1
|
Méndez HG, Neira S, Flanigan ME, Haun HL, Boyt KM, Thiele TE, Kash TL. Dynamic regulation of CeA gene expression during acute and protracted abstinence from chronic binge drinking of male and female C57BL/6J mice. Alcohol 2024; 120:179-193. [PMID: 38945280 PMCID: PMC11687726 DOI: 10.1016/j.alcohol.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
While there are numerous brain regions that have been shown to play a role in this AUD in humans and animal models, the central nucleus of the amygdala (CeA) has emerged as a critically important locus mediating binge alcohol consumption. In this study, we sought to understand how relative gene expression of key signaling molecules in the CeA changes during different periods of abstinence following bouts of binge drinking. To test this, we performed drinking in the dark (DID) on two separate cohorts of C57BL/6J mice and collected CeA brain tissue at 1 day (acute) and 7 days (protracted) abstinence after DID. We used qRTPCR to evaluate relative gene expression changes of 25 distinct genes of interest related to G protein-coupled receptors (GPCRs), neuropeptides, ion channel subunits, and enzymes that have been previously implicated in AUD. Our findings show that during acute abstinence CeA punches collected from female mice had upregulated relative mRNA expression of the gamma-aminobutyric acid receptor subunit alpha 2 (Gabra2), and the peptidase, angiotensinase c (Prcp). CeA punches from male mice at the same time point in abstinence had upregulated relative mRNA encoding for neuropeptide-related molecules, neuropeptide Y (Npy) and somatostatin (Sst), as well as the neuropeptide Y receptor Y2 (Npyr2), but downregulated Glutamate ionotropic receptor NMDA type subunit 1 (Grin1). After protracted abstinence, CeA punches collected from female mice had increased mRNA expression of corticotropin releasing hormone (Crh) and Npy. CeA punches collected from male mice at the same timepoint had upregulated relative mRNA expression of Npy2r, Npy, and Sst. Our findings support that there are differences in how the CeA of male and female mice respond to binge-alcohol exposure, highlighting the need to understand the implications of such differences in the context of AUD and binge drinking behavior.
Collapse
Affiliation(s)
- Hernán G Méndez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sofia Neira
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Becker HC, Lopez MF. Animal Models of Excessive Alcohol Consumption in Rodents. Curr Top Behav Neurosci 2024. [PMID: 38340255 DOI: 10.1007/7854_2024_461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The development of animal models that demonstrate excessive levels of alcohol consumption has played an important role in advancing our knowledge about neurobiological underpinnings and environmental circumstances that engender such maladaptive behavior. The use of these preclinical models has also provided valuable opportunities for discovering new and novel therapeutic targets that may be useful in the treatment of alcohol use disorder (AUD). While no single model can fully capture the complexities of AUD, the goal is to develop animal models that closely approximate characteristics of heavy alcohol drinking in humans to enhance their translational value and utility. A variety of experimental approaches have been employed to produce the desired phenotype of interest-robust and reliable excessive levels of alcohol drinking. Here we provide an updated review of five animal models that are commonly used. The models entail procedural manipulations of scheduled access to alcohol (time of day, duration, frequency), periods of time when access to alcohol is withheld, and history of alcohol exposure. Specially, the models involve (a) scheduled access to alcohol, (b) scheduled periods of alcohol deprivation, (c) scheduled intermittent access to alcohol, (d) scheduled-induced polydipsia, and (e) chronic alcohol (dependence) and withdrawal experience. Each of the animal models possesses unique experimental features that engender excessive levels of alcohol consumption. Both advantages and disadvantages of each model are described along with discussion of future work to be considered in developing more optimal models. Ultimately, the validity and utility of these models will lie in their ability to aid in the discovery of new and novel potential therapeutic targets as well as serve as a platform to evaluate treatment strategies that effectively reduce excessive levels of alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- RHJ Veterans Administration Health Care System, Medical University of South Carolina, Charleston, SC, USA.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Méndez HG, Neira S, Flanigan ME, Haun HL, Boyt KM, Thiele TE, Kash TL. Dynamic regulation of CeA gene expression during acute and protracted abstinence from chronic binge drinking of male and female C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578650. [PMID: 38352404 PMCID: PMC10862834 DOI: 10.1101/2024.02.02.578650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Binge alcohol consumption is a major risk factor for developing Alcohol Use Disorder (AUD) and is associated with alcohol-related problems like accidental injury, acute alcohol poisoning, and black-outs. While there are numerous brain regions that have been shown to play a role in this AUD in humans and animal models, the central nucleus of the amygdala (CeA) has emerged as a critically important locus mediating binge alcohol consumption. In this study, we sought to understand how relative gene expression of key signaling molecules in the CeA changes during different periods of abstinence following bouts of binge drinking. To test this, we performed drinking in the dark (DID) on two separate cohorts of C57BL/6J mice and collected CeA brain tissue at one day (acute) and 7 days (protracted) abstinence after DID. We used qRTPCR to evaluate relative gene expression changes of 25 distinct genes of interest related to G protein-coupled receptors (GPCRs), neuropeptides, ion channel subunits, and enzymes that have been previously implicated in AUD. Our findings show that during acute abstinence CeA punches collected from female mice had upregulated relative mRNA expression of the gamma-aminobutyric acid receptor subunit alpha 2 (Gabra2), and the peptidase, angiotensinase c (Prcp). CeA punches from male mice at the same time point in abstinence had upregulated relative mRNA encoding for neuropeptide-related molecules, neuropeptide Y (Npy) and somatostatin (Sst), as well as the neuropeptide Y receptor Y2 (Npyr2) but downregulated, Glutamate ionotropic receptor NMDA type subunit 1 (Grin1). After protracted abstinence CeA punches collected from female mice had increased mRNA expression of corticotropin releasing hormone (Crh) and Npy. While CeA punches collected from male mice at the same timepoint had upregulated relative mRNA expression of Npy2r and downregulated mRNA expression of Gabra2, Grin1 and opioid receptor kappa 1 (Oprk1). Our findings support that there are differences in how the CeA of male and female respond to binge-alcohol exposure, highlighting the need to understand the implications of such differences in the context of AUD and binge drinking behavior.
