1
|
Bery AI, Belousova N, Hachem RR, Roux A, Kreisel D. Chronic Lung Allograft Dysfunction: Clinical Manifestations and Immunologic Mechanisms. Transplantation 2025; 109:454-466. [PMID: 39104003 PMCID: PMC11799353 DOI: 10.1097/tp.0000000000005162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The term "chronic lung allograft dysfunction" has emerged to describe the clinical syndrome of progressive, largely irreversible dysfunction of pulmonary allografts. This umbrella term comprises 2 major clinical phenotypes: bronchiolitis obliterans syndrome and restrictive allograft syndrome. Here, we discuss the clinical manifestations, diagnostic challenges, and potential therapeutic avenues to address this major barrier to improved long-term outcomes. In addition, we review the immunologic mechanisms thought to propagate each phenotype of chronic lung allograft dysfunction, discuss the various models used to study this process, describe potential therapeutic targets, and identify key unknowns that must be evaluated by future research strategies.
Collapse
Affiliation(s)
- Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Natalia Belousova
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
| | - Ramsey R Hachem
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Antoine Roux
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
- Paris Transplant Group, INSERM U 970s, Paris, France
| | - Daniel Kreisel
- Departments of Surgery, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Deng K, Lu G. Immune dysregulation as a driver of bronchiolitis obliterans. Front Immunol 2024; 15:1455009. [PMID: 39742269 PMCID: PMC11685133 DOI: 10.3389/fimmu.2024.1455009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Bronchiolitis obliterans (BO) is a disease characterized by airway obstruction and fibrosis that can occur in all age groups. Bronchiolitis obliterans syndrome (BOS) is a clinical manifestation of BO in patients who have undergone lung transplantation or hematopoietic stem cell transplantation. Persistent inflammation and fibrosis of small airways make the disease irreversible, eventually leading to lung failure. The pathogenesis of BO is not entirely clear, but immune disorders are commonly involved, with various immune cells playing complex roles in different BO subtypes. Accordingly, the US Food and Drug Administration (FDA) has recently approved several new drugs that can alleviate chronic graft-versus-host disease (cGVHD) by regulating the function of immune cells, some of which have efficacy specifically with cGVHD-BOS. In this review, we will discuss the roles of different immune cells in BO/BOS, and introduce the latest drugs targeting various immune cells as the main target. This study emphasizes that immune dysfunction is an important driving factor in its pathophysiology. A better understanding of the role of the immune system in BO will enable the development of targeted immunotherapies to effectively delay or even reverse this condition.
Collapse
Affiliation(s)
| | - Gen Lu
- Department of Respiration, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Cao Z, Liu X, Yan J. Prognostic significance and gene co-expression network of CD16A and FGL2 in gliomas. Front Oncol 2024; 14:1447113. [PMID: 39629005 PMCID: PMC11611834 DOI: 10.3389/fonc.2024.1447113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction The CD16A protein encoding gene FcγRIIIa (FCGR3A) and its potential ligand Fibrinogen-like protein 2 (FGL2) are involved in various cell physiological activities on the extracellular surface. Aberrant expression of these genes has been linked to tumorigenesis. Methods To assess the prognostic significance of FCGR3A and FGL2 transcription expression in glioma and explore their roles in glioma initiation and progression, we utilized multiple online databases, including TCGA, GEPIA, CGGA, cBioPortal, TISCH, LinkedOmics, Ivy Glioblastoma Atlas Project, and Human Protein Atlas. Results Our analysis revealed that FCGR3A and FGL2 expression was significantly correlated with clinical variables such as age, tumor type, WHO grade, histology, IDH-1 mutation, and 1p19q status. A strong correlation was also observed between the transcriptional expression levels of FCGR3A and FGL2. High expression of both genes predicted poor prognosis in primary and recurrent glioma patients, particularly those with lower grade gliomas. Cox regression analysis further confirmed that elevated expression of FCGR3A and FGL2 were independent prognostic factors for shorter overall survival in glioma patients. Gene co-expression network analysis suggested that FCGR3A, FGL2, and their co-expressed genes were involved in inflammatory activities and tumor-related signaling pathways. Additionally, tissue microarrays from glioma patients at Tiantan Hospital showed significantly higher FCGR3A protein expression in high-grade gliomas compared to low-grade gliomas. Discussion In conclusion, our findings suggest that FCGR3A and FGL2 could serve as promising prognostic biomarkers and potential therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Ziwen Cao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing, China
| | - Jun Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Tsao T, Qiu L, Bharti R, Shemesh A, Hernandez AM, Cleary SJ, Greenland NY, Santos J, Shi R, Bai L, Richardson J, Dilley K, Will M, Tomasevic N, Sputova T, Salles A, Kang J, Zhang D, Hays SR, Kukreja J, Singer JP, Lanier LL, Looney MR, Greenland JR, Calabrese DR. CD94 + natural killer cells potentiate pulmonary ischaemia-reperfusion injury. Eur Respir J 2024; 64:2302171. [PMID: 39190789 DOI: 10.1183/13993003.02171-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/30/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Pulmonary ischaemia-reperfusion injury (IRI) is a major contributor to poor lung transplant outcomes. We recently demonstrated a central role of airway-centred natural killer (NK) cells in mediating IRI; however, there are no existing effective therapies for directly targeting NK cells in humans. METHODS We hypothesised that a depleting anti-CD94 monoclonal antibody (mAb) would provide therapeutic benefit in mouse and human models of IRI based on high levels of KLRD1 (CD94) transcripts in bronchoalveolar lavage samples from lung transplant patients. RESULTS We found that CD94 is highly expressed on mouse and human NK cells, with increased expression during IRI. Anti-mouse and anti-human mAbs against CD94 showed effective NK cell depletion in mouse and human models and blunted lung damage and airway epithelial killing, respectively. In two different allogeneic orthotopic lung transplant mouse models, anti-CD94 treatment during induction reduced early lung injury and chronic inflammation relative to control therapies. Anti-CD94 did not increase donor antigen-presenting cells that could alter long-term graft acceptance. CONCLUSIONS Lung transplant induction regimens incorporating anti-CD94 treatment may safely improve early clinical outcomes.
