1
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Goswami P, Kumar V, Gupta G. Biomedical prospects and challenges of metal dichalcogenides nanomaterials. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:033001. [PMID: 39655850 DOI: 10.1088/2516-1091/ad6abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 12/18/2024]
Abstract
The biomedical applications of metal dichalcogenides (MDCs) nanomaterials (NMs) are an emerging discipline because of their unique attributes like high surface-to-volume ratio, defect sites, superb catalytic performance, and excitation-dependent emission, which is helpful in bio-imaging and cancer cell killing. Due to the compatibility of sensing material with cells and tissues, MoS2, WS2, and SnS2NMs have piqued the interest of researchers in various biomedical applications like photothermal therapy used in killing cancer cells, drug delivery, photoacoustic tomography (PAT) used in bio-imaging, nucleic acid or gene delivery, tissue engineering, wound healing, etc. Furthermore, these NMs' functionalization and defect engineering can enhance therapeutic efficacy, biocompatibility, high drug transport efficiency, adjustable drug release, dispersibility, and biodegradability. Among the aforementioned materials, MoS2NMs have extensively been explored via functionalization and defects engineering to improve biosensing properties. However, further enhancement is still available. Aside from MoS2, the distinct chemo-physical and optical features of WS2and SnS2NMs promise considerable potential in biosensing, nanomedicine, and pharmaceuticals. This article mainly focuses on the challenges and future aspects of two-dimensional MDCs NMs in biomedical applications, along with their advancements in various medical diagnosis processes.
Collapse
Affiliation(s)
- Preeti Goswami
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Academy of Scientific & Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Videsh Kumar
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Delhi Technological University, New Delhi 110042, India
| | - Govind Gupta
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Academy of Scientific & Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
3
|
Zhao WN, Xing J, Wang M, Li H, Sun S, Wang X, Xu Y. Engineering a hyaluronic acid-encapsulated tumor-targeted nanoplatform with sensitized chemotherapy and a photothermal effect for enhancing tumor therapy. Int J Biol Macromol 2024; 264:130785. [PMID: 38471605 DOI: 10.1016/j.ijbiomac.2024.130785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Chemotherapy remains one of the most widely used cancer treatment modalities in clinical practice. However, the characteristic microenvironment of solid tumors severely limits the anticancer efficacy of chemotherapy. In addition, a single treatment modality or one death pathway reduces the antitumor outcome. Herein, tumor-targeting O2 self-supplied nanomodules (CuS@DOX/CaO2-HA) are proposed that not only alleviate tumor microenvironmental hypoxia to promote the accumulation of chemotherapeutic drugs in tumors but also exert photothermal effects to boost drug release, penetration and combination therapy. CuS@DOX/CaO2-HA consists of copper sulfide (CuS)-loaded calcium peroxide (CaO2) and doxorubicin (DOX), and its surface is further modified with HA. CuS@DOX/CaO2-HA underwent photothermal treatment to release DOX and CaO2. Hyperthermia accelerates drug penetration to enhance chemotherapeutic efficacy. The exposed CaO2 reacts with water to produce Ca2+, H2O2 and O2, which sensitizes cells to chemotherapy through mitochondrial damage caused by calcium overload and a reduction in drug efflux via the alleviation of hypoxia. Moreover, under near infrared (NIR) irradiation, CuS@DOX/CaO2-HA initiates a pyroptosis-like cell death process in addition to apoptosis. In vivo, CuS@DOX/CaO2-HA demonstrated high-performance antitumor effects. This study provides a new strategy for synergistic enhancement of chemotherapy in hypoxic tumor therapy via combination therapy and multiple death pathways.
Collapse
Affiliation(s)
- Wei-Nan Zhao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China; School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, PR China
| | - Jianghao Xing
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Min Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China.
