1
|
Kotsifaki A, Maroulaki S, Karalexis E, Stathaki M, Armakolas A. Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. Int J Mol Sci 2024; 25:9302. [PMID: 39273251 PMCID: PMC11394947 DOI: 10.3390/ijms25179302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits apoptosis. Despite extensive research, the precise molecular pathways and intracellular mechanisms activated by IGF-1, in cancer, remain poorly understood. Recent evidence highlights the essential roles of IGF-1 and its isoforms in breast cancer (BC) development, progression, and metastasis. The peptides that define the IGF-1 isoforms-IGF-1Ea, IGF-1Eb, and IGF-1Ec-act as key points of convergence for various signaling pathways that influence the growth, metastasis and survival of BC cells. The aim of this review is to provide a detailed exami-nation of the role of the mature IGF-1 and its isoforms in BC biology and their potential use as possible therapeutical targets.
Collapse
Affiliation(s)
- Amalia Kotsifaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sousanna Maroulaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthymios Karalexis
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martha Stathaki
- Surgical Clinic, "Elena Venizelou" General Hospital, 11521 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Ribeiro JM, Mendes J, Gante I, Figueiredo-Dias M, Almeida V, Gomes A, Regateiro FJ, Regateiro FS, Caramelo F, Silva HC. Two Different Immune Profiles Are Identified in Sentinel Lymph Nodes of Early-Stage Breast Cancer. Cancers (Basel) 2024; 16:2881. [PMID: 39199652 PMCID: PMC11352239 DOI: 10.3390/cancers16162881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
In the management of early-stage breast cancer (BC), lymph nodes (LNs) are typically characterised using the One-Step Nucleic Acid Amplification (OSNA) assay, a standard procedure for assessing subclinical metastasis in sentinel LNs (SLNs). The pivotal role of LNs in coordinating the immune response against BC is often overlooked. Our aim was to improve prognostic information provided by the OSNA assay and explore immune-related gene signatures in SLNs. The expression of an immune gene panel was analysed in SLNs from 32 patients with Luminal A early-stage BC (cT1-T2 N0). Using an unsupervised approach based on these expression values, this study identified two clusters, regardless of the SLN invasion: one evidencing an adaptive anti-tumoral immune response, characterised by an increase in naive B cells, follicular T helper cells, and activated NK cells; and another with a more undifferentiated response, with an increase in the activated-to-resting dendritic cells (DCs) ratio. Through a protein-protein interaction (PPI) network, we identified seven immunoregulatory hub genes: CD80, CD40, TNF, FCGR3A, CD163, FCGR3B, and CCR2. This study shows that, in Luminal A early-stage BC, SLNs gene expression studies enable the identification of distinct immune profiles that may influence prognosis stratification and highlight key genes that could serve as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Joana Martins Ribeiro
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Mendes
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Gante
- Gynecology Department, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Gynecology University Clinic, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Gynecology Department, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Gynecology University Clinic, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Vânia Almeida
- Department of Pathology, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Gomes
- Department of Pathology, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
| | - Fernando Jesus Regateiro
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Frederico Soares Regateiro
- Institute for Clinical and Biomedical Research (iCBR), Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Allergy and Clinical Immunology Unit, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Institute for Clinical and Biomedical Research (iCBR), Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Henriqueta Coimbra Silva
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| |
Collapse
|
3
|
Jana S, Li W, Lei PJ, Wang Z, Kibara S, Huang P, Jones D. Isolation and Characterization of a Novel Mammary Adenocarcinoma, MCa-P1362, with Hormone Receptor Expression, Human Epidermal Growth Factor Receptor 2 Positivity, and Enrichment in Cancer and Mesenchymal Stem Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1137-1153. [PMID: 38749609 PMCID: PMC11156160 DOI: 10.1016/j.ajpath.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 06/09/2024]
Abstract
Preclinical models that display spontaneous metastasis are necessary to improve the therapeutic options for hormone receptor-positive breast cancers. Within this study, detailed cellular and molecular characterization was conducted on MCa-P1362, a newly established mouse model of metastatic breast cancer that is syngeneic in BALB/c mice. MCa-P1362 cancer cells express estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2. MCa-P1362 cancer cells proliferate in vitro and in vivo in response to estrogen, yet do not depend on steroid hormones for growth and tumor progression. Analysis of MCa-P1362 tumor explants revealed the tumors contained a mixture of cancer cells and mesenchymal stromal cells. Through transcriptomic and functional analyses of both cancer and stromal cells, stem cells were detected within both populations. Functional studies demonstrated that MCa-P1362 cancer stem cells drove tumor initiation, whereas stromal cells from these tumors contributed to drug resistance. MCa-P1362 may serve as a useful preclinical model to investigate the cellular and molecular basis of breast tumor progression and therapeutic resistance.