Collapse
Affiliation(s)
- Tasha Tsao
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- T. Tsao and L. Qiu contributed equally
| | - Longhui Qiu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- T. Tsao and L. Qiu contributed equally
| | - Reena Bharti
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Avishai Shemesh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy San Francisco, San Francisco, CA, USA
| | - Alberto M Hernandez
- Parker Institute for Cancer Immunotherapy San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Simon J Cleary
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Nancy Y Greenland
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Jesse Santos
- Department of Surgery, University of California San Francisco - East Bay, Oakland, CA, USA
| | | | - Lu Bai
- Dren Bio, Foster City, CA, USA
| | | | | | | | | | | | | | | | - Dongliang Zhang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jasleen Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lewis L Lanier
- Parker Institute for Cancer Immunotherapy San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Looney
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Daniel R Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
5
|
Calabrese DR, Ekstrand CA, Yellamilli S, Singer JP, Hays SR, Leard LE, Shah RJ, Venado A, Kolaitis NA, Perez A, Combes A, Greenland JR. Macrophage and CD8 T cell discordance are associated with acute lung allograft dysfunction progression. J Heart Lung Transplant 2024; 43:1074-1086. [PMID: 38367738 PMCID: PMC11230518 DOI: 10.1016/j.healun.2024.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Acute lung allograft dysfunction (ALAD) is an imprecise syndrome denoting concern for the onset of chronic lung allograft dysfunction (CLAD). Mechanistic biomarkers are needed that stratify risk of ALAD progression to CLAD. We hypothesized that single cell investigation of bronchoalveolar lavage (BAL) cells at the time of ALAD would identify immune cells linked to progressive graft dysfunction. METHODS We prospectively collected BAL from consenting lung transplant recipients for single cell RNA sequencing. ALAD was defined by a ≥10% decrease in FEV1 not caused by infection or acute rejection and samples were matched to BAL from recipients with stable lung function. We examined cell compositional and transcriptional differences across control, ALAD with decline, and ALAD with recovery groups. We also assessed cell-cell communication. RESULTS BAL was assessed for 17 ALAD cases with subsequent decline (ALAD declined), 13 ALAD cases that resolved (ALAD recovered), and 15 cases with stable lung function. We observed broad differences in frequencies of the 26 unique cell populations across groups (p = 0.02). A CD8 T cell (p = 0.04) and a macrophage cluster (p = 0.01) best identified ALAD declined from the ALAD recovered and stable groups. This macrophage cluster was distinguished by an anti-inflammatory signature and the CD8 T cell cluster resembled a Tissue Resident Memory subset. Anti-inflammatory macrophages signaled to activated CD8 T cells via class I HLA, fibronectin, and galectin pathways (p < 0.05 for each). Recipients with discordance between these cells had a nearly 5-fold increased risk of severe graft dysfunction or death (HR 4.6, 95% CI 1.1-19.2, adjusted p = 0.03). We validated these key findings in 2 public lung transplant genomic datasets. CONCLUSIONS BAL anti-inflammatory macrophages may protect against CLAD by suppressing CD8 T cells. These populations merit functional and longitudinal assessment in additional cohorts.