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
4
|
An Z, He Q, Jiang L, Wang Y, Zhang Y, Sun Y, Wang M, Yang S, Huang L, Li H, Hao Y, Liang X, Wang S. A One-Stone-Two-Birds Strategy of Targeting Microbubbles with "Dual" Anti-Inflammatory and Blood-Brain Barrier "Switch" Function for Ischemic Stroke Treatment. ACS Biomater Sci Eng 2024; 10:1774-1787. [PMID: 38420991 DOI: 10.1021/acsbiomaterials.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Inflammation is considered to be the main target of the development of new stroke therapies. There are three key issues in the treatment of stroke inflammation: the first one is how to overcome the blood-brain barrier (BBB) to achieve drug delivery, the second one is how to select drugs to treat stroke inflammation, and the third one is how to achieve targeted drug delivery. In this study, we constructed hydrocortisone-phosphatidylserine microbubbles and combined them with ultrasound (US)-targeted microbubble destruction technology to successfully open the BBB to achieve targeted drug delivery. Phosphatidylserine on the microbubbles was used for its "eat me" effect to increase the targeting of the microvesicles. In addition, we found that hydrocortisone can accelerate the closure of the BBB, achieving efficient drug delivery while reducing the entry of peripheral toxins into the brain. In the treatment of stroke inflammation, it was found that hydrocortisone itself has anti-inflammatory effects and can also change the polarization of microglia from the harmful pro-inflammatory M1 phenotype to the beneficial anti-inflammatory M2 phenotype, thus achieving dual anti-inflammatory effects and enhancing the anti-inflammatory effects in ischemic areas after stroke, well reducing the cerebellar infarction volume by inhibiting the inflammatory response after cerebral ischemia. A confocal microendoscope was used to directly observe the polarization of microglial cells in living animal models for dynamic microscopic visualization detection showing the advantage of being closer to clinical work. Taken together, this study constructed a multifunctional targeted US contrast agent with the function of "one-stone-two-birds", which can not only "on-off" the BBB but also have "two" anti-inflammatory functions, providing a new strategy of integrated anti-inflammatory targeted delivery and imaging monitoring for ischemic stroke treatment.
Collapse
Affiliation(s)
- Zhongbin An
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Jiang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yongyue Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yang Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Mengxin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shiyuan Yang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Lijie Huang
- Tsinghua University, Hai Dian, Beijing 017000, China
| | - Huiwen Li
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Yu Hao
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
5
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Dai W, Zheng Y, Li B, Yang F, Chen W, Li Y, Deng Y, Bai D, Shu R. A 3D-printed orthopedic implant with dual-effect synergy based on MoS 2 and hydroxyapatite nanoparticles for tumor therapy and bone regeneration. Colloids Surf B Biointerfaces 2023; 228:113384. [PMID: 37320980 DOI: 10.1016/j.colsurfb.2023.113384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Treatments for malignant bone tumors are urgently needed to be developed due to the dilemma of precise resection of tumor tissue and subsequent bone defects. Although polyether-ether-ketone (PEEK) has widely attracted attention in the orthopedic field, its bioinertness and poor osteogenic properties significantly restrict its applications in bone tumor treatment. To tackle the daunting issue, we use a hydrothermal technique to fabricate novel PEEK scaffolds modified with molybdenum disulfide (MoS2) nanosheets and hydroxyapatite (HA) nanoparticles. Our dual-effect synergistic PEEK scaffolds exhibit perfect photothermal therapeutic (PTT) property dependent on molybdous ion (Mo2+) concentration and laser power density, superior to conventional PEEK scaffolds. Under near-infrared (NIR) irradiation, the viability of MG63 osteosarcoma cells is significantly reduced by modified PEEK scaffolds, indicating a tumor-killing potential in vitro. Furthermore, the incorporation of HA nanoparticles on the surface of PEEK bolsters proliferation and adherence of MC3T3-E1 cells, boosting mineralization for further bone defect repair. The results of micro-computed tomography (micro-CT) and histological analysis of 4-week treated rat femora demonstrate the preeminent photothermal and osteogenesis capacity of 3D-printed modified scaffolds in vivo. In conclusion, the dual-effect synergistic orthopedic implant with photothermal anticancer property and osteogenic induction activity strikes a balance between tumor treatment and bone development promotion, offering a promising future therapeutic option.