Collapse
Affiliation(s)
- Samir Jana
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Wende Li
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zixiong Wang
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Shaye Kibara
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Peigen Huang
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts.
| |
Collapse
|
4
|
Yang H, Ruan Y, Sun Y, Wang P, Qiao J, Wang C, Liu Z. Assessment of the impact of residual tumors at different sites post-neoadjuvant chemotherapy on prognosis in breast cancer patients and development of a disease-free survival prediction model. Ther Adv Med Oncol 2024; 16:17588359241249578. [PMID: 38736552 PMCID: PMC11085027 DOI: 10.1177/17588359241249578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Background Residual disease after neoadjuvant chemotherapy (NAC) in breast cancer patients predicts worse outcomes than pathological complete response. Differing prognostic impacts based on the anatomical site of residual tumors are not well studied. Objectives The study aims to assess disease-free survival (DFS) in breast cancer patients with different residual tumor sites following NAC and to develop a nomogram for predicting 1- to 3-year DFS in these patients. Design A retrospective cohort study. Methods Retrospective analysis of 953 lymph node-positive breast cancer patients with residual disease post-NAC. Patients were categorized into three groups: residual disease in breast (RDB), residual disease in lymph nodes (RDN), and residual disease in both (RDBN). DFS compared among groups. Patients were divided into a training set and a validation set in a 7:3 ratio. Prognostic factors for DFS were analyzed to develop a nomogram prediction model. Results RDB patients had superior 3-year DFS of 94.6% versus 85.2% for RDN and 81.8% for RDBN (p < 0.0001). Clinical T stage, N stage, molecular subtype, and postoperative pN stage were independently associated with DFS on both univariate and multivariate analyses. Nomogram integrating clinical tumor-node-metastasis (TNM) stage, molecular subtype, pathological response demonstrated good discrimination (C-index 0.748 training, 0.796 validation cohort), and calibration. Conclusion The location of residual disease has prognostic implications, with nodal residuals predicting poorer DFS. The validated nomogram enables personalized DFS prediction to guide treatment decisions.
Collapse
Affiliation(s)
- Hanzhao Yang
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yuxia Ruan
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yadong Sun
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Peili Wang
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jianghua Qiao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Chengzheng Wang
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Zhenzhen Liu
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, No. 127, Dongming Road, Zhengzhou 450008, China
| |
Collapse
|
5
|
Mondal DK, Xie C, Pascal GJ, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. Proc Natl Acad Sci U S A 2024; 121:e2317760121. [PMID: 38652741 PMCID: PMC11067011 DOI: 10.1073/pnas.2317760121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Dipon K. Mondal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Christopher Xie
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Gabriel J. Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Simone Buraschi
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
6
|
