The First Clinical college, Changsha Medical University, Changsha, Hunan, China 410203
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| |
Collapse
|
4
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
5
|
Ng TF, Cho JY, Zhao JL, Gardiner JR, Wang ES, Leung E, Xu Z, Fineman SL, Lituchy M, Lo AC, Taylor AW. Alpha-Melanocyte-Stimulating Hormone Maintains Retinal Homeostasis after Ischemia/Reperfusion. Biomolecules 2024; 14:525. [PMID: 38785932 PMCID: PMC11118772 DOI: 10.3390/biom14050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease. Eyes were subjected to an I/R procedure and were treated with α-MSH. Retinal sections were histopathologically scored. Also, the retinal sections were immunostained for viable ganglion cells, activated Muller cells, microglial cells, and apoptosis. The I/R caused retinal deformation and ganglion cell loss that was significantly reduced in I/R eyes treated with α-MSH. While α-MSH treatment marginally reduced the number of GFAP-positive Muller cells, it significantly suppressed the density of Iba1-positive microglial cells in the I/R retinas. Within one hour after I/R, there was apoptosis in the ganglion cell layer, and by 48 h, there was apoptosis in all layers of the neuroretina. The α-MSH treatment significantly reduced and delayed the onset of apoptosis in the retinas of I/R eyes. The results demonstrate that therapeutically augmenting the melanocortin pathways preserves retinal structure and cell survival in eyes with progressive neuroretinal degenerative disease.
Collapse
Affiliation(s)
- Tat Fong Ng
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Jenna Y. Cho
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - John L. Zhao
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - John R. Gardiner
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Eric S. Wang
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Elman Leung
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Ziqian Xu
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Samantha L. Fineman
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Melinda Lituchy
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Amy C. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Andrew W. Taylor
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| |
Collapse
|
6
|
Peng X, Li H, Zhu L, Zhao S, Li Z, Li S, DongtingWu, Chen J, Zheng S, Su W. Single-cell sequencing of the retina shows that LDHA regulates pathogenesis of autoimmune uveitis. J Autoimmun 2024; 143:103160. [PMID: 38160538 DOI: 10.1016/j.jaut.2023.103160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Autoimmune uveitis (AU) is a severe disorder causing poor vision and blindness. However, the cellular dynamics and pathogenic mechanisms underlying retinal injury in uveitis remain unclear. In this study, single-cell RNA sequencing of the retina and cervical draining lymph nodes in experimental autoimmune uveitis mice was conducted to identify the cellular spatiotemporal dynamics and upregulation of the glycolysis-related gene LDHA. Suppression of LDHA can rescue the imbalance of T effector (Teff) cells/T regulator (Treg) cells under inflammation via downregulation of the glycolysis-PI3K signaling circuit and inhibition of the migration of CXCR4+ Teff cells towards retinal tissue. Furthermore, LDHA and CXCR4 are upregulated in the peripheral blood mononuclear cells of Vogt-Koyanagi-Harada patients. The LDHA inhibitor suppresses CD4+ T cell proliferation in humans. Therefore, our data indicate that the autoimmune environment of uveitis regulates Teff cell accumulation in the retina via glycolysis-associated LDHA. Modulation of this target may provide a novel therapeutic strategy for treating AU.