Collapse
Affiliation(s)
- Wenyu Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics and Paediatric Dentistry, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Yunfei Zheng
- Department of Orthodontics, National Center of Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Bin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics and Paediatric Dentistry, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics and Paediatric Dentistry, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Wanxi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics and Paediatric Dentistry, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, United States
| | - Yi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics and Paediatric Dentistry, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu 610041, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics and Paediatric Dentistry, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Rui Shu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics and Paediatric Dentistry, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Stem Cell-derived Extracellular Vesicles: A Promising Nano Delivery Platform to the Brain? Stem Cell Rev Rep 2023; 19:285-308. [PMID: 36173500 DOI: 10.1007/s12015-022-10455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
A very important cause of the frustration with drug therapy for central nervous system (CNS) diseases is the failure of drug delivery. The blood-brain barrier (BBB) prevents most therapeutic molecules from entering the brain while maintaining CNS homeostasis. Scientists are keen to develop new brain drug delivery systems to solve this dilemma. Extracellular vesicles (EVs), as a class of naturally derived nanoscale vesicles, have been extensively studied in drug delivery due to their superior properties. This review will briefly present current brain drug delivery strategies, including invasive and non-invasive techniques that target the brain, and the application of nanocarriers developed for brain drug delivery in recent years, especially EVs. The cellular origin of EVs affects the surface protein, size, yield, luminal composition, and other properties of EVs, which are also crucial in determining whether EVs are useful as drug carriers. Stem cell-derived EVs, which inherit the properties of parental cells and avoid the drawbacks of cell therapy, have always been favored by researchers. Thus, in this review, we will focus on the application of stem cell-derived EVs for drug delivery in the CNS. Various nucleic acids, proteins, and small-molecule drugs are loaded into EVs with or without modification and undergo targeted delivery to the brain to achieve their therapeutic effects. In addition, the challenges facing the clinical application of EVs as drug carriers will also be discussed. The directions of future efforts may be to improve drug loading efficiency and precise targeting.
Collapse
|
8
|
Malagrino TRS, Godoy AP, Barbosa JM, Lima AGT, Sousa NCO, Pedrotti JJ, Garcia PS, Paniago RM, Andrade LM, Domingues SH, Silva WM, Ribeiro H, Taha-Tijerina J. Multifunctional Hybrid MoS 2-PEGylated/Au Nanostructures with Potential Theranostic Applications in Biomedicine. NANOMATERIALS 2022; 12:nano12122053. [PMID: 35745394 PMCID: PMC9227389 DOI: 10.3390/nano12122053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
In this work, flower-like molybdenum disulfide (MoS2) microspheres were produced with polyethylene glycol (PEG) to form MoS2-PEG. Likewise, gold nanoparticles (AuNPs) were added to form MoS2-PEG/Au to investigate its potential application as a theranostic nanomaterial. These nanomaterials were fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), photoelectron X-ray spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), cyclic voltammetry and impedance spectroscopy. The produced hierarchical MoS2-PEG/Au microstructures showed an average diameter of 400 nm containing distributed gold nanoparticles, with great cellular viability on tumoral and non-tumoral cells. This aspect makes them with multifunctional characteristics with potential application for cancer diagnosis and therapy. Through the complete morphological and physicochemical characterization, it was possible to observe that both MoS2-PEG and MoS2-PEG/Au showed good chemical stability and demonstrated noninterference in the pattern of the cell nucleus, as well. Thus, our results suggest the possible application of these hybrid nanomaterials can be immensely explored for theranostic proposals in biomedicine.