Collapse
Affiliation(s)
- Hernán G Méndez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Sofia Neira
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Todd E Thiele
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
4
|
Dilly GA, Kittleman CW, Kerr TM, Messing RO, Mayfield RD. Cell-type specific changes in PKC-delta neurons of the central amygdala during alcohol withdrawal. Transl Psychiatry 2022; 12:289. [PMID: 35859068 PMCID: PMC9300707 DOI: 10.1038/s41398-022-02063-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023] Open
Abstract
The central amygdala (CeA) contains a diverse population of cells, including multiple subtypes of GABAergic neurons, along with glia and epithelial cells. Specific CeA cell types have been shown to affect alcohol consumption in animal models of dependence and may be involved in negative affect during alcohol withdrawal. We used single-nuclei RNA sequencing to determine cell-type specificity of differential gene expression in the CeA induced by alcohol withdrawal. Cells within the CeA were classified using unbiased clustering analyses and identified based on the expression of known marker genes. Differential gene expression analysis was performed on each identified CeA cell-type. It revealed differential gene expression in astrocytes and GABAergic neurons associated with alcohol withdrawal. GABAergic neurons were further subclassified into 13 clusters of cells. Analyzing transcriptomic responses in these subclusters revealed that alcohol exposure induced multiple differentially expressed genes in one subtype of CeA GABAergic neurons, the protein kinase C delta (PKCδ) expressing neurons. These results suggest that PKCδ neurons in the CeA may be uniquely sensitive to the effects of alcohol exposure and identify a novel population of cells in CeA associated with alcohol withdrawal.
Collapse
Affiliation(s)
- Geoffrey A. Dilly
- grid.89336.370000 0004 1936 9924Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neurology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Cory W. Kittleman
- grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA
| | - Tony M. Kerr
- grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neurology, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Robert O. Messing
- grid.89336.370000 0004 1936 9924Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neurology, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - R. Dayne Mayfield
- grid.89336.370000 0004 1936 9924Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
5
|
Chang GQ, Yasmin N, Collier AD, Karatayev O, Khalizova N, Onoichenco A, Fam M, Albeg AS, Campbell S, Leibowitz SF. Fibroblast growth factor 2: Role in prenatal alcohol-induced stimulation of hypothalamic peptide neurons. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110536. [PMID: 35176416 PMCID: PMC8920779 DOI: 10.1016/j.pnpbp.2022.110536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) increases alcohol consumption and risk for alcohol use disorder. This phenomenon in rodents is suggested to involve a stimulatory effect of PAE, in female more than male offspring, on neurogenesis and density of neurons expressing neuropeptides in lateral hypothalamus (LH), including melanin-concentrating hormone (MCH), known to promote alcohol intake. With evidence suggesting a role for fibroblast growth factor 2 (FGF2) and its receptor FGFR1 in stimulating neurogenesis and alcohol drinking, we investigated here whether the FGF2-FGFR1 system is involved in the PAE-induced increase in MCH neurons, in postnatal offspring of pregnant rats given ethanol orally (embryonic day 10-15) at a low-moderate (2 g/kg/day) or high (5 g/kg/day) dose. Our results demonstrate that PAE at the low-moderate but not high dose stimulates FGF2 and FGFR1 gene expression and increases the density of MCH neurons co-expressing FGF2, only in females, but FGFR1 in both sexes. PAE induces this effect in the dorsal but not ventral area of the LH. Further analysis of FGF2 and FGFR1 transcripts within individual MCH neurons reveals an intracellular, sex-dependent effect, with PAE increasing FGF2 transcripts positively related to FGFR1 in the nucleus as well as cytoplasm of females but transcripts only in the cytoplasm of males. Peripheral injection of FGF2 itself (80 μg/kg, s.c.) in pregnant rats mimics these effects of PAE. Together, these results support the involvement of the FGF2-FGFR1 system in mediating the PAE-induced, sex dependent increase in density of MCH neurons, possibly contributing to increased alcohol consumption in the offspring.
Collapse
Affiliation(s)
- Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Amanda Onoichenco
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Avi S Albeg
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Samantha Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America.