Wen JY, Li X, Chen JN, Chen J, Zhang JY, Du Y, Zhu WH, Chen YJ, Yang RH, Shao CK. CD45 - erythroid progenitor cells promote lymph node metastasis in gastric cancer by inducing a hybrid epithelial/mesenchymal state in lymphatic endothelial cells. Gastric Cancer 2023; 26:918-933. [PMID: 37676622 DOI: 10.1007/s10120-023-01425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Specific mechanisms of lymph node (LN) metastasis in early-stage gastric cancer (GC) have not been elucidated. The role of anemia, a vital clinical feature of GC, in LN metastasis is also unclear. Since the number of erythroid progenitor cells (EPCs) is increased in chronic anemia, we investigated its association with LN metastasis in GC. METHODS Flow cytometry and immunofluorescence analyses were performed to sort and study EPCs from the circulation and tumors of patients with stage I-III GC. The effect of these EPCs on the activation of T and B cells and on the functions of lymphatic endothelial cells (LECs) was determined, and their ability to promote LN metastasis was evaluated using a footpad-popliteal LN metastasis model based on two human adenocarcinoma GC cell lines in nude mice. The prognostic value of EPCs was also analyzed. RESULTS The proportion of CD45- EPCs was higher in the mononuclear cells in the circulation, tumors, and LNs of GC patients with LN metastasis (N+) than in those of GC patients without LN metastasis (N0). In N+ patients, CD45- EPCs were more abundant in metastatic LNs than in non-metastatic LNs. Lymphatic vessel endothelial hyaluronan receptor 1 immunoreactivity in tumors revealed that CD45- EPCs were positively associated with nodal stages and lymph vessel density. Furthermore, CD45- EPCs increased LEC proliferation and migration through their S100A8/A9 heterodimer-induced hybrid epithelial/mesenchymal (E/M) state; however, they did not influence the invasion and tubulogenesis of LECs or T and B cell proliferation. CD45- EPCs promoted LN metastasis in vivo; the S100A8/A9 heterodimer mimicked this phenomenon. Finally, CD45- EPCs predicted the overall and disease-free survival of stage I-III GC patients after radical resection. CONCLUSIONS The CD45- EPCs accumulated in GC tissues and metastatic LNs and promoted LN metastasis via the S100A8/9-induced hybrid E/M state of LECs, which was the specific mechanism of LN metastasis in the early stages of GC.
Collapse
Affiliation(s)
- Jing-Yun Wen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jie Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jing-Yue Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Wei-Hang Zhu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yong-Jian Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ri-Hong Yang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
7
|
Huang X, Xu X, Xu A, Luo Z, Li C, Wang X, Fu D. Exploring the most appropriate lymph node staging system for node-positive breast cancer patients and constructing corresponding survival nomograms. J Cancer Res Clin Oncol 2023; 149:14721-14730. [PMID: 37584708 DOI: 10.1007/s00432-023-05283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND The lymph node (LN) status is a crucial prognostic factor for breast cancer (BC) patients. Our study aimed to compare the predictive capabilities of three different LN staging systems in node-positive BC patients and develop nomograms to predict overall survival (OS). METHODS We enrolled 71,213 eligible patients from the SEER database, and 667 cases from our hospital were used for external validation. All patients were divided into two groups based on the number of removed lymph nodes (RLNs). The prognostic abilities of pN stage, positive LN ratio (LNR), and log odds of positive LN (LODDS) were compared using the C-indexes and AUC values. LASSO regression was performed to identify significant factors associated with prognosis and develop corresponding nomogram models. RESULTS Our study found that LNR had superior predictive performance compared to pN and LODDS among patients with RLNs < 10, while pN performed better in patients with RLNs ≥ 10. In the training set, the nomogram models exhibited excellent clinical applicability, as evidenced by the C-indexes, ROC curves, calibration plots, and decision curve analysis curves. Moreover, the nomogram classification accurately differentiated risk subgroups and improved discrimination. These results were externally validated in the validation cohort. CONCLUSION Physicians should select different LN staging systems based on the number of RLNs. Our novel nomograms demonstrated excellent performance in both internal and external validations, which may assist in patient counseling and guide treatment decision-making.