Collapse
Affiliation(s)
- Thiago R. S. Malagrino
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
| | - Anna P. Godoy
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
| | - Juliano M. Barbosa
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
| | - Abner G. T. Lima
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
| | - Nei C. O. Sousa
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
| | - Jairo J. Pedrotti
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
| | - Pamela S. Garcia
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
| | - Roberto M. Paniago
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6.627, Belo Horizonte 31270-901, MG, Brazil; (R.M.P.); (L.M.A.)
| | - Lídia M. Andrade
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6.627, Belo Horizonte 31270-901, MG, Brazil; (R.M.P.); (L.M.A.)
| | - Sergio H. Domingues
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
- MackGraphe, Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil
| | - Wellington M. Silva
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6.627, Belo Horizonte 31270-901, MG, Brazil;
| | - Hélio Ribeiro
- Engineering School, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, SP, Brazil; (T.R.S.M.); (A.P.G.); (J.M.B.); (A.G.T.L.); (N.C.O.S.); (J.J.P.); (P.S.G.); (S.H.D.); (H.R.)
| | - Jaime Taha-Tijerina
- Engineering Department, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, NL, Mexico
- Engineering Technology Department, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
- Correspondence:
| |
Collapse
|
9
|
|
10
|
NIR-Laser Triggered Drug Release from Molybdenum Disulfide Nanosheets Modified with Thermosensitive Polymer for Prostate Cancer Treatment. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
12
|
Manisekaran R, García-Contreras R, Rasu Chettiar AD, Serrano-Díaz P, Lopez-Ayuso CA, Arenas-Arrocena MC, Hernández-Padrón G, López-Marín LM, Acosta-Torres LS. 2D Nanosheets-A New Class of Therapeutic Formulations against Cancer. Pharmaceutics 2021; 13:1803. [PMID: 34834218 PMCID: PMC8620729 DOI: 10.3390/pharmaceutics13111803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Researchers in cancer nanomedicine are exploring a revolutionary multifaceted carrier for treatment and diagnosis, resulting in the proposal of various drug cargos or "magic bullets" in this past decade. Even though different nano-based complexes are registered for clinical trials, very few products enter the final stages each year because of various issues. This prevents the formulations from entering the market and being accessible to patients. In the search for novel materials, the exploitation of 2D nanosheets, including but not limited to the highly acclaimed graphene, has created extensive interest for biomedical applications. A unique set of properties often characterize 2D materials, including semiconductivity, high surface area, and their chemical nature, which allow simple decoration and functionalization procedures, structures with high stability and targeting properties, vectors for controlled and sustained release of drugs, and materials for thermal-based therapies. This review discusses the challenges and opportunities of recently discovered 2D nanosheets for cancer therapeutics, with special attention paid to the most promising design technologies and their potential for clinical translation in the future.
Collapse
Affiliation(s)
- Ravichandran Manisekaran
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - René García-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Aruna-Devi Rasu Chettiar
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico;
| | - Paloma Serrano-Díaz
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Christian Andrea Lopez-Ayuso
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Ma Concepción Arenas-Arrocena
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Genoveva Hernández-Padrón
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla 76230, Mexico; (G.H.-P.); (L.M.L.-M.)
| | - Luz M. López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla 76230, Mexico; (G.H.-P.); (L.M.L.-M.)