| |
Collapse
|
6
|
O'Sullivan SJ, McIntosh-Clarke D, Park J, Vadigepalli R, Schwaber JS. Single Cell Scale Neuronal and Glial Gene Expression and Putative Cell Phenotypes and Networks in the Nucleus Tractus Solitarius in an Alcohol Withdrawal Time Series. Front Syst Neurosci 2021; 15:739790. [PMID: 34867221 PMCID: PMC8641127 DOI: 10.3389/fnsys.2021.739790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Alcohol withdrawal syndrome (AWS) is characterized by neuronal hyperexcitability, autonomic dysregulation, and severe negative emotion. The nucleus tractus solitarius (NTS) likely plays a prominent role in the neurological processes underlying these symptoms as it is the main viscerosensory nucleus in the brain. The NTS receives visceral interoceptive inputs, influences autonomic outputs, and has strong connections to the limbic system and hypothalamic-pituitary-adrenal axis to maintain homeostasis. Our prior analysis of single neuronal gene expression data from the NTS shows that neurons exist in heterogeneous transcriptional states that form distinct functional subphenotypes. Our working model conjectures that the allostasis secondary to alcohol dependence causes peripheral and central biological network decompensation in acute abstinence resulting in neurovisceral feedback to the NTS that substantially contributes to the observed AWS. We collected single noradrenergic and glucagon-like peptide-1 (GLP-1) neurons and microglia from rat NTS and measured a subset of their transcriptome as pooled samples in an alcohol withdrawal time series. Inflammatory subphenotypes predominate at certain time points, and GLP-1 subphenotypes demonstrated hyperexcitability post-withdrawal. We hypothesize such inflammatory and anxiogenic signaling contributes to alcohol dependence via negative reinforcement. Targets to mitigate such dysregulation and treat dependence can be identified from this dataset.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Damani McIntosh-Clarke
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James Park
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States
| | - James S Schwaber
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Vornholt E, Drake J, Mamdani M, McMichael G, Taylor ZN, Bacanu S, Miles MF, Vladimirov VI. Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges. Addict Biol 2021; 26:e13071. [PMID: 34164896 PMCID: PMC8590811 DOI: 10.1111/adb.13071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Our lab and others have shown that chronic alcohol use leads to gene and miRNA expression changes across the mesocorticolimbic (MCL) system. Circular RNAs (circRNAs) are noncoding RNAs that form closed-loop structures and are reported to alter gene expression through miRNA sequestration, thus providing a potentially novel neurobiological mechanism for the development of alcohol dependence (AD). Genome-wide expression of circRNA was assessed in the nucleus accumbens (NAc) from 32 AD-matched cases/controls. Significant circRNAs (unadj. p ≤ 0.05) were identified via regression and clustered in circRNA networks via weighted gene co-expression network analysis (WGCNA). CircRNA interactions with previously generated mRNA and miRNA were detected via correlation and bioinformatic analyses. Significant circRNAs (N = 542) clustered in nine significant AD modules (FWER p ≤ 0.05), within which we identified 137 circRNA hubs. We detected 23 significant circRNA-miRNA-mRNA interactions (FDR ≤ 0.10). Among these, circRNA-406742 and miR-1200 significantly interact with the highest number of mRNA, including genes associated with neuronal functioning and alcohol addiction (HRAS, PRKCB, HOMER1, and PCLO). Finally, we integrate genotypic information that revealed 96 significant circRNA expression quantitative trait loci (eQTLs) (unadj. p ≤ 0.002) that showed significant enrichment within recent alcohol use disorder (AUD) and smoking genome-wide association study (GWAS). To our knowledge, this is the first study to examine the role of circRNA in the neuropathology of AD. We show that circRNAs impact mRNA expression by interacting with miRNA in the NAc of AD subjects. More importantly, we provide indirect evidence for the clinical importance of circRNA in the development of AUD by detecting a significant enrichment of our circRNA eQTLs among GWAS of substance abuse.
Collapse
Affiliation(s)
- Eric Vornholt
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Integrative Life Sciences Doctoral ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John Drake
- Department of Psychiatry and Behavioral SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Gowon McMichael
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Zachary N. Taylor
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Silviu‐Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU‐Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of NeurologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Biomarker Research and Precision MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Physiology & BiophysicsVirginia Commonwealth UniversityRichmondVirginiaUSA
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Lieber Institute for Brain DevelopmentJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
8
|
Kisby BR, Farris SP, McManus MM, Varodayan FP, Roberto M, Harris RA, Ponomarev I. Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sci 2021; 11:1149. [PMID: 34573170 PMCID: PMC8468792 DOI: 10.3390/brainsci11091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.
Collapse
Affiliation(s)
- Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Sean P. Farris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Michelle M. McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Florence P. Varodayan
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - R. Adron Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78741, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| |
Collapse
|
9
|
Even-Chen O, Barak S. Inhibition of FGF Receptor-1 Suppresses Alcohol Consumption: Role of PI3 Kinase Signaling in Dorsomedial Striatum. J Neurosci 2019; 39:7947-7957. [PMID: 31375540 PMCID: PMC6774404 DOI: 10.1523/jneurosci.0805-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
Excessive alcohol intake leads to mesostriatal neuroadaptations, and to addiction phenotypes. We recently found in rodents that alcohol increases fibroblast growth factor 2 (FGF2) expression in the dorsomedial striatum (DMS), which promotes alcohol consumption. Here, we show that systemic or intra-DMS blockade of the FGF2 receptor, FGF receptor-1 (FGFR1), suppresses alcohol consumption, and that the effects of FGF2-FGFR1 on alcohol drinking are mediated via the phosphoinositide 3 kinase (PI3K) signaling pathway. Specifically, we found that sub-chronic alcohol treatment (7 d × 2.5 g/kg, i.p.) increased Fgfr1 mRNA expression in the dorsal hippocampus and dorsal striatum. However, prolonged and excessive voluntary alcohol consumption in a two-bottle choice procedure increased Fgfr1 expression selectively in DMS. Importantly, systemic administration of the FGFR1 inhibitor PD173074 to mice, as well as its infusion into the DMS of rats, decreased alcohol consumption and preference, with no effects on natural reward consumption. Finally, inhibition of the PI3K, but not of the mitogen-activated protein kinase (MAPK) signaling pathway, blocked the effects of FGF2 on alcohol intake and preference. Our results suggest that activation of FGFR1 by FGF2 in the DMS leads to activation of the PI3K signaling pathway, which promotes excessive alcohol consumption, and that inhibition of FGFR1 may provide a novel therapeutic target for alcohol use disorder.SIGNIFICANCE STATEMENT Long-term alcohol consumption causes neuroadaptations in the mesostriatal reward system, leading to addiction-related behaviors. We recently showed that alcohol upregulates the expression of fibroblast growth factor 2 (FGF2) in dorsomedial striatum (DMS) or rats and mice, and in turn, FGF2 increases alcohol consumption. Here, we show that long-term alcohol intake also increases the expression of the FGF2 receptor, FGFR1 in the DMS. Importantly, inhibition of FGFR1 activity by a selective receptor antagonist reduces alcohol drinking, when given systemically or directly into the DMS. We further show that the effects of FGF2-FGFR1 on alcohol drinking are mediated via activation of the PI3K intracellular signaling pathway, providing an insight on the mechanism for this effect.