Collapse
Affiliation(s)
- Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Si Li
- Sun Yat-sen University, Guangzhou 510060, China
| | - DongtingWu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | | | - Songguo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Jiaotong University School of Medicine, 201600, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
7
|
Palacka K, Hermankova B, Javorkova E, Zajicova A, Holan V. Impaired Immunomodulatory Properties of the Retina from the Inflammatory Environment of the Damaged Eye. Inflammation 2023; 46:2320-2331. [PMID: 37581762 DOI: 10.1007/s10753-023-01880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023]
Abstract
The retina represents a highly specialized structure with the primary function to capture a light signal and to convert it into electrical impulses. Any damage or disease of the retina can cause visual impairment. Since retinal degenerative diseases are generally associated with immune cell infiltration, a local inflammatory reaction, and cytokine burn, there is a need for mechanisms to prevent the retina from damage by a deleterious immune reaction. In this study, we show that mouse retinal explants co-cultivated with stimulated spleen cells, inhibit in a dose-dependent manner the activation of T cells, and suppress the production of cytokines interleukin-2, interleukin-10, and interferon-[Formula: see text]. The immunoregulatory properties of the retina were mainly mediated by a paracrine effect since retinal explants, separated by a semipermeable membrane, or supernatants obtained after the cultivation of retinal explants, inhibited the reactivity of immune cells. A model of retinal damage was established by the application of sodium iodate which selectively destroys photoreceptors, as it was demonstrated by a decrease in the number of rhodopsin-positive cells. This process was accompanied by increased infiltration of the retina with cells of the immune system and by a local inflammatory reaction. The pharmacologically damaged retina had significantly decreased the ability to inhibit T cell activation and production of cytokines by immune cells. Overall, the results showed that the retina possesses immunoregulatory properties and inhibits the activation and functions of T cells. However, the immunomodulatory properties of the retina are decreased if the retina is damaged.
Collapse
Affiliation(s)
- Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Hermankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Javorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
8
|
Spurlock M, An W, Reshetnikova G, Wen R, Wang H, Braha M, Solis G, Kurtenbach S, Galindez OJ, de Rivero Vaccari JP, Chou TH, Porciatti V, Shestopalov VI. The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes. Cells 2023; 12:2626. [PMID: 37998361 PMCID: PMC10670000 DOI: 10.3390/cells12222626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1β (IL-1β) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.
Collapse
Affiliation(s)
- Markus Spurlock
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Weijun An
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Rong Wen
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Hua Wang
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Michelle Braha
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Gabriela Solis
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Orlando J. Galindez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Juan Pablo de Rivero Vaccari
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Wang W, Kang L, Li H, Sha X, Li J, He S. Identification of potential biomarkers associated with CD4 + T cell infiltration in myocardial ischemia-reperfusion injury using bioinformation analysis. J Thorac Dis 2023; 15:5613-5624. [PMID: 37969273 PMCID: PMC10636474 DOI: 10.21037/jtd-23-1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Background Myocardial ischemia-reperfusion injury (MIRI) is often part of clinical events such as cardiac arrest, resuscitation, and reperfusion after coronary artery occlusion. Recently, more and more studies have shown that the immune microenvironment is an integral part of ischemia-reperfusion injury (IRI), and CD4+ T-cell infiltration plays an important role, but there are no relevant molecular targets for clinical diagnosis and treatment. Methods The transcriptome data and matched group information were retrieved from the Gene Expression Omnibus (GEO) database. The ImmuCellAI-mouse (Immune Cell Abundance Identifier for mouse) algorithm was used to calculate each symbol's CD4+ T cell infiltration score. The time period with the greatest change in the degree of CD4+ T cell infiltration [ischemia-reperfusion 6 hours (IR6h)-ischemia-reperfusion 24 hours (IR24h)] was selected for the next analysis. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to screen out CD4+ T cell-related genes and from which the gene CLEC5A was screened for the highest correlation with CD4+ T cell infiltration. The potential regulatory mechanism of CD4+ T cells in MIRI was discussed through various enrichment analysis. Finally, we analyzed the expression and molecular function (MF) of CLEC5A and its related genes in MIRI. Results A total of 406 CD4+ T cell-related genes were obtained by intersecting the results of WGCNA and differential expression analysis. Functional enrichment analysis indicated that the CD4+ T cell-related genes were mainly involved in chemokine signaling pathway and cell cycle. By constructing a protein-protein interaction (PPI) network, a total of 12 hub genes were identified as candidate genes for further analysis. Through the correlation analysis between the 12 candidate genes found in the PPI network and CD4+ T cell infiltration fraction, we determined the core gene CLEC5A. Finally, a gene interaction network was constructed to decipher the biological functions of CLEC5A using GeneMANIA. Conclusions In this study, RNA sequencing (RNA-Seq) data at different time points after reperfusion were subjected to a series of bioinformatics methods such as PPI network, WGCNA module, etc., and CLEC5A, a pivotal gene associated with CD4+ T-cells, was found, which may serve as a new target for diagnosis or treatment.