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| |
Collapse
|
13
|
Štefík P, Annušová A, Lakatoš B, Elefantová K, Čepcová L, Hofbauerová M, Kálosi A, Jergel M, Majková E, Šiffalovič P. Targeting acute myeloid leukemia cells by CD33 receptor-specific MoS 2-based nanoconjugates. Biomed Mater 2021; 16. [PMID: 34280914 DOI: 10.1088/1748-605x/ac15b1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive type of cancer caused by the uncontrolled proliferation of undifferentiated myeloblasts, affecting the bone marrow and blood. Systemic chemotherapy is considered the primary treatment strategy; unfortunately, healthy cells are also affected to a large extent, leading to severe side effects of this treatment. Targeted drug therapies are becoming increasingly popular in modern medicine, as they bypass normal tissues and cells. Two-dimensional MoS2-based nanomaterials have attracted attention in the biomedical field as promising agents for cancer diagnosis and therapy. Cancer cells typically (over)express distinctive cytoplasmic membrane-anchored or -spanning protein-based structures (e.g., receptors, enzymes) that distinguish them from healthy, non-cancerous cells. Targeting cancer cells via tumor-specific markers using MoS2-based nanocarriers loaded with labels or drugs can significantly improve specificity and reduce side effects of such treatment. SKM-1 is an established AML cell line that has been employed in various bio-research applications. However, to date, it has not been used as the subject of studies on selective cancer targeting by inorganic nanomaterials. Here, we demonstrate an efficient targeting of AML cells using MoS2nanoflakes prepared by a facile exfoliation route and functionalized with anti-CD33 antibody that binds to CD33 receptors expressed by SKM-1 cells. Microscopic analyses by confocal laser scanning microscopy supplemented by label-free confocal Raman microscopy proved that (anti-CD33)-MoS2conjugates were present on the cell surface and within SKM-1 cells, presumably having been internalized via CD33-mediated endocytosis. Furthermore, the cellular uptake of SKM-1 specific (anti-CD33)-MoS2conjugates assessed by flow cytometry analysis was significantly higher compared with the cellular uptake of SKM-1 nonspecific (anti-GPC3)-MoS2conjugates. Our results indicate the importance of appropriate functionalization of MoS2nanomaterials by tumor-recognizing elements that significantly increase their specificity and hence suggest the utilization of MoS2-based nanomaterials in the diagnosis and therapy of AML.
Collapse
Affiliation(s)
- Pavol Štefík
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Adriana Annušová
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia.,Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Boris Lakatoš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Katarína Elefantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Lucia Čepcová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Monika Hofbauerová
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Anna Kálosi
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Matej Jergel
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia.,Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Eva Majková
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia.,Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia.,Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| |
Collapse
|
14
|
Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11:2306-2325. [PMID: 34522589 PMCID: PMC8424230 DOI: 10.1016/j.apsb.2020.11.023] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.
Collapse
Key Words
- AD, Alzheimer's disease
- AMT, alpha-methyl-l-tryptophan
- Aβ, amyloid beta
- BACE1, β-secretase 1
- BBB, blood–brain barrier
- BDNF, brain derived neurotrophic factor
- BTB, blood–brain tumor barrier
- Blood–brain barrier
- Brain diseases
- Brain-targeting
- CMT, carrier-mediated transportation
- DTPA-Gd, Gd-diethyltriaminepentaacetic acid
- Drug delivery systems
- EPR, enhanced permeability and retention
- GLUT1, glucose transporter-1
- Gd, gadolinium
- ICAM-1, intercellular adhesion molecule-1
- KATP, ATP-sensitive potassium channels
- KCa, calcium-dependent potassium channels
- LAT1, L-type amino acid transporter 1
- LDL, low density lipoprotein
- LDLR, LDL receptor
- LFA-1, lymphocyte function associated antigen-1
- LRP1, LDLR-related protein 1
- MFSD2A, major facilitator superfamily domain-containing protein 2a
- MMP9, metalloproteinase-9
- MRI, magnetic resonance imaging
- NPs, nanoparticles
- Nanoparticles
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PEG, polyethyleneglycol
- PEG-PLGA, polyethyleneglycol-poly(lactic-co-glycolic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PSMA, prostate-specific membrane antigen
- RAGE, receptor for advanced glycosylation end products
- RBC, red blood cell
- RMT, receptor-mediated transcytosis
- ROS, reactive oxygen species
- TBI, traumatic brain injury
- TJ, tight junction
- TfR, transferrin receptor
- VEGF, vascular endothelial growth factor
- ZO1, zona occludens 1
- siRNA, short interfering RNA
- tPA, tissue plasminogen activator
Collapse
Affiliation(s)
- Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Corresponding author. Tel./fax: +86 512 65882089.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Antibacterial activity and cytotoxicity of novel silkworm-like nisin@PEGylated MoS2. Colloids Surf B Biointerfaces 2019; 183:110491. [DOI: 10.1016/j.colsurfb.2019.110491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
|
16
|
Bodík M, Annušová A, Hagara J, Mičušík M, Omastová M, Kotlár M, Chlpík J, Cirák J, Švajdlenková H, Anguš M, Roldán AM, Veis P, Jergel M, Majkova E, Šiffalovič P. An elevated concentration of MoS2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoOx nanoparticles. Phys Chem Chem Phys 2019; 21:12396-12405. [DOI: 10.1039/c9cp01951k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The oxidation of MoS2 with a simultaneous decrease of MoS2 content.