Collapse
Affiliation(s)
| | - Segev Barak
- School of Psychological Sciences, and
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
10
|
McClintick JN, Tischfield JA, Deng L, Kapoor M, Xuei X, Edenberg HJ. Ethanol activates immune response in lymphoblastoid cells. Alcohol 2019; 79:81-91. [PMID: 30639126 PMCID: PMC6616005 DOI: 10.1016/j.alcohol.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022]
Abstract
The short-term effects of alcohol on gene expression in brain tissue cannot directly be studied in humans. Because neuroimmune signaling is altered by alcohol, immune cells are a logical, accessible choice to study and may provide biomarkers. RNAseq was used to study the effects of 48-h exposure to ethanol on lymphoblastoid cell lines (LCLs) from 20 alcoholic subjects and 20 control subjects. Ethanol exposure resulted in differential expression of 4456 of the 12,503 genes detectably expressed in the LCLs (FDR [false discovery rate] ≤ 0.05); 52% of these showed increased expression. Cells from alcoholic subjects and control subjects responded similarly. The genes whose expression changed fell into many pathways: NFκB, neuroinflammation, IL6, IL2, IL8, and dendritic cell maturation pathways were activated, consistent with increased signaling by NFκB, TNF, IL1, IL4, IL18, TLR4, and LPS. Signaling by Interferons A and B decreased, as did EIF2 signaling, phospholipase C signaling, and glycolysis. Baseline gene expression patterns were similar in LCLs from alcoholic subjects and control subjects. At relaxed stringency (p < 0.05), 465 genes differed, 230 of which were also affected by ethanol. There was a suggestion of compensation because baseline differences (no ethanol) were in the opposite direction of differences due to ethanol exposure in 78% of these genes. Pathways with IL8, phospholipase C, and α-adrenergic signaling were significant. The pattern of expression was consistent with increased signaling by several cytokines, including interferons, TLR2, and TLR3 in alcoholics. Expression of genes in the cholesterol biosynthesis pathway, including the rate-limiting enzyme HMGCR, was lower in alcoholic subjects. LCLs show many effects of ethanol exposure, some of which might provide biomarkers for alcohol use disorders. Identifying genes and pathways altered by ethanol can aid in interpreting which genes within loci identified by GWAS might play functional roles.
Collapse
Affiliation(s)
- Jeanette N McClintick
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Li Deng
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Manav Kapoor
- Departments of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Howard J Edenberg
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| |
Collapse
|
11
|
Jeanblanc J, Sauton P, Jeanblanc V, Legastelois R, Echeverry‐Alzate V, Lebourgeois S, Gonzalez‐Marin M, Naassila M. Face validity of a pre-clinical model of operant binge drinking: just a question of speed. Addict Biol 2019; 24:664-675. [PMID: 29863763 DOI: 10.1111/adb.12631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 11/27/2022]
Abstract
Binge drinking (BD) is often defined as a large amount of alcohol consumed in a 'short' period of time or 'per occasion'. In clinical research, few researchers have included the notion of 'speed of drinking' in the definition of BD. Here, we aimed to describe a novel pre-clinical model based on voluntary operant BD, which included both the quantity of alcohol and the rapidity of consumption. In adult Long-Evans male rats, we induced BD by regularly decreasing the duration of ethanol self-administration from 1-hour to 15-minute sessions. We compared the behavioral consequences of BD with the behaviors of rats subjected to moderate drinking or heavy drinking (HD). We found that, despite high ethanol consumption levels (1.2 g/kg/15 minutes), the total amounts consumed were insufficient to differentiate HD from BD. However, consumption speed could distinguish between these groups. The motivation to consume was higher in BD than in HD rats. After BD, we observed alterations in locomotor coordination in rats that consumed greater than 0.8 g/kg, which was rarely observed in HD rats. Finally, chronic BD led to worse performance in a decision-making task, and as expected, we observed a lower stimulated dopaminergic release within nucleus accumbens slices in poor decision makers. Our BD model exhibited good face validity and can now provide animals voluntarily consuming very rapidly enough alcohol to achieve intoxication levels and thus allowing the study of the complex interaction between individual and environmental factors underlying BD behavior.
