1
|
Li S, Liu G, Cheng S, Li X, Weng X, Yang J. Pharmacological and genetic inhibition of BTK ameliorates vascular degeneration, dissection, and rupture. Life Sci 2025; 369:123533. [PMID: 40049365 DOI: 10.1016/j.lfs.2025.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
AIMS Aortic aneurysm and dissection (AAD) involves complex immune responses, with macrophages playing a central role in vascular inflammation and AAD progression. The aim of this study was to determine the role of Bruton's tyrosine kinase (BTK) in macrophage-mediated inflammation and its impact on AAD progression. MAIN METHODS We employed pharmacological and genetic approaches to inhibit BTK in AAD models induced by β-aminopropionitrile (BAPN) and angiotensin II (Ang II). Histological analysis, RNA sequencing, and molecular assays were used to assess macrophage polarization, inflammatory responses and progression of AAD. KEY FINDINGS BTK was upregulated in both aortic tissue from patients undergoing surgery for aortic dissection and AAD mice model. BTK inhibition significantly reduced macrophage infiltration, modulated macrophage polarization, and attenuated AAD progression by limiting vascular inflammation. SIGNIFICANCE These findings establish BTK as a key regulator of macrophage-driven vascular inflammation and a promising therapeutic target for AAD.
Collapse
Affiliation(s)
- Songwen Li
- Bengbu Medical University, Bengbu 233030, China; Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, 200237 Shanghai, China
| | - Gang Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shuo Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Li
- Bengbu Medical University, Bengbu 233030, China; Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, 200237 Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China.
| | - Jing Yang
- Bengbu Medical University, Bengbu 233030, China; Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, 200237 Shanghai, China.
| |
Collapse
|
2
|
Su Y, Liu S, Long C, Zhou Z, Zhou Y, Tang J. The cross-talk between B cells and macrophages. Int Immunopharmacol 2024; 143:113463. [PMID: 39467344 DOI: 10.1016/j.intimp.2024.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
B cells and macrophages are significant immune cells that maintain the immune balance of the body. B cells are involved in humoral immunity, producing immune effects mainly by secreting antibodies. Macrophages participate in non-specific and specific immune responses. To gain a further understanding of macrophages and B cells, researchers have not only paid attention to the unidirectional influence between B cells and macrophages, but also have focused on the cross-talk between them, and the effect of this cross talk on diseases. Therefore, this review summarizes the influence of macrophages on B cells, the ways and mechanisms by which B cells affect macrophages, and their cross-talk, leading to a more comprehensive understanding of the mechanism of the interaction between macrophages and B cells.
Collapse
Affiliation(s)
- Yahui Su
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zihua Zhou
- Department of Oncology, Loudi Central Hospital, Loudi 417000, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Zhu J, Meganathan I, MacAruthur R, Kassiri Z. Inflammation in Abdominal Aortic Aneurysm: Cause or Comorbidity? Can J Cardiol 2024; 40:2378-2391. [PMID: 39181326 DOI: 10.1016/j.cjca.2024.08.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Aortic aneurysm is a potentially deadly disease. It is chronic degeneration of the aortic wall that involves an inflammatory response and the immune system, aberrant remodelling of the extracellular matrix, and maladaptive transformation of the aortic cells. This review article focuses on the role of the inflammatory cells in abdominal aortic aneurysm. Studies in human aneurysmal specimens and animal models have identified various inflammatory cell types that could contribute to formation or expansion of aneurysms. These include the commonly studied leukocytes (neutrophils and macrophages) as well as the less commonly explored natural killer cells, dendritic cells, T cells, and B cells. Despite the well-demonstrated contribution of inflammatory cells and the related signalling pathways to development and expansion of aneurysms, anti-inflammatory therapy approaches have demonstrated limitations and may require additional considerations such as a combinational approach in targeting multiple pathways for significant beneficial outcomes.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ilamaran Meganathan
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacAruthur
- Department of Cardiac Surgery, Mazankowski Alberta Heart Institute, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, Meher AK. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol 2024; 15:1436900. [PMID: 39185417 PMCID: PMC11341376 DOI: 10.3389/fimmu.2024.1436900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
B cell-activating factor (BAFF) is a critical TNF-family cytokine that regulates homeostasis and peripheral tolerance of B2 cells. BAFF overproduction promotes autoantibody generation and autoimmune diseases. During obesity, BAFF is predominantly produced by white adipose tissue (WAT), and IgG autoantibodies against adipocytes are identified in the WAT of obese humans. However, it remains to be determined if the autoantibodies formed during obesity affect WAT remodeling and systemic insulin resistance. Here, we show that IgG autoantibodies are generated in high-fat diet (HFD)-induced obese mice that bind to apoptotic adipocytes and promote their phagocytosis by macrophages. Next, using murine models of obesity in which the gonadal WAT undergoes remodeling, we found that BAFF neutralization depleted IgG autoantibodies, increased the number of dead adipocytes, and exacerbated WAT inflammation and insulin resistance. RNA sequencing of the stromal vascular fraction from the WAT revealed decreased expression of immunoglobulin light-chain and heavy-chain variable genes suggesting a decreased repertoire of B cells after BAFF neutralization. Further, the B cell activation and the phagocytosis pathways were impaired in the WAT of BAFF-neutralized mice. In vitro, plasma IgG fractions from BAFF-neutralized mice reduced the phagocytic clearance of apoptotic adipocytes. Altogether, our study suggests that IgG autoantibodies developed during obesity, at least in part, dampens exacerbated WAT inflammation and systemic insulin resistance.