Collapse
Affiliation(s)
- Xiao Huang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xiangnan Xu
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - An Xu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhou Luo
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chunlian Li
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xueying Wang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Deyuan Fu
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
8
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
9
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
10
|
Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct Target Ther 2023; 8:367. [PMID: 37752146 PMCID: PMC10522642 DOI: 10.1038/s41392-023-01576-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
11
|
Lv B, Cheng X, Xie Y, Cheng Y, Yang Z, Wang Z, Jin E. Predictive value of lesion morphology in rectal cancer based on MRI before surgery. BMC Gastroenterol 2023; 23:318. [PMID: 37726671 PMCID: PMC10510204 DOI: 10.1186/s12876-023-02910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE To explore the relationship of MRI morphology of primary rectal cancer with extramural vascular invasion (EMVI), metastasis and local recurrence. MATERIALS AND METHODS This retrospective study included 153 patients with rectal cancer. Imaging factors and histopathological index including nodular projection (NP), cord sign (CS) at primary tumor margin, irregular nodules (IN) of mesorectum, MRI-detected peritoneal reflection invasion (PRI), range of rectal wall invasion (RRWI), patterns and length of tumor growth, maximal extramural depth (EMD), histologically confirmed local node involvement (hLN), MRI T stage, MRI N stage, MRI-detected extramural vascular invasion (mEMVI) and histologically confirmed extramural vascular invasion (hEMVI) were evaluated. Determining the relationship between imaging factors and hEMVI, synchronous metastasis and local recurrence by univariate analysis and multivariable logistic regression, and a nomogram validated internally via Bootstrap self-sampling was constructed based on the latter. RESULTS Thirty-eight cases of hEMVI, fourteen cases of synchronous metastasis and ten cases of local recurrence were observed among 52 NP cases. There were 50 cases of mEMVI with moderate consistency with hEMVI (Kappa = 0.614). NP, CS, EMD and mEMVI showed statistically significant differences in the negative and positive groups of hEMVI, synchronous metastasis, and local recurrence. Compared to patients with local mass growth, the rectal tumor with circular infiltration had been found to be at higher risk of synchronous metastasis and local recurrence (P < 0.05). NP and IN remained as significant predictors for hEMVI, and mEMVI was a predictor for synchronous metastasis, while PRI and mEMVI were predictors for local recurrences. The nomogram for predicting hEMVI demonstrated a C-index of 0.868, sensitivity of 86.0%, specificity of 79.6%, and accuracy of 81.7%. CONCLUSION NP, CS, IN, large EMD, mEMVI, and circular infiltration are significantly associated with several adverse prognostic indicators. The nomogram based on NP has good predictive performance for preoperative EMVI. mEMVI is a risk factor for synchronous metastasis. PRI and mEMVI are risk factors for local recurrence.
Collapse
Affiliation(s)
- Baohua Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong-an Road, Beijing, 100050, China
- Department of Radiology, Taian City Central Hospital, Tai'an, 271099, China
| | - Xiaojuan Cheng
- Clinical Skills Center, Taian City Central Hospital, Tai'an, 271099, China
| | - Yuanzhong Xie
- Department of Radiology, Taian City Central Hospital, Tai'an, 271099, China
| | - Yanling Cheng
- Respiratory department of Shandong second rehabilitation hospital, Tai'an, 271000, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong-an Road, Beijing, 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong-an Road, Beijing, 100050, China
| | - Erhu Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong-an Road, Beijing, 100050, China.
| |
Collapse
|
12
|
Takeda A, Salmi M, Jalkanen S. Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system. Trends Immunol 2023; 44:72-86. [PMID: 36463086 DOI: 10.1016/j.it.2022.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Single-cell technologies have recently allowed the identification of multiple lymphatic endothelial cell (LEC) subsets in subcapsular, paracortical, medullary, and other lymph node (LN) sinus systems in mice and humans. New analyses show that LECs serve key immunological functions in the LN stroma during immune responses. We discuss the roles of different LEC types in guiding leukocyte and cancer cell trafficking to and from the LN parenchyma, in capturing microbes, and in transporting, presenting, and storing lymph-borne antigens in distinct types of lymphatic sinuses. We underscore specific adaptations of human LECs and raise unanswered questions concerning LEC functions in human disease. Despite our limited understanding of human lymphatics - hampering clinical translation in inflammation and metastasis - we support the potential of LN LECs as putative targets for boosting/inhibiting immunoreactivity.