Collapse
|
17
|
Kaur J, Singh M, Dell'Aversana C, Benedetti R, Giardina P, Rossi M, Valadan M, Vergara A, Cutarelli A, Montone AMI, Altucci L, Corrado F, Nebbioso A, Altucci C. Biological interactions of biocompatible and water-dispersed MoS 2 nanosheets with bacteria and human cells. Sci Rep 2018; 8:16386. [PMID: 30401943 PMCID: PMC6219585 DOI: 10.1038/s41598-018-34679-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023] Open
Abstract
Two dimensional materials beyond graphene such as MoS2 and WS2 are novel and interesting class of materials whose unique physico-chemical properties can be exploited in applications ranging from leading edge nanoelectronics to the frontiers between biomedicine and biotechnology. To unravel the potential of TMD crystals in biomedicine, control over their production through green and scalable routes in biocompatible solvents is critically important. Furthermore, considering multiple applications of eco-friendly 2D dispersions and their potential impact onto live matter, their toxicity and antimicrobial activity still remain an open issue. Herein, we focus on the current demands of 2D TMDs and produce high-quality, few-layered and defect-free MoS2 nanosheets, exfoliated and dispersed in pure water, stabilized up to three weeks. Hence, we studied the impact of this material on human cells by investigating its interactions with three cell lines: two tumoral, MCF7 (breast cancer) and U937 (leukemia), and one normal, HaCaT (epithelium). We observed novel and intriguing results, exhibiting evident cytotoxic effect induced in the tumor cell lines, absent in the normal cells in the tested conditions. The antibacterial action of MoS2 nanosheets is then investigated against a very dangerous gram negative bacterium, such as two types of Salmonellas: ATCC 14028 and wild-type Salmonella typhimurium. Additionally, concentration and layer-dependent modulation of cytotoxic effect is found both on human cells and Salmonellas.
Collapse
Affiliation(s)
- Jasneet Kaur
- Department of Physics, "Ettore Pancini", University of Naples "Federico II", Naples, Italy
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Manjot Singh
- Department of Physics, "Ettore Pancini", University of Naples "Federico II", Naples, Italy
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania "L Vanvitelli, Vico L. De Crecchio" 7, 80138, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "L Vanvitelli, Vico L. De Crecchio" 7, 80138, Naples, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Manuela Rossi
- Department of Earth, Environment and Resources Sciences, University of Naples "Federico II", Naples, Italy
| | - Mohammadhassan Valadan
- Department of Physics, "Ettore Pancini", University of Naples "Federico II", Naples, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna Cutarelli
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania "L Vanvitelli, Vico L. De Crecchio" 7, 80138, Naples, Italy
| | - Federica Corrado
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy.
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "L Vanvitelli, Vico L. De Crecchio" 7, 80138, Naples, Italy.