Collapse
Affiliation(s)
- Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences–INSERM U1247University of Picardie Jules Verne Amiens France
| | - Pierre Sauton
- Research Group on Alcohol and Pharmacodependences–INSERM U1247University of Picardie Jules Verne Amiens France
| | | | - Rémi Legastelois
- Research Group on Alcohol and Pharmacodependences–INSERM U1247University of Picardie Jules Verne Amiens France
| | - Victor Echeverry‐Alzate
- Research Group on Alcohol and Pharmacodependences–INSERM U1247University of Picardie Jules Verne Amiens France
| | - Sophie Lebourgeois
- Research Group on Alcohol and Pharmacodependences–INSERM U1247University of Picardie Jules Verne Amiens France
| | - Maria Gonzalez‐Marin
- Research Group on Alcohol and Pharmacodependences–INSERM U1247University of Picardie Jules Verne Amiens France
| | - Mickaël Naassila
- Research Group on Alcohol and Pharmacodependences–INSERM U1247University of Picardie Jules Verne Amiens France
| |
Collapse
|
12
|
Finn DA, Hashimoto JG, Cozzoli DK, Helms ML, Nipper MA, Kaufman MN, Wiren KM, Guizzetti M. Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice. Front Genet 2018; 9:325. [PMID: 30250478 PMCID: PMC6139464 DOI: 10.3389/fgene.2018.00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
We previously determined that repeated binge ethanol drinking produced sex differences in the regulation of signaling downstream of Group 1 metabotropic glutamate receptors in the nucleus accumbens (NAc) of adult C57BL/6J mice. The purpose of the present study was to characterize RNA expression differences in the NAc of adult male and female C57BL/6J mice following 7 binge ethanol drinking sessions, when compared with controls consuming water. This binge drinking procedure produced high intakes (average >2.2 g/kg/30 min) and blood ethanol concentrations (average >1.3 mg/ml). Mice were euthanized at 24 h after the 7th binge session, and focused qPCR array analysis was employed on NAc tissue to quantify expression levels of 384 genes in a customized Mouse Mood Disorder array, with a focus on glutamatergic signaling (3 arrays/group). We identified significant regulation of 50 genes in male mice and 70 genes in female mice after 7 ethanol binges. Notably, 14 genes were regulated in both males and females, representing common targets to binge ethanol drinking. However, expression of 10 of these 14 genes was strongly dimorphic (e.g., opposite regulation for genes such as Crhr2, Fos, Nos1, and Star), and only 4 of the 14 genes were regulated in the same direction (Drd5, Grm4, Ranbp9, and Reln). Interestingly, the top 30 regulated genes by binge ethanol drinking for each sex differed markedly in the male and female mice, and this divergent neuroadaptive response in the NAc could result in dysregulation of distinct biological pathways between the sexes. Characterization of the expression differences with Ingenuity Pathway Analysis was used to identify Canonical Pathways, Upstream Regulators, and significant Biological Functions. Expression differences suggested that hormone signaling and immune function were altered by binge drinking in female mice, whereas neurotransmitter metabolism was a central target of binge ethanol drinking in male mice. Thus, these results indicate that the transcriptional response to repeated binge ethanol drinking was strongly influenced by sex, and they emphasize the importance of considering sex in the development of potential pharmacotherapeutic targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Debra K Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Moriah N Kaufman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
13
|
Animal models of binge drinking, current challenges to improve face validity. Neurosci Biobehav Rev 2018; 106:112-121. [PMID: 29738795 DOI: 10.1016/j.neubiorev.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Binge drinking (BD), i.e., consuming a large amount of alcohol in a short period of time, is an increasing public health issue. Though no clear definition has been adopted worldwide the speed of drinking seems to be a keystone of this behavior. Developing relevant animal models of BD is a priority for gaining a better characterization of the neurobiological and psychobiological mechanisms underlying this dangerous and harmful behavior. Until recently, preclinical research on BD has been conducted mostly using forced administration of alcohol, but more recent studies used scheduled access to alcohol, to model more voluntary excessive intakes, and to achieve signs of intoxications that mimic the human behavior. The main challenges for future research are discussed regarding the need of good face validity, construct validity and predictive validity of animal models of BD.
Collapse
|
14
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Morud J, Ashouri A, Larsson E, Ericson M, Söderpalm B. Transcriptional profiling of the rat nucleus accumbens after modest or high alcohol exposure. PLoS One 2017; 12:e0181084. [PMID: 28715440 PMCID: PMC5513432 DOI: 10.1371/journal.pone.0181084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Alcohol use disorder is a chronic relapsing brain disorder and a global health issue. Prolonged high alcohol consumption increases the risk for dependence development, a complex state that includes progressive alterations in brain function. The molecular mechanisms behind these changes remain to be fully disclosed, but several genes show altered expression in various regions of the rat brain even after modest alcohol exposure. The present study utilizes whole-transcriptome sequencing (RNA-seq) to investigate expression changes in the brain nucleus accumbens (NAc), an area of particular interest in addictive disorders, of alcohol consuming rats. The impact on gene expression after eight weeks of moderate voluntary alcohol consumption or voluntary consumption combined with forced excessive exposure was explored in two separate experiments. The results point to a lack of strong and consistent expression alterations in the NAc after alcohol exposure, suggesting that transcriptional effects of alcohol are weak or transient, or occur primarily in brain regions other than NAc.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
Hwa L, Besheer J, Kash T. Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective. F1000Res 2017; 6:298. [PMID: 28413623 PMCID: PMC5365217 DOI: 10.12688/f1000research.9609.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Glutamate signaling in the brain is one of the most studied targets in the alcohol research field. Here, we report the current understanding of how the excitatory neurotransmitter glutamate, its receptors, and its transporters are involved in low, episodic, and heavy alcohol use. Specific animal behavior protocols can be used to assess these different drinking levels, including two-bottle choice, operant self-administration, drinking in the dark, the alcohol deprivation effect, intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation. Importantly, these methods are not limited to a specific category, since they can be interchanged to assess different states in the development from low to heavy drinking. We encourage a circuit-based perspective beyond the classic mesolimbic-centric view, as multiple structures are dynamically engaged during the transition from positive- to negative-related reinforcement to drive alcohol drinking. During this shift from lower-level alcohol drinking to heavy alcohol use, there appears to be a shift from metabotropic glutamate receptor-dependent behaviors to N-methyl-D-aspartate receptor-related processes. Despite high efficacy of the glutamate-related pharmaceutical acamprosate in animal models of drinking, it is ineffective as treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.