Collapse
Affiliation(s)
- Akira Takeda
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Marko Salmi
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
13
|
Morisaki T, Morisaki T, Kubo M, Morisaki S, Nakamura Y, Onishi H. Lymph Nodes as Anti-Tumor Immunotherapeutic Tools: Intranodal-Tumor-Specific Antigen-Pulsed Dendritic Cell Vaccine Immunotherapy. Cancers (Basel) 2022; 14:cancers14102438. [PMID: 35626042 PMCID: PMC9140043 DOI: 10.3390/cancers14102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary In the field of cancer therapy, lymph nodes are important not only as targets for metastases resection but also as prudent target organs for cancer immunotherapy. Lymph nodes comprise a complete structure for the accumulation of a large number of T cells and their distribution throughout the body after antigen presentation and activation of dendritic cells. This review highlights current topics on the importance of lymph node structure in antitumor immunotherapy and intranodal-antigen-presenting mature dendritic cell vaccine therapy. We also discuss the rationale behind intranodal injection methods and their applications in neoantigen vaccine therapy, a new cancer immunotherapy. Abstract Hundreds of lymph nodes (LNs) are scattered throughout the body. Although each LN is small, it represents a complete immune organ that contains almost all types of immunocompetent and stromal cells functioning as scaffolds. In this review, we highlight the importance of LNs in cancer immunotherapy. First, we review recent reports on structural and functional properties of LNs as sites for antitumor immunity and discuss their therapeutic utility in tumor immunotherapy. Second, we discuss the rationale and background of ultrasound (US)-guided intranodal injection methods. In addition, we review intranodal administration therapy of tumor-specific-antigen-pulsed matured dendritic cells (DCs), including neoantigen-pulsed vaccines.
Collapse
Affiliation(s)
- Takashi Morisaki
- Fukuoka General Cancer Clinic, Fukuoka 812-0018, Japan;
- Correspondence: ; Tel.: +81-922827696; Fax: +81-924056376
| | - Takafumi Morisaki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (T.M.); (M.K.)
| | - Makoto Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (T.M.); (M.K.)
| | - Shinji Morisaki
- Fukuoka General Cancer Clinic, Fukuoka 812-0018, Japan;
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University; Fukuoka 812-8582, Japan;
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University; Fukuoka 812-8582, Japan;
| |
Collapse
|
14
|
Francis DM, Manspeaker MP, Archer PA, Sestito LF, Heiler AJ, Schudel A, Thomas SN. Drug-eluting immune checkpoint blockade antibody-nanoparticle conjugate enhances locoregional and systemic combination cancer immunotherapy through T lymphocyte targeting. Biomaterials 2021; 279:121184. [PMID: 34678650 PMCID: PMC8639654 DOI: 10.1016/j.biomaterials.2021.121184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/03/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022]
Abstract
Multiple small molecule immune modulators have been identified as synergistic with immune checkpoint blockade (ICB) in their effects on T lymphocytes, but are limited in their successful application to combination cancer immunotherapy due to their short in vivo retention and lack of affinity for T cells. We engineered an antibody-nanoparticle conjugate (ANC) platform consisting of 30 nm polymer nanoparticles that, due to their size and formulation, efficiently distribute after administration to lymph nodes, tissues highly enriched in lymphocytes that contribute to tumor control mediated by ICB. Displaying monoclonal antibodies against surface-expressed T cell markers, NP delivery in vivo to circulating and lymph node-resident lymphocytes was substantially enhanced, as was delivery of small molecules formulated into the NP by passive encapsulation. Using ICB monoclonal antibodies as both targeting moiety and signal-blocking therapeutic, ANCs improved the local and systemic anti-tumor effects of small molecule TGFβ receptor 1 inhibitor and an adenosine 2A antagonist when administered either locoregionally or systemically into the circulation in two syngeneic, aggressive tumor models, slowing tumor growth and prolonging animal survival. As these benefits were lost in the absence of ANC targeting, co-formulation strategies enabling the targeted co-delivery of multiple immunotherapeutics to T lymphocytes have high potential to improve ICB cancer immunotherapy by concurrent inhibition of non-redundant suppressive pathways.