Collapse
Affiliation(s)
- Wenmiao Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Shandong University, Jinan, China
| | - Li Kang
- School of Public Health, Nantong University, Nantong, China
| | - Houqiang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyu Sha
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuai He
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
10
|
Colcombe J, Mundae R, Kaiser A, Bijon J, Modi Y. Retinal Findings and Cardiovascular Risk: Prognostic Conditions, Novel Biomarkers, and Emerging Image Analysis Techniques. J Pers Med 2023; 13:1564. [PMID: 38003879 PMCID: PMC10672409 DOI: 10.3390/jpm13111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Many retinal diseases and imaging findings have pathophysiologic underpinnings in the function of the cardiovascular system. Myriad retinal conditions, new imaging biomarkers, and novel image analysis techniques have been investigated for their association with future cardiovascular risk or utility in cardiovascular risk prognostication. An intensive literature search was performed to identify relevant articles indexed in PubMed, Scopus, and Google Scholar for a targeted narrative review. This review investigates the literature on specific retinal disease states, such as retinal arterial and venous occlusions and cotton wool spots, that portend significantly increased risk of future cardiovascular events, such as stroke or myocardial infarction, and the implications for personalized patient counseling. Furthermore, conditions diagnosed primarily through retinal bioimaging, such as paracentral acute middle maculopathy and the newly discovered entity known as a retinal ischemic perivascular lesion, may be associated with future incident cardiovascular morbidity and are also discussed. As ever-more-sophisticated imaging biomarkers and analysis techniques are developed, the review concludes with a focused analysis of optical coherence tomography and optical coherence tomography angiography biomarkers under investigation for potential value in prognostication and personalized therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Joseph Colcombe
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY 10016, USA; (J.C.); (R.M.)
| | - Rusdeep Mundae
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY 10016, USA; (J.C.); (R.M.)
| | - Alexis Kaiser
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacques Bijon
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA;
| | - Yasha Modi
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY 10016, USA; (J.C.); (R.M.)
| |
Collapse
|
11
|
Cheng Y, Lin D, Wu S, Liu Q, Yan X, Ren T, Zhang J, Wang N. Cerebrospinal Fluid Pressure Reduction Induces Glia-Mediated Retinal Inflammation and Leads to Retinal Ganglion Cell Injury in Rats. Mol Neurobiol 2023; 60:5770-5788. [PMID: 37347366 DOI: 10.1007/s12035-023-03430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Low intracranial pressure (LICP)-induced translaminar cribrosa pressure difference (TLCPD) elevation has been proven as a risk factor in glaucomatous neurodegeneration, whereas the underlying retinal immune features of LICP-induced retinal ganglion cells (RGC) injury remain elusive. Here, we identified the retinal immune characteristics of LICP rats, and minocycline (Mino) treatment was utilized to analyze its inhibitory role in glia-mediated retinal inflammation of LICP rats. The results showed that retrograde axonal transport was decreased in LICP rats without significant RGC loss, indicating the RGC injury was at an early stage before the morphological loss. The activation of retinal microglia and astrocytes with morphologic and M1 or A1-marker alternations was detected in TLCPD elevation rats, the activation level is more dramatic in HIOP rats than in the LICP rats (P<0.05). Besides, we detected reduced retinal tight junction protein expressions, accompanied by specific imbalance patterns of T lymphocytes in the retina of both LICP and HIOP rats (P<0.05). Further Mino treatment showed an effective inhibitory role in glia-driven inflammatory responses in LICP rats, including improving retrograde axonal transport, inhibiting retinal glial activation and proinflammatory subtype polarization, and alleviating the blood-retina barrier compromise. This study identified the glia-mediated retinal inflammation features triggered by LICP stimulus, and Mino application exhibited an effective role in the inhibition of retinal glia-mediated inflammation in LICP-induced TLCPD elevation rats.