Collapse
Affiliation(s)
- Lara Hwa
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Department of Psychiatry, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Thomas Kash
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| |
Collapse
|
17
|
Olney JJ, Navarro M, Thiele TE. The Role of Orexin Signaling in the Ventral Tegmental Area and Central Amygdala in Modulating Binge-Like Ethanol Drinking Behavior. Alcohol Clin Exp Res 2017; 41:551-561. [PMID: 28097729 DOI: 10.1111/acer.13336] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent reports have demonstrated that binge-like ethanol (EtOH) drinking leads to an increase in hypothalamic orexin (OX) signaling and that suppressing this signaling via systemic administration of an orexin receptor (OXR) antagonist blocks this behavior; however, the specific OX pathways that modulate this behavior remain unknown. The goal of this study was to further elucidate the role of the OX system in binge-like EtOH drinking using behavioral, molecular, and pharmacological techniques. METHODS The drinking-in-the-dark (DID) paradigm was used to model binge-like drinking behavior in male C57BL/6J mice. Experiment 1 examined changes in the OX precursor, prepro-orexin, within the hypothalamus following multiple cycle EtOH or sucrose DID using polymerase chain reaction (PCR) analysis. In experiments 2a and 2b, we used site-directed infusion of an OXR antagonist to examine the individual contribution of each OXR subtype within the ventral tegmental area (VTA) and central nucleus of the amygdala (CeA), respectively, in binge-like EtOH or sucrose drinking. RESULTS Findings from our PCR study revealed that multiple cycles of binge-like EtOH drinking did not lead to changes in prepro-orexin mRNA as a function of binge-like EtOH drinking. However, data from site-directed pharmacology studies indicate that the orexin-1 receptor (OX1R) is the predominate receptor subtype within the VTA and CeA that regulates binge-like EtOH drinking. Interestingly, inhibition of OX1Rs did not affect binge-like sucrose intake, which suggests that these OX circuits are specific for EtOH consumption. CONCLUSIONS As a whole, these data suggest that the VTA and CeA are important regions in which OX regulates binge-like EtOH drinking behavior. Moreover, these findings identify OXR antagonists as a potential treatment option that may be used to ameliorate problematic drinking behavior while leaving responding to natural rewards relatively intact.
Collapse
Affiliation(s)
- Jeffrey J Olney
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Montserrat Navarro
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Zhang K, Wang Q, Jing X, Zhao Y, Jiang H, Du J, Yu S, Zhao M. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci Rep 2016; 6:35691. [PMID: 27767084 PMCID: PMC5073328 DOI: 10.1038/srep35691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/03/2016] [Indexed: 11/09/2022] Open
Abstract
A previous study reported that the miR-181a level in serum was significantly different between patients with methamphetamine-use disorder and healthy controls and that chronic methamphetamine use down-regulates the expression of miR-181a. Bioinformatic analysis predicted that miR-181a might bind the 3′-UTRs of the mRNA transcripts of the human glutamate receptor genes GRIA2 and GABRA1. In this study, we measured the expression of GRIA2 and GABRA1 in patients with methamphetamine-use disorder. In addition, we examined whether miR-181a down-regulates GRIA2 and GABRA1 in a cell-based assay. We further examined the effects of chronic methamphetamine exposure on the expression of miR-181a, GRIA2 and GABRA1. The results demonstrated that serum GRIA2 is higher in patients with methamphetamine-use disorder than in healthy controls. Dual luciferase reporter assays and a cell-based model of methamphetamine exposure also showed that miR-181a directly regulates expression of GRIA2. This study supports the evidence that miR-181a and the glutamate AMPA receptor gene GRIA2 play a critical role in methamphetamine-use disorder.
Collapse
Affiliation(s)
- Kai Zhang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.,Wuxi Mental Health Center, Nanjing Medical University, 156 Qian Rong Road, Wuxi 214151, China
| | - Qingzhong Wang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Xuxiu Jing
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Yan Zhao
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Haifeng Jiang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jiang Du
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Shunying Yu
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Min Zhao
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University Shanghai, PR China
| |
Collapse
|
19
|
Chen J, Calhoun VD, Perrone-Bizzozero NI, Pearlson GD, Sui J, Du Y, Liu J. A pilot study on commonality and specificity of copy number variants in schizophrenia and bipolar disorder. Transl Psychiatry 2016; 6:e824. [PMID: 27244233 PMCID: PMC5545651 DOI: 10.1038/tp.2016.96] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are known to share genetic risks. In this work, we conducted whole-genome scanning to identify cross-disorder and disorder-specific copy number variants (CNVs) for these two disorders. The Database of Genotypes and Phenotypes (dbGaP) data were used for discovery, deriving from 2416 SZ patients, 592 BD patients and 2393 controls of European Ancestry, as well as 998 SZ patients, 121 BD patients and 822 controls of African Ancestry. PennCNV and Birdsuite detected high-confidence CNVs that were aggregated into CNV regions (CNVRs) and compared with the database of genomic variants for confirmation. Then, large (size⩾500 kb) and small common CNVRs (size <500 kb, frequency⩾1%) were examined for their associations with SZ and BD. Particularly for the European Ancestry samples, the dbGaP findings were further evaluated in the Wellcome Trust Case Control Consortium (WTCCC) data set for replication. Previously implicated variants (1q21.1, 15q13.3, 16p11.2 and 22q11.21) were replicated. Some cross-disorder variants were noted to differentially affect SZ and BD, including CNVRs in chromosomal regions encoding immunoglobulins and T-cell receptors that were associated more with SZ, and the 10q11.21 small CNVR (GPRIN2) associated more with BD. Disorder-specific CNVRs were also found. The 22q11.21 CNVR (COMT) and small CNVRs in 11p15.4 (TRIM5) and 15q13.2 (ARHGAP11B and FAN1) appeared to be SZ-specific. CNVRs in 17q21.2, 9p21.3 and 9q21.13 might be BD-specific. Overall, our primary findings in individual disorders largely echo previous reports. In addition, the comparison between SZ and BD reveals both specific and common risk CNVs. Particularly for the latter, differential involvement is noted, motivating further comparative studies and quantitative models.