Collapse
Affiliation(s)
- Melissa D. Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jake A. Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Gabriel Abuna
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro M. Murata
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Senad Divanovic
- Department of Pediatrics University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
5
|
Wang AA, Luessi F, Neziraj T, Pössnecker E, Zuo M, Engel S, Hanuscheck N, Florescu A, Bugbee E, Ma XI, Rana F, Lee D, Ward LA, Kuhle J, Himbert J, Schraad M, van Puijenbroek E, Klein C, Urich E, Ramaglia V, Pröbstel AK, Zipp F, Gommerman JL. B cell depletion with anti-CD20 promotes neuroprotection in a BAFF-dependent manner in mice and humans. Sci Transl Med 2024; 16:eadi0295. [PMID: 38446903 DOI: 10.1126/scitranslmed.adi0295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.
Collapse
Affiliation(s)
- Angela A Wang
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sinah Engel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Alexandra Florescu
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Eryn Bugbee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xianjie I Ma
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Fatima Rana
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jens Kuhle
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Johannes Himbert
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muriel Schraad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Glycart AG, 8952 Schlieren, Switzerland
| | - Eduard Urich
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4052 Basel, Switzerland
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
6
|
Lu KQ, Zhu ZZ, Wei SR, Zeng HS, Mo HY. Systemic lupus erythematosus complicated with cardiovascular disease. Int J Rheum Dis 2023; 26:1429-1431. [PMID: 37485770 DOI: 10.1111/1756-185x.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Ke-Qu Lu
- Department of Rheumatology, Guilin Medical University, Guilin, China
| | - Zhen-Zhen Zhu
- Department of Rheumatology, Guilin Medical University, Guilin, China
| | - Si-Ru Wei
- Department of Rheumatology, Guilin Medical University, Guilin, China
| | - Hua-Song Zeng
- Department of Pediatric Allergy, Immunology & Rheumatology, Women and Children's Medical Center, Guanzhou Medical University, Center and South National Pediatric Medical Center, Guanzhou, China
| | - Han-You Mo
- Department of Rheumatology, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
8
|
D Lempicki M, Paul S, Serbulea V, Upchurch CM, Sahu S, Gray JA, Ailawadi G, Garcia BL, McNamara CA, Leitinger N, Meher AK. BAFF antagonism via the BAFF receptor 3 binding site attenuates BAFF 60-mer-induced classical NF-κB signaling and metabolic reprogramming of B cells. Cell Immunol 2022; 381:104603. [PMID: 36182705 PMCID: PMC10691782 DOI: 10.1016/j.cellimm.2022.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
Human recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma. In vitro, BAFF 60-mer strongly induced the transcriptome of B cells which was partly attenuated by antagonism using a soluble fragment of BAFF receptor 3. Furthermore, compared to BAFF 3-mer, BAFF 60-mer strongly induced a transient classical and prolonged alternate NF-κB signaling, glucose oxidation by both aerobic glycolysis and oxidative phosphorylation, and succinate utilization by mitochondria. BAFF antagonism selectively attenuated classical NF-κB signaling and glucose oxidation. Altogether, our results suggest critical roles of BAFF 60-mer and its BAFF receptor 3 binding site in hyperactivation of B cells.