Collapse
Affiliation(s)
- Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Danting Lin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Pan L, Cho KS, Wei X, Xu F, Lennikov A, Hu G, Tang J, Guo S, Chen J, Kriukov E, Kyle R, Elzaridi F, Jiang S, Dromel PA, Young M, Baranov P, Do CW, Williams RW, Chen J, Lu L, Chen DF. IGFBPL1 is a master driver of microglia homeostasis and resolution of neuroinflammation in glaucoma and brain tauopathy. Cell Rep 2023; 42:112889. [PMID: 37527036 PMCID: PMC10528709 DOI: 10.1016/j.celrep.2023.112889] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023] Open
Abstract
Microglia shift toward an inflammatory phenotype during aging that is thought to exacerbate age-related neurodegeneration. The molecular and cellular signals that resolve neuroinflammation post-injury are largely undefined. Here, we exploit systems genetics methods based on the extended BXD murine reference family and identify IGFBPL1 as an upstream cis-regulator of microglia-specific genes to switch off inflammation. IGFBPL1 is expressed by mouse and human microglia, and higher levels of its expression resolve lipopolysaccharide-induced neuroinflammation by resetting the transcriptome signature back to a homeostatic state via IGF1R signaling. Conversely, IGFBPL1 deficiency or selective deletion of IGF1R in microglia shifts these cells to an inflammatory landscape and induces early manifestation of brain tauopathy and retinal neurodegeneration. Therapeutic administration of IGFBPL1 drives pro-homeostatic microglia and prevents glaucomatous neurodegeneration and vision loss in mice. These results identify IGFBPL1 as a master driver of the counter-inflammatory microglial modulator that presents an endogenous resolution of neuroinflammation to prevent neurodegeneration in eye and brain.
Collapse
Affiliation(s)
- Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Xin Wei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuai Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Julie Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Emil Kriukov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Robert Kyle
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Farris Elzaridi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pierre A Dromel
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Young
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Petr Baranov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Gong L, Pasquale LR, Wiggs JL, Pan L, Yang Z, Wu M, Zeng Z, Yang Z, Shen Y, Chen DF, Zeng W. Description of a Nonhuman Primate Model of Retinal Ischemia/Reperfusion Injury. Transl Vis Sci Technol 2023; 12:14. [PMID: 38752575 PMCID: PMC10289273 DOI: 10.1167/tvst.12.6.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/29/2023] [Indexed: 05/19/2024] Open
Abstract
Purpose To establish an inducible model of retinal ischemia/reperfusion injury (RI/RI) in nonhuman primates (NHPs) to improve our understanding of the disease conditions and evaluate treatment interventions in humans. Methods We cannulated the right eye of rhesus macaques with a needle attached to a normal saline solution reservoir at up to 1.9 m above the eye level that resulted in high intraocular pressure of over 100 mm Hg for 90 minutes. Retinal morphology and function were monitored before and after RI/RI over two months by fundus photography, optical coherence tomography, electroretinography, and visual evoked potential. Terminal experiments involved immunostaining for retinal ganglion cell marker Brn3a, glial fibrillary acidic protein, and quantitative polymerase chain reaction to assess retinal inflammatory biomarkers. Results We observed significant and progressive declines in retinal and retinal nerve fiber layer thickness in the affected eye after RI/RI. We noted significant reductions in amplitudes of electroretinography a-wave, b-wave, and visual evoked potential N2-P2, with minimal recovery at 63 days after injury. Terminal experiments conducted two months after injury revealed ∼73% loss of retinal ganglion cells and a fivefold increase in glial fibrillary acid protein immunofluorescence intensity compared to the uninjured eyes. We observed marked increases in tumor necrosis factor-alpha, interferon-gamma, interleukin-1beta, and inducible nitric oxide synthase in the injured retinas. Conclusions The results demonstrated that the pathophysiology observed in the NHP model of RI/RI is comparable to that of human diseases and suggest that the NHP model may serve as a valuable tool for translating interventions into viable treatment approaches. Translational Relevance The model serves as a useful platform to study potential interventions and treatments for RI/RI or blinding retinal diseases.