Collapse
Affiliation(s)
- J Chen
- The Mind Research Network, Albuquerque, NM, USA
| | - V D Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, USA
| | - N I Perrone-Bizzozero
- Departments of Neurosciences and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - G D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
- Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
| | - J Sui
- The Mind Research Network, Albuquerque, NM, USA
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Y Du
- The Mind Research Network, Albuquerque, NM, USA
| | - J Liu
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
20
|
Darlington TM, McCarthy RD, Cox RJ, Miyamoto-Ditmon J, Gallego X, Ehringer MA. Voluntary wheel running reduces voluntary consumption of ethanol in mice: identification of candidate genes through striatal gene expression profiling. GENES BRAIN AND BEHAVIOR 2016; 15:474-90. [PMID: 27063791 DOI: 10.1111/gbb.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
Abstract
Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.
Collapse
Affiliation(s)
- T M Darlington
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Current address: Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - R D McCarthy
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - R J Cox
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - J Miyamoto-Ditmon
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - X Gallego
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
21
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Fritz BM, Boehm SL. Rodent models and mechanisms of voluntary binge-like ethanol consumption: Examples, opportunities, and strategies for preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:297-308. [PMID: 26021391 PMCID: PMC4668238 DOI: 10.1016/j.pnpbp.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/02/2015] [Accepted: 05/21/2015] [Indexed: 02/03/2023]
Abstract
Binge ethanol consumption has widespread negative consequences for global public health. Rodent models offer exceptional power to explore the neurobiology underlying and affected by binge-like drinking as well as target potential prevention, intervention, and treatment strategies. An important characteristic of these models is their ability to consistently produce pharmacologically-relevant blood ethanol concentration. This review examines the current available rodent models of voluntary, pre-dependent binge-like ethanol consumption and their utility in various research strategies. Studies have demonstrated that a diverse array of neurotransmitters regulate binge-like drinking, resembling some findings from other drinking models. Furthermore, repeated binge-like drinking recruits neuroadaptive mechanisms in mesolimbocortical reward circuitry. New opportunities that these models offer in the current context of mechanistic research are also discussed.
Collapse
Affiliation(s)
| | - Stephen L Boehm
- Indiana Alcohol Research Center, Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.
| |
Collapse
|
23
|
Bell RL, Hauser SR, McClintick J, Rahman S, Edenberg HJ, Szumlinski KK, McBride WJ. Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:41-85. [PMID: 26809998 DOI: 10.1016/bs.pmbts.2015.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeanette McClintick
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Stankiewicz AM, Goscik J, Dyr W, Juszczak GR, Ryglewicz D, Swiergiel AH, Wieczorek M, Stefanski R. Novel candidate genes for alcoholism--transcriptomic analysis of prefrontal medial cortex, hippocampus and nucleus accumbens of Warsaw alcohol-preferring and non-preferring rats. Pharmacol Biochem Behav 2015; 139:27-38. [PMID: 26455281 DOI: 10.1016/j.pbb.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Animal models provide opportunity to study neurobiological aspects of human alcoholism. Changes in gene expression have been implicated in mediating brain functions, including reward system and addiction. The current study aimed to identify genes that may underlie differential ethanol preference in Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) rats. METHODS Microarray analysis comparing gene expression in nucleus accumbens (NAc), hippocampus (HP) and medial prefrontal cortex (mPFC) was performed in male WHP and WLP rats bred for differences in ethanol preference. RESULTS Differential and stable between biological repeats expression of 345, 254 and 129 transcripts in NAc, HP and mPFC was detected. Identified genes and processes included known mediators of ethanol response (Mx2, Fam111a, Itpr1, Gabra4, Agtr1a, LTP/LTD, renin-angiotensin signaling pathway), toxicity (Sult1c2a, Ces1, inflammatory response), as well as genes involved in regulation of important addiction-related brain systems such as dopamine, tachykinin or acetylcholine (Gng7, Tac4, Slc5a7). CONCLUSIONS The identified candidate genes may underlie differential ethanol preference in an animal model of alcoholism. COMMENT Names of genes are written in italics, while names of proteins are written in standard font. Names of human genes/proteins are written in all capital letters. Names of rodent genes/proteins are written in capital letter followed by small letters.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Joanna Goscik
- Software Department, Faculty of Computer Science, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Wanda Dyr
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Danuta Ryglewicz
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA71130, USA.
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Roman Stefanski
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
25
|
Lee KM, Coehlo M, McGregor HA, Waltermire RS, Szumlinski KK. Binge alcohol drinking elicits persistent negative affect in mice. Behav Brain Res 2015; 291:385-398. [PMID: 26048424 PMCID: PMC4513951 DOI: 10.1016/j.bbr.2015.05.055] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/26/2015] [Accepted: 05/31/2015] [Indexed: 01/21/2023]
Abstract
Cessation from chronic alcohol abuse often produces a dysphoric state that can persist into protracted withdrawal. This dysphoric state is theorized to function as a negative reinforcer that maintains excessive alcohol consumption and/or precipitates relapse in those struggling to abstain from alcohol. However, we know relatively little regarding the impact of cessation from binge drinking on behavioral measures of negative affect and related neurobiology. Male C57BL/6J mice were given access to unsweetened 20% alcohol for 6 weeks under modified Drinking-in-the-dark procedures, followed by behavioral testing beginning either 1 or 21 days into withdrawal. Mice were administered a behavioral test battery consisting of: the elevated plus maze, light/dark box, novel object test, marble burying test, Porsolt forced swim test and sucrose preference test to assess anxiogenic and depressive signs. Egr1 immunostaining was used to quantify cellular activity within the central nucleus of the amygdala (CEA), basolateral amygdala (BLA), bed nucleus of the stria terminalis (BNST), and the nucleus accumbens (Acb) shell (AcbSh) and core (AcbC). Compared to water controls, alcohol-drinking mice exhibited higher indices of emotionality in the majority of behavioral assays. The hyper-emotionality exhibited by binge drinking mice was apparent at both withdrawal time-points and correlated with higher Egr1+ cell counts in the CEA and BNST, compared to controls. These data show that affective symptoms emerge very early after cessation of binge drinking and persist into protracted withdrawal. A history of binge drinking is capable of producing enduring neuroadaptations within brain circuits mediating emotional arousal.