Collapse
Affiliation(s)
- Daniel R Calabrese
- Department of Medicine, University of California, San Francisco, California; Medical Service, Veterans Affairs Health Care System, San Francisco, California.
| | | | - Shivaram Yellamilli
- Department of Pathology, University of California, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California, San Francisco, California
| | - Lorriana E Leard
- Department of Medicine, University of California, San Francisco, California
| | - Rupal J Shah
- Department of Medicine, University of California, San Francisco, California
| | - Aida Venado
- Department of Medicine, University of California, San Francisco, California
| | | | - Alyssa Perez
- Department of Medicine, University of California, San Francisco, California
| | - Alexis Combes
- Department of Pathology, University of California, San Francisco, California
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, California; Medical Service, Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
6
|
Verleden GM, Hendriks JMH, Verleden SE. The diagnosis and management of chronic lung allograft dysfunction. Curr Opin Pulm Med 2024; 30:377-381. [PMID: 38305383 DOI: 10.1097/mcp.0000000000001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
PURPOSE OF REVIEW Chronic lung allograft dysfunction (CLAD) remains a life-threatening complication following lung transplantation. Different CLAD phenotypes have recently been defined, based on the combination of pulmonary function testing and chest computed tomography (CT) scanning and spurred renewed interests in differential diagnosis, risk factors and management of CLAD. RECENT FINDINGS Given their crucial importance in the differential diagnosis, we will discuss the latest development in assessing the pulmonary function and chest CT scan, but also their limitations in proper CLAD phenotyping, especially with regards to patients with baseline allograft dysfunction. Since no definitive treatment exists, it remains important to timely identify clinical risk factors, but also to assess the presence of specific patterns or biomarkers in tissue or in broncho alveolar lavage in relation to CLAD (phenotypes). We will provide a comprehensive overview of the latest advances in risk factors and biomarker research in CLAD. Lastly, we will also review novel preventive and curative treatment strategies for CLAD. SUMMARY Although this knowledge has significantly advanced the field of lung transplantation, more research is warranted because CLAD remains a life-threatening complication for all lung transplant recipients.
Collapse
Affiliation(s)
| | - Jeroen M H Hendriks
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Edegem
- Department of ASTARC, University of Antwerp, Wilrijk, Belgium
| | - Stijn E Verleden
- Department of Pneumology
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Edegem
- Department of ASTARC, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Bharti R, Calabrese DR. Innate and adaptive effector immune drivers of cytomegalovirus disease in lung transplantation: a double-edged sword. FRONTIERS IN TRANSPLANTATION 2024; 3:1388393. [PMID: 38993763 PMCID: PMC11235306 DOI: 10.3389/frtra.2024.1388393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Up to 90% of the global population has been infected with cytomegalovirus (CMV), a herpesvirus that remains latent for the lifetime of the host and drives immune dysregulation. CMV is a critical risk factor for poor outcomes after solid organ transplant, though lung transplant recipients (LTR) carry the highest risk of CMV infection, and CMV-associated comorbidities compared to recipients of other solid organ transplants. Despite potent antivirals, CMV remains a significant driver of chronic lung allograft dysfunction (CLAD), re-transplantation, and death. Moreover, the extended utilization of CMV antiviral prophylaxis is not without adverse effects, often necessitating treatment discontinuation. Thus, there is a critical need to understand the immune response to CMV after lung transplantation. This review identifies key elements of each arm of the CMV immune response and highlights implications for lung allograft tolerance and injury. Specific attention is paid to cellular subsets of adaptive and innate immune cells that are important in the lung during CMV infection and reactivation. The concept of heterologous immune responses is reviewed in depth, including how they form and how they may drive tissue- and allograft-specific immunity. Other important objectives of this review are to detail the emerging role of NK cells in CMV-related outcomes, in addition to discussing perturbations in CMV immune function stemming from pre-existing lung disease. Finally, this review identifies potential mechanisms whereby CMV-directed treatments may alter the cellular immune response within the allograft.
Collapse
Affiliation(s)
- Reena Bharti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
8
|
Calabrese DR, Greenland JR. Theseus and the search for an antibody-mediated rejection molecular state in lung transplant biopsies. Am J Transplant 2023; 23:1826-1827. [PMID: 37562578 PMCID: PMC10855672 DOI: 10.1016/j.ajt.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Daniel R Calabrese
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco Veterans Affairs Health Care System, San Francisco, California, USA.