Collapse
Affiliation(s)
- Li Gong
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech Co., Ltd., Ya'an, Sichuan Province, China
| | - Louis R. Pasquale
- Eye and Vision Research Institute at New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janey L. Wiggs
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lingzhen Pan
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech Co., Ltd., Ya'an, Sichuan Province, China
| | - Zhenyan Yang
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech Co., Ltd., Ya'an, Sichuan Province, China
| | - Mingling Wu
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech Co., Ltd., Ya'an, Sichuan Province, China
| | - Zirui Zeng
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech Co., Ltd., Ya'an, Sichuan Province, China
| | - Zunyuan Yang
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech Co., Ltd., Ya'an, Sichuan Province, China
| | - Yubo Shen
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech Co., Ltd., Ya'an, Sichuan Province, China
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Wen Zeng
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech Co., Ltd., Ya'an, Sichuan Province, China
| |
Collapse
|
14
|
Yang Y, Wang N, Xu L, Liu Y, Huang L, Gu M, Wu Y, Guo W, Sun H. Aryl hydrocarbon receptor dependent anti-inflammation and neuroprotective effects of tryptophan metabolites on retinal ischemia/reperfusion injury. Cell Death Dis 2023; 14:92. [PMID: 36754954 PMCID: PMC9908897 DOI: 10.1038/s41419-023-05616-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
Glaucoma is the major cause of irreversible blindness in the world characterized by progressive retinal neurodegeneration, in which local inflammation in retina is involved in persistent loss of retinal ganglion cells (RGCs). In order to explore whether aryl hydrocarbon receptor (AhR) and its agonists tryptophan metabolites are involved in the development of glaucoma, we collected serum and retinas from non-glaucoma controls and patients with glaucoma. Results showed altered serum tryptophan metabolism and reduced retinal AhR expression in glaucoma patients. We also showed intraperitoneally injection of tryptophan metabolite 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) down-regulated retinal local inflammation and protected RGC apoptosis from retinal ischemia/reperfusion (IR) injury via AhR activation. We further revealed that ITE could inhibit inflammation in BV2 microglia and alleviate the neurotoxicity of microglial conditioned medium to RGCs under IR. Finally, we illustrated the possible mechanism that ITE limited ERK and NFκB dependent microglial inflammation. In summary, these findings suggest the critical role of tryptophan metabolism and retinal AhR signaling in modulating local inflammation mediated by microglia in glaucoma, and provide a novel avenue to targeting the intrinsically altered AhR signaling resulted from disturbed tryptophan metabolism for glaucoma treatment.
Collapse
Affiliation(s)
- Yijie Yang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Li Xu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixin Liu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lulu Huang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengyang Gu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Wenyi Guo
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Hao Sun
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
15
|
Wang Y, Yu H, Li J, Liu W, Yu S, Lv P, Zhao L, Wang X, Zuo Z, Liu X. Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell Tissue Res 2022; 390:367-383. [PMID: 36201050 DOI: 10.1007/s00441-022-03689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
T helper 22 (Th22) cells have been implicated in diabetic retinopathy (DR), but it remains unclear whether Th22 cells involve in the pathogenesis of DR. To investigate the role of Th22 cells in DR mice, the animal models were established by intraperitoneal injection of STZ and confirmed by fundus fluorescein angiography and retinal haematoxylin-eosin staining. IL-22BP was administered by intravitreal injection. IL-22 level was measured by ELISA in vivo and in vitro. The expression of IL-22Rα1 in the retina was assessed by immunofluorescence. We assessed GFAP, VEGF, ICAM-1, inflammatory-associated factors and the integrity of blood-retinal barrier in control, DR, IL-22BP, and sham group. Müller cells were co-cultured with Th22 cells, and the expression of the above proteins was measured by immunoblotting. Plasmid transfection technique was used to silence Act1 gene in Müller cells. Results in vivo and in vitro indicated that Th22 cells infiltrated into the DR retinal and IL-22Rα1 expressed in Müller cells. Th22 cells promoted Müller cells activation and inflammatory factor secretion by secreting IL-22 compared with high-glucose stimulation alone. In addition, IL-22BP ameliorated the pathological alterations of the retina in DR. Inhibition of the inflammatory signalling cascade through Act1 knockdown alleviated DR-like pathology. All in all, the results suggested that Th22 cells infiltrated into the retina and secreted IL-22 in DR, and then IL-22 binding with IL-22Rα1 activated the Act1/TRAF6 signal pathway, and promoted the inflammatory of Müller cells and involved the pathogenesis of DR.