| | - Carlo Altucci
- Department of Physics, "Ettore Pancini", University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
18
|
Xu L, Tong G, Song Q, Zhu C, Zhang H, Shi J, Zhang Z. Enhanced Intracellular Ca 2+ Nanogenerator for Tumor-Specific Synergistic Therapy via Disruption of Mitochondrial Ca 2+ Homeostasis and Photothermal Therapy. ACS NANO 2018; 12:6806-6818. [PMID: 29966081 DOI: 10.1021/acsnano.8b02034] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Breast cancer therapy has always been a hard but urgent issue. Disruption of mitochondrial Ca2+ homeostasis has been reported as an effective antitumor strategy, while how to contribute to mitochondrial Ca2+ overload effectively is a critical issue. To solve this issue, we designed and engineered a dual enhanced Ca2+ nanogenerator (DECaNG), which can induce elevation of intracellular Ca2+ through the following three ways: Calcium phosphate (CaP)-doped hollow mesoporous copper sulfide was the basic Ca2+ nanogenerator to generate Ca2+ directly and persistently in the lysosomes (low pH). Near-infrared light radiation (NIR, such as 808 nm laser) can accelerate Ca2+ generation from the basic Ca2+ nanogenerator by disturbing the crystal lattice of hollow mesoporous copper sulfide via NIR-induced heat. Curcumin can facilitate Ca2+ release from the endoplasmic reticulum to cytoplasm and inhibit expelling of Ca2+ in cytoplasm through the cytoplasmic membrane. The in vitro study showed that DECaNG could produce a large amount of Ca2+ directly and persistently to flow to mitochondria, leading to upregulation of Caspase-3, cytochrome c, and downregulation of Bcl-2 and ATP followed by cell apoptosis. In addition, DECaNG had an outstanding photothermal effect. Interestingly, it was found that DECaNG exerted a stronger photothermal effect at lower pH due to the super small nanoparticles effect, thus enhancing photothermal therapy. In the in vivo study, the nanoplatform had good tumor targeting and treatment efficacy via a combination of disruption of mitochondrial Ca2+ homeostasis and photothermal therapy. The metabolism of CaNG was sped up through disintegration of CaNG into smaller nanoparticles, reducing the retention time of the nanoplatform in vivo. Therefore, DECaNG can be a promising drug delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Lihua Xu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province , Zhengzhou , China
| | - Guihua Tong
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
| | - Qiaoli Song
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
| | - Chunyu Zhu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
| | - Hongling Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province , Zhengzhou , China
| | - Jinjin Shi
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province , Zhengzhou , China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province , Zhengzhou , China
| |
Collapse
|
19
|
Kou L, Hou Y, Yao Q, Guo W, Wang G, Wang M, Fu Q, He Z, Ganapathy V, Sun J. L-Carnitine-conjugated nanoparticles to promote permeation across blood-brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1605-1616. [PMID: 28974108 DOI: 10.1080/21691401.2017.1384385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Overcoming blood-brain barrier (BBB) and targeting tumor cells are two key steps for glioma chemotherapy. By taking advantage of the specific expression of Na+-coupled carnitine transporter 2 (OCTN2) on both brain capillary endothelial cells and glioma cells, l-carnitine conjugated poly(lactic-co-glycolic acid) nanoparticles (LC-PLGA NPs) were prepared to enable enhanced BBB permeation and glioma-cell targeting. Conjugation of l-carnitine significantly enhanced the uptake of PLGA nanoparticles in the BBB endothelial cell line hCMEC/D3 and the glioma cell line T98G. The uptake was dependent on Na+ and inhibited by the excessive free l-carnitine, suggesting involvement of OCTN2 in the process. In vivo mouse studies showed that LC-PLGA NPs resulted in high accumulation in the brain as indicated by the biodistribution and imaging assays. Furthermore, compared to Taxol and paclitaxel-loaded unmodified PLGA NPs, the drug-loaded LC-PLGA NPs showed improved anti-glioma efficacy in both 2D-cell and 3D-spheroid models. The PEG spacer length of the ligand attached to the nanoparticles was optimized, and the formulation with PEG1000 (LC-1000-PLGA NPs) showed the maximum targeting efficiency. We conclude that l-carnitine-mediated cellular recognition and internalization via OCTN2 significantly facilitate the transcytosis of nanoparticles across BBB and the uptake of nanoparticles in glioma cells, resulting in improved anti-glioma efficacy.
Collapse
Affiliation(s)
- Longfa Kou
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China.,b Department of Cell Biology and Biochemistry , Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Yanxian Hou
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Qing Yao
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Weiling Guo
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Gang Wang
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Menglin Wang
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Qiang Fu
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Zhonggui He
- c Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Vadivel Ganapathy
- b Department of Cell Biology and Biochemistry , Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Jin Sun
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|