Collapse
Affiliation(s)
- Melissa D Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Saikat Paul
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Jake A Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia, VA 22908, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, VA 22908, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Akshaya K Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States; Department of Pharmacology, University of Virginia, VA 22908, United States.
| |
Collapse
|
9
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
10
|
Liu Y, Yu X, Zhang W, Zhang X, Wang M, Ji F. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus. J Autoimmun 2022; 132:102863. [PMID: 35853760 DOI: 10.1016/j.jaut.2022.102863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with a significant risk of cardiovascular disease (CVD), which substantially increases disease mortality and morbidity. The overall mechanisms associated with the development of premature atherosclerosis and CVD in SLE remain unclear, but has been considered as a result of an intricate interplay between the profound immune dysregulation and traditional CVD risk factors. Aberrant systemic inflammation in SLE may lead to an abnormal lipid profile and dysfunction, which can further fuel the pro-atherosclerotic environment. The existence of a strong imbalance between endothelial damage and vascular repair/angiogenesis promotes vascular injury, which is the early step in the progression of atherosclerotic CVD. Profound innate and adaptive immune dysregulation, characterized by excessive type I interferon burden, aberrant macrophage, platelet and complements activation, neutrophil dysregulation and neutrophil extracellular traps formation, uncontrolled T cell activation, and excessive autoantibody production and immune complex formation, have been proposed to promote accelerated CVD in SLE. While designing targeted therapies to correct the dysregulated immune activation may be beneficial in the treatment of SLE-related CVD, much additional work is needed to determine how to translate these findings into clinical practice. Additionally, a number of biomarkers display diagnostic potentials in improving CVD risk stratification in SLE, further prospective studies will help understand which biomarker(s) will be the most impactful one(s) in assessing SLE-linked CVD. Continued efforts to identify novel mechanisms and to establish criteria for assessing CVD risk as well as predicting CVD progression are in great need to improve CVD outcomes in SLE.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
11
|
Puchenkova OA, Soldatov VO, Belykh AE, Bushueva O, Piavchenko GA, Venediktov AA, Shakhpazyan NK, Deykin AV, Korokin MV, Pokrovskiy MV. Cytokines in Abdominal Aortic Aneurysm: Master Regulators With Clinical Application. Biomark Insights 2022; 17:11772719221095676. [PMID: 35492378 PMCID: PMC9052234 DOI: 10.1177/11772719221095676] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/04/2022] [Indexed: 01/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially life-threatening disorder with a mostly asymptomatic course where the abdominal aorta is weakened and bulged. Cytokines play especially important roles (both positive and negative) among the molecular actors of AAA development. All the inflammatory cascades, extracellular matrix degradation and vascular smooth muscle cell apoptosis are driven by cytokines. Previous studies emphasize an altered expression and a changed epigenetic regulation of key cytokines in AAA tissue samples. Such cytokines as IL-6, IL-10, IL-12, IL-17, IL-33, IL-1β, TGF-β, TNF-α, IFN-γ, and CXCL10 seem to be crucial in AAA pathogenesis. Some data obtained in animal studies show a protective function of IL-10, IL-33, and canonical TGF-β signaling, as well as a dual role of IL-4, IFN-γ and CXCL10, while TNF-α, IL-1β, IL-6, IL-12/IL-23, IL-17, CCR2, CXCR2, CXCR4 and the TGF-β noncanonical pathway are believed to aggravate the disease. Altogether data highlight significance of cytokines as informative markers and predictors of AAA. Pathologic serum/plasma concentrations of IL-1β, IL-2, IL-6, TNF-α, IL-10, IL-8, IL-17, IFN-γ, and PDGF have been already found in AAA patients. Some of the changes correlate with the size of aneurysms. Moreover, the risk of AAA is associated with polymorphic variants of genes encoding cytokines and their receptors: CCR2 (rs1799864), CCR5 (Delta-32), IL6 (rs1800796 and rs1800795), IL6R (rs12133641), IL10 (rs1800896), TGFB1 (rs1800469), TGFBR1 (rs1626340), TGFBR2 (rs1036095, rs4522809, rs1078985), and TNFA (rs1800629). Finally, 5 single-nucleotide polymorphisms in gene coding latent TGF-β-binding protein (LTBP4) and an allelic variant of TGFB3 are related to a significantly slower AAA annual growth rate.
Collapse
Affiliation(s)
- Olesya A Puchenkova
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Vladislav O Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Department of Pathophysiology, Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - OlgaYu Bushueva
- Department of Biology, Medical Genetics and Ecology, Laboratory of Genomic Research at the Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Gennadii A Piavchenko
- Department of Histology, Cytology and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Cell Pathology in Critical State, State Research Institute of General Reanimatology, Moscow, Russia
| | - Artem A Venediktov
- Department of Histology, Cytology and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| |
Collapse
|