Collapse
Affiliation(s)
- Yufei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Hongdan Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Jing Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lipan Zhao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xiaobai Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China.
| | - Xuezheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
16
|
Wang N, Yang Y, Liu Y, Huang L, Gu M, Wu Y, Xu L, Sun H, Guo W. Magnolol limits NFκB-dependent inflammation by targeting PPARγ relieving retinal ischemia/reperfusion injury. Int Immunopharmacol 2022; 112:109242. [PMID: 36152538 DOI: 10.1016/j.intimp.2022.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Glaucoma is the leading cause of irreversible blindness in the world. Elevated intraocular pressure (IOP) is recognized as one of the most critical factors, but the loss of retinal ganglia cells (RGCs) often persists when IOP is controlled. Recently, a large number of studies focus on the inflammatory and immune responses in the occurrence and development of glaucoma. Magnolol (MAG), the principal ingredient of magnoliae officinalis cortex, has anti-inflammatory effects, but its role and mechanism in retinal protection need to be further studied. METHODS The neurodegeneration of retina in mice model following ischemia/reperfusion (IR) injury was evaluated by immunohistochemistry, hematoxylin and eosin (H&E) staining and electroretinography (ERG). The inflammation-regulatory effect of MAG was detected by quantitative RT-PCR, western blot, and immunohistochemistry. Peroxisome proliferator-activated receptor-γ (PPARγ) inhibitor assays by H&E staining and western blot were used to test the target and mechanism pathway of MAG. RESULTS We found MAG relieved IR-induced retinal damages and inflammation. Further studies revealed MAG alleviated nuclear factor kappa B (NFκB)-dependent inflammatory process by preserving the expression of NFκB inhibitor alpha (IκBα), and it modulated microglia polarization after IR injury. PPARγ was a primary target of MAG, and treatment with PPARγ inhibitor GW9662 attenuated the neuroprotective and anti-inflammatory effects of MAG. CONCLUSIONS Our findings revealed that MAG inhibits NFκB-dependent inflammatory processes by elevating PPARγ in mice retinas to achieve its neuroprotective role following IR, which suggesting that MAG could be developed to a novel anti-inflammatory therapeutic agent for relieving the progression of glaucoma.
Collapse
Affiliation(s)
- Ning Wang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yijie Yang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixin Liu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lulu Huang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengyang Gu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Li Xu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Hao Sun
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Wenyi Guo
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
17
|
Pan L, Sze YH, Yang M, Tang J, Zhao S, Yi I, To CH, Lam C, Chen DF, Cho KS, Do CW. Baicalein—A Potent Pro-Homeostatic Regulator of Microglia in Retinal Ischemic Injury. Front Immunol 2022; 13:837497. [PMID: 35265083 PMCID: PMC8899187 DOI: 10.3389/fimmu.2022.837497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Retinal ischemia is a common cause of many retinal diseases, leading to irreversible vision impairment and blindness. Excessive neuroinflammation, including microglial activation and T-cell responses, has been identified as a critical factor associated with neurodegeneration in retinal ischemia. Baicalein is a natural flavonoid reported to have broad anti-inflammatory and neuroprotective bioactivities. Herein, the effects of baicalein on microglia activation in vitro and in vivo were investigated. We found that baicalein exhibited robust anti-inflammatory effect on cultured human and mouse microglia, as demonstrated by decreased induction of pro-inflammatory cytokines and the phosphorylation of phosphoinositide 3-kinase (PI3K) and nuclear factor kappa B (NFκB). Proteomic analysis further unraveled baicalein’s effect on modulating IL-17 signaling pathways and its upstream regulator IL-1β. Intravitreal administration of baicalein in the mouse model of retinal ischemia/reperfusion (I/R) injury attenuated microglial activation and retinal T-cell infiltration, particularly the T helper 17 cells. Additionally, baicalein was shown to exert neuroprotective effects by significantly reducing the retinal ganglion cell (RGC) loss after I/R injury, leading to an improved retinal function and spatial vision. These results suggest that baicalein, a natural flavonoid, acts as a negative regulator of activated microglia and immune responses both in vitro and in vivo, effectively alleviating neurodegeneration in retinal I/R injury. This finding indicates that baicalein could be a potential therapeutic agent against currently incurable degenerative retinal diseases.