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
9
|
Gauthier PT, Mackova M, Hirji A, Weinkauf J, Timofte IL, Snell GI, Westall GP, Havlin J, Lischke R, Zajacová A, Simonek J, Hachem R, Kreisel D, Levine D, Kubisa B, Piotrowska M, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Halloran K, Halloran PF. Defining a natural killer cell-enriched molecular rejection-like state in lung transplant transbronchial biopsies. Am J Transplant 2023; 23:1922-1938. [PMID: 37295720 DOI: 10.1016/j.ajt.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In lung transplantation, antibody-mediated rejection (AMR) diagnosed using the International Society for Heart and Lung Transplantation criteria is uncommon compared with other organs, and previous studies failed to find molecular AMR (ABMR) in lung biopsies. However, understanding of ABMR has changed with the recognition that ABMR in kidney transplants is often donor-specific antibody (DSA)-negative and associated with natural killer (NK) cell transcripts. We therefore searched for a similar molecular ABMR-like state in transbronchial biopsies using gene expression microarray results from the INTERLUNG study (#NCT02812290). After optimizing rejection-selective transcript sets in a training set (N = 488), the resulting algorithms separated an NK cell-enriched molecular rejection-like state (NKRL) from T cell-mediated rejection (TCMR)/Mixed in a test set (N = 488). Applying this approach to all 896 transbronchial biopsies distinguished 3 groups: no rejection, TCMR/Mixed, and NKRL. Like TCMR/Mixed, NKRL had increased expression of all-rejection transcripts, but NKRL had increased expression of NK cell transcripts, whereas TCMR/Mixed had increased effector T cell and activated macrophage transcripts. NKRL was usually DSA-negative and not recognized as AMR clinically. TCMR/Mixed was associated with chronic lung allograft dysfunction, reduced one-second forced expiratory volume at the time of biopsy, and short-term graft failure, but NKRL was not. Thus, some lung transplants manifest a molecular state similar to DSA-negative ABMR in kidney and heart transplants, but its clinical significance must be established.
Collapse
Affiliation(s)
| | | | - Alim Hirji
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Greg I Snell
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | - Glen P Westall
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | - Jan Havlin
- University Hospital Motol, Prague, Czech Republic
| | | | | | - Jan Simonek
- University Hospital Motol, Prague, Czech Republic
| | - Ramsey Hachem
- Washington University in St Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Washington University in St Louis, St. Louis, Missouri, USA
| | | | - Bartosz Kubisa
- Pomeranian Medical University of Szczecin, Szczecin, Poland
| | | | - Stephen Juvet
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
10
|
Franco-Acevedo A, Pathoulas CL, Murphy PA, Valenzuela NM. The Transplant Bellwether: Endothelial Cells in Antibody-Mediated Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1276-1285. [PMID: 37844279 PMCID: PMC10593495 DOI: 10.4049/jimmunol.2300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 10/18/2023]
Abstract
Ab-mediated rejection of organ transplants remains a stubborn, frequent problem affecting patient quality of life, graft function, and grant survival, and for which few efficacious therapies currently exist. Although the field has gained considerable knowledge over the last two decades on how anti-HLA Abs cause acute tissue injury and promote inflammation, there has been a gap in linking these effects with the chronic inflammation, vascular remodeling, and persistent alloimmunity that leads to deterioration of graft function over the long term. This review will discuss new data emerging over the last 5 y that provide clues into how ongoing Ab-endothelial cell interactions may shape vascular fate and propagate alloimmunity in organ transplants.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
11
|
Li Y, Liang B. Circulating donor-derived cell-free DNA as a marker for rejection after lung transplantation. Front Immunol 2023; 14:1263389. [PMID: 37885888 PMCID: PMC10598712 DOI: 10.3389/fimmu.2023.1263389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Objective Recently, circulating donor-derive cell free DNA (dd-cfDNA) has gained growing attention in the field of solid organ transplantation. The aim of the study was to analyze circulating dd-cfDNA levels in graft rejection, ACR and AMR separately for each rejection type compared with non-rejection, and assessed the diagnostic potential of dd-cfDNA levels in predicting graft rejection after lung transplantation. Methods A systematic search for relevant articles was conducted on Medline, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang databases without restriction of languages. The search date ended on June 1, 2023. STATA software was used to analyze the difference between graft rejection, ACR, AMR and stable controls, and evaluate the diagnostic performance of circulating dd-cfDNA in detecting graft rejection. Results The results indicated that circulating dd-cfDNA levels in graft rejection, ACR, and AMR were significantly higher than non-rejection (graft rejection: SMD=1.78, 95% CI: 1.31-2.25, I2 = 88.6%, P< 0.001; ACR: SMD=1.03, 95% CI: 0.47-1.59, I2 = 89.0%, P < 0.001; AMR: SMD= 1.78, 95% CI: 1.20-2.35, I2 = 89.8%, P < 0.001). Circulating dd-cfDNA levels distinguished graft rejection from non-rejection with a pooled sensitivity of 0.87 (95% CI: 0.80-0.92) and a pooled specificity of 0.82 (95% CI: 0.76-0.86). The corresponding SROC yield an AUROC of 0.90 (95% CI: 0.87-0.93). Conclusion Circulating dd-cfDNA could be used as a non-invasive biomarker to distinguish the patients with graft rejection from normal stable controls. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023440467.
Collapse
Affiliation(s)
- Yunhui Li
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Bin Liang
- Bioinformatics of Department, Key laboratory of Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|