Collapse
Affiliation(s)
- David M Francis
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Alexander J Heiler
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alex Schudel
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
15
|
Zhu XQ, Lu P, Xu ZL, Zhou Q, Zhang J, Wang ZB, Wu F. Alterations in Immune Response Profile of Tumor-Draining Lymph Nodes after High-Intensity Focused Ultrasound Ablation of Breast Cancer Patients. Cells 2021; 10:cells10123346. [PMID: 34943854 PMCID: PMC8699337 DOI: 10.3390/cells10123346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Previous studies have revealed that high-intensity focused ultrasound (HIFU) ablation can trigger an antitumor immune response. The aim of this study was to investigate immune response in tumor-draining lymph nodes (TDLNs) after HIFU treatment. Forty-eight female patients with biopsy-confirmed breast cancer were divided into a control group and an HIFU group. In the control group, 25 patients underwent modified radical mastectomy, but 23 patients in the HIFU group received HIFU ablation of primary cancer, followed by the same operation. Using HE and immunohistochemical staining, the immunologic reactivity pattern and immune cell profile were assessed in paraffin-embedded axillary lymph nodes (ALNs) in all patients. The results showed that ALNs presented more evident immune reactions in the HIFU group than in the control group (100% vs. 64%). Among the ALNs, 78.3% had mixed cellular and humoral immune response, whereas 36% in the control group showed cellular immune response. The numbers of CD3+, CD4+, NK cell, and activated CTLs with Fas ligand+, granzyme+ and perforin+ expression were significantly higher in the ALNs in the HIFU group. It was concluded that HIFU could stimulate potent immune response and significantly increase T cell, activated CTLs and NK cell populations in the TDLNs of breast cancer.
Collapse
Affiliation(s)
- Xue-Qiang Zhu
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing 400016, China; (X.-Q.Z.); (P.L.); (Z.-L.X.); (Q.Z.); (J.Z.); (Z.-B.W.)
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Pei Lu
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing 400016, China; (X.-Q.Z.); (P.L.); (Z.-L.X.); (Q.Z.); (J.Z.); (Z.-B.W.)
- Department of Oncology, Nanyang First People’s Hospital, Nanyang 473004, China
| | - Zhong-Lin Xu
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing 400016, China; (X.-Q.Z.); (P.L.); (Z.-L.X.); (Q.Z.); (J.Z.); (Z.-B.W.)
| | - Qiang Zhou
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing 400016, China; (X.-Q.Z.); (P.L.); (Z.-L.X.); (Q.Z.); (J.Z.); (Z.-B.W.)
| | - Jun Zhang
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing 400016, China; (X.-Q.Z.); (P.L.); (Z.-L.X.); (Q.Z.); (J.Z.); (Z.-B.W.)
| | - Zhi-Biao Wang
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing 400016, China; (X.-Q.Z.); (P.L.); (Z.-L.X.); (Q.Z.); (J.Z.); (Z.-B.W.)
| | - Feng Wu
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing 400016, China; (X.-Q.Z.); (P.L.); (Z.-L.X.); (Q.Z.); (J.Z.); (Z.-B.W.)
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
- Correspondence:
| |
Collapse
|
16
|
Natale G, Stouthandel MEJ, Van Hoof T, Bocci G. The Lymphatic System in Breast Cancer: Anatomical and Molecular Approaches. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1272. [PMID: 34833492 PMCID: PMC8624129 DOI: 10.3390/medicina57111272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the most important causes of premature mortality among women and it is one of the most frequently diagnosed tumours worldwide. For this reason, routine screening for prevention and early diagnosis is important for the quality of life of patients. Breast cancer cells can enter blood and lymphatic capillaries, then metastasizing to the regional lymph nodes in the axilla and to both visceral and non-visceral sites. Rather than at the primary site, they seem to enter the systemic circulation mainly through the sentinel lymph node and the biopsy of this indicator can influence the axillary dissection during the surgical approach to the pathology. Furthermore, secondary lymphoedema is another important issue for women following breast cancer surgical treatment or radiotherapy. Considering these fundamental aspects, the present article aims to describe new methodological approaches to assess the anatomy of the lymphatic network in the axillary region, as well as the molecular and physiological control of lymphatic vessel function, in order to understand how the lymphatic system contributes to breast cancer disease. Due to their clinical implications, the understanding of the molecular mechanisms governing lymph node metastasis in breast cancer are also examined. Beyond the investigation of breast lymphatic networks and lymphatic molecular mechanisms, the discovery of new effective anti-lymphangiogenic drugs for future clinical settings appears essential to support any future development in the treatment of breast cancer.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy
| | - Michael E. J. Stouthandel
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (M.E.J.S.); (T.V.H.)
| | - Tom Van Hoof
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (M.E.J.S.); (T.V.H.)
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|