Collapse
Affiliation(s)
- Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ying Hon Sze
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Menglu Yang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Siming Zhao
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Irvin Yi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
| | - Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen, ; Kin-Sang Cho, ; Chi-Wai Do,
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen, ; Kin-Sang Cho, ; Chi-Wai Do,
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- *Correspondence: Dong Feng Chen, ; Kin-Sang Cho, ; Chi-Wai Do,
| |
Collapse
|
18
|
Agrawal M, Rasiah PK, Bajwa A, Rajasingh J, Gangaraju R. Mesenchymal Stem Cell Induced Foxp3(+) Tregs Suppress Effector T Cells and Protect against Retinal Ischemic Injury. Cells 2021; 10:3006. [PMID: 34831229 PMCID: PMC8616393 DOI: 10.3390/cells10113006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are well known for immunomodulation; however, the mechanisms involved in their benefits in the ischemic retina are unknown. This study tested the hypothesis that MSC induces upregulation of transcription factor forkhead box protein P3 (Foxp3) in T cells to elicit immune modulation, and thus, protect against retinal damage. Induced MSCs (iMSCs) were generated by differentiating the induced pluripotent stem cells (iPSC) derived from urinary epithelial cells through a noninsertional reprogramming approach. In in-vitro cultures, iMSC transferred mitochondria to immune cells via F-actin nanotubes significantly increased oxygen consumption rate (OCR) for basal respiration and ATP production, suppressed effector T cells, and promoted differentiation of CD4+CD25+ T regulatory cells (Tregs) in coculture with mouse splenocytes. In in-vivo studies, iMSCs transplanted in ischemia-reperfusion (I/R) injured eye significantly increased Foxp3+ Tregs in the retina compared to that of saline-injected I/R eyes. Furthermore, iMSC injected I/R eyes significantly decreased retinal inflammation as evidenced by reduced gene expression of IL1β, VCAM1, LAMA5, and CCL2 and improved b-wave amplitudes compared to that of saline-injected I/R eyes. Our study demonstrates that iMSCs can transfer mitochondria to immune cells to suppress the effector T cell population. Additionally, our current data indicate that iMSC can enhance differentiation of T cells into Foxp3 Tregs in vitro and therapeutically improve the retina's immune function by upregulation of Tregs to decrease inflammation and reduce I/R injury-induced retinal degeneration in vivo.
Collapse
Affiliation(s)
- Mona Agrawal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
| | - Pratheepa Kumari Rasiah
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
| | - Amandeep Bajwa
- James D. Eason Transplant Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Johnson Rajasingh
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Cui YK, Pan L, Lam T, Wen CY, Do CW. Mechanistic links between systemic hypertension and open angle glaucoma. Clin Exp Optom 2021; 105:362-371. [PMID: 34402761 DOI: 10.1080/08164622.2021.1964332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Systemic hypertension or hypertension is a very common chronic age-related disease worldwide. It is typically characterised by a sustained elevation of blood pressure, particularly when the systolic blood pressure and/or diastolic blood pressure are of more than 140 mmHg and 90 mmHg, respectively. If hypertension is not well controlled, it may lead to an increased risk of stroke and heart attack. It has been shown that hypertension is linked to various ocular diseases, including cataract, diabetic retinopathy, age-related macular degeneration, and glaucoma. Glaucoma is the leading cause of irreversible blindness worldwide. Primary open angle glaucoma is the most common form of the disease and is usually characterised by an increase in intraocular pressure. This condition, together with normal tension glaucoma, constitutes open angle glaucoma. Systemic hypertension has been identified as a risk factor for open angle glaucoma. It is speculated that blood pressure is involved in the pathogenesis of open angle glaucoma by altering intraocular pressure or ocular blood flow, or both. Recent evidence has shown that both extremely high and low blood pressure are associated with increased risk of open angle glaucoma. Additional pathogenic mechanisms, including increased inflammation likely to be involved in the development and progression of these two diseases, are discussed.
Collapse
Affiliation(s)
- Ying-Kun Cui
- School of Optometry, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR
| | - Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR
| | - Tim Lam
- School of Optometry, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR
| | - Chun-Yi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR.,Centre For Eye and Vision Research, Shenzhen, Hong Kong SAR
| |
Collapse
|
20
|
Baicalein, Baicalin, and Wogonin: Protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8377362. [PMID: 34306315 PMCID: PMC8263226 DOI: 10.1155/2021/8377362] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).
Collapse
|
21
|
Yao MD, Zhu Y, Zhang QY, Zhang HY, Li XM, Jiang Q, Yan B. CircRNA expression profile and functional analysis in retinal ischemia-reperfusion injury. Genomics 2021; 113:1482-1490. [PMID: 33771636 DOI: 10.1016/j.ygeno.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Retinal ischemia-reperfusion (I/R) is involved in the pathogenesis of many vision-threatening diseases. circRNAs act as key players in gene regulation and human diseases. However, the global circRNA expression profile in retinal I/R injury has not been fully uncovered. Herein, we established a murine model of retinal I/R injury and performed circRNA microarrays to identify I/R-related circRNAs. 1265 differentially expressed circRNAs were identified between I/R retinas and normal retinas. Notably, the detection of cWDR37 level in aqueous humor could discriminate glaucoma patients from cataract patients (AUC = 0.9367). cWdr37 silencing protected against hypoxic stress- or oxidative stress-induced retinal ganglion cell (RGC) injury. cWdr37 silencing alleviated IR-induced retinal neurodegeneration as shown by increased NeuN staining, reduced retinal reactive gliosis, and decreased retinal apoptosis. Collectively, this study provides a novel insight into the pathogenesis of retinal I/R injury. cWdr37 is a promising target for the diagnosis or treatment of I/R-related ocular diseases.
Collapse
Affiliation(s)
- Mu-Di Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hui-Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, China; Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.
| |
Collapse
|
22
|
Tang Y, Xiao Z, Pan L, Zhuang D, Cho KS, Robert K, Chen X, Shu L, Tang G, Wu J, Sun X, Chen DF. Therapeutic Targeting of Retinal Immune Microenvironment With CSF-1 Receptor Antibody Promotes Visual Function Recovery After Ischemic Optic Neuropathy. Front Immunol 2020; 11:585918. [PMID: 33281816 PMCID: PMC7691249 DOI: 10.3389/fimmu.2020.585918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Retinal ischemia/reperfusion injury (RI) is a common cause of irreversible visual impairment and blindness in elderly and critical unmet medical need. While no effective treatment is available for RI, microglial activation and local immune responses in the retina are thought to play important roles in the pathophysiology of neurodegeneration. While survival and activation of microglia depend critically on colony-stimulating factor receptor (CSF-1R) signaling, it remains unclear if targeting the retinal immune microenvironments by CSF-1RAb after RI is sufficient to rescue vision and present a potentially effective therapy. Here we used rodent models of RI and showed that retinal ischemia induced by acute elevation of intraocular pressure triggered an early activation of microglia and macrophages in the retina within 12 h. This was followed by lymphocyte infiltration and increased production of pro-inflammatory cytokines. Intravitreal injection of CSF-1R neutralizing antibody (CSF-1RAb) after RI significantly blocked microglial activation and the subsequent T cell recruitment. This also led to improved retinal ganglion cell survival and function measured by cell quantification and electroretinogram positive scotopic threshold responses, as well as increased visual acuity and contrast sensitivity as assessed by optomotor reflex-based assays, when compared to the isotype-treated control group. Moreover, the administration of CSF-1RAb efficiently attenuated inflammatory responses and activation of human microglia in culture, suggesting a therapeutic target with human relevance. These results, together with the existing clinical safety profiles, support that CSF-1RAb may present a promising therapeutic avenue for RI, a currently untreatable condition, by targeting microglia and the immune microenvironment in the retina to facilitate neural survival and visual function recovery.
Collapse
Affiliation(s)
- Yizhen Tang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zebin Xiao
- Department of Radiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Dongli Zhuang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Kyle Robert
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Xiaoxiao Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Lian Shu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Guangxian Tang
- Department of Ophthalmology, 1st Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Dong F. Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|