Collapse
Affiliation(s)
- Kaziya M Lee
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Michal Coehlo
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Hadley A McGregor
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Ryan S Waltermire
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
26
|
Gibula-Bruzda E, Marszalek-Grabska M, Witkowska E, Izdebski J, Kotlinska JH. Enkephalin analog, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), inhibits the ethanol withdrawal-induced anxiety-like behavior in rats. Alcohol 2015; 49:229-36. [PMID: 25716198 DOI: 10.1016/j.alcohol.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
An analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), is predominantly a functional agonist of μ-opioid receptors (MOPr) and, to a lesser extent, of δ-opioid receptors (DOPr) in vitro. The aim of the present study was to determine whether cUENK6 could affect ethanol withdrawal-induced anxiety-like behavior in the elevated plus maze (EPM) test in rats. An anxiety-like effect of withdrawal was predicted to occur in the EPM test 24 h after the last ethanol administration (2 g/kg, intraperitoneally [i.p.]; 15% w/v once daily for 9 days). Ethanol withdrawal decreased the percent of time spent by rats in the open arms and the percent of open-arms entries. cUENK6 (0.25 nmol), given by intracerebroventricular (i.c.v.) injection, significantly reversed these anxiety-like effects of ethanol withdrawal and elevated the percent of time spent by rats in the open arms and the percent of open-arms entries. These effects of cUENK6 were significantly inhibited by the DOPr antagonist naltrindole (NTI) (5 nmol, i.c.v.), but not by the MOPr antagonist β-funaltrexamine (β-FNA) (5 nmol, i.c.v.). The preferential DOPr agonist [Leu(5)]-enkephalin (LeuEnk) (2.7 and 5.4 nmol, i.c.v.) and the MOPr agonist morphine (6.5 and 13 nmol, i.c.v.) reduced the anxiety-like effects of ethanol withdrawal. cUENK6 at the dose of 0.25 nmol did not disturb locomotor activity in the EPM, in contrast to cUENK6 at the dose of 0.5 nmol, and morphine at 6.5 and 13 nmol. However, similarly to LeuEnk, cUENK6 induced the anxiolytic-like effects in naïve rats. Thus, our study suggests that cUENK6 reduced ethanol withdrawal-induced anxiety-like behavior by activation of δ-opioid receptors rather than μ-opioid receptors.
Collapse
|
27
|
Pfefferbaum A, Zahr NM, Mayer D, Rohlfing T, Sullivan EV. Dynamic responses of selective brain white matter fiber tracts to binge alcohol and recovery in the rat. PLoS One 2015; 10:e0124885. [PMID: 25894968 PMCID: PMC4403879 DOI: 10.1371/journal.pone.0124885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/18/2015] [Indexed: 01/08/2023] Open
Abstract
To determine the dynamics of white matter vulnerability to excessive alcohol consumption, diffusion tensor imaging (DTI) was used in an animal model of alcohol exposure. Quantitative, in vivo fiber tracking results are presented from rats with DTI conducted at 3 time points: baseline; after 4 days of intragastric alcohol to blood alcohol levels of ~250mg/dL; and after one week of recovery. Binge alcohol followed by a week of sobriety resulted in rapidly reversible decreases in fractional anisotropy (FA), a measure of the coherence of fiber tracts, in callosal genu and fimbria-fornix but not splenium; and increases in mean diffusivity (MD), an index of freely diffusing water in tissue, selective to the fimbria-fornix. These effects were confirmed with tract-based spatial statistics (TBSS). The directionality of changes in DTI metrics reproduce those observed in human alcoholism. That a single exposure to binge alcohol can cause substantial transient changes detectable in DTI metrics demonstrates the potential for rapid neuroplasticity.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Neuroscience Program, SRI International, Menlo Park, CA, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA, United States of America
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Torsten Rohlfing
- Neuroscience Program, SRI International, Menlo Park, CA, United States of America
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
28
|
Hauser SR, Hedlund PB, Roberts AJ, Sari Y, Bell RL, Engleman EA. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse. Front Neurosci 2015; 8:448. [PMID: 25628528 PMCID: PMC4292232 DOI: 10.3389/fnins.2014.00448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Peter B Hedlund
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute La Jolla, CA, USA
| | - Amanda J Roberts
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute La Jolla, CA, USA ; Molecular and Cellular Neuroscience Department, Mouse Behavioral Assessment Core, The Scripps Research Institute La Jolla, CA, USA
| | - Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
29
|
McClintick JN, McBride WJ, Bell RL, Ding ZM, Liu Y, Xuei X, Edenberg HJ. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking. Pharmacol Biochem Behav 2014; 129:87-96. [PMID: 25542586 PMCID: PMC4302739 DOI: 10.1016/j.pbb.2014.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/13/2014] [Accepted: 12/17/2014] [Indexed: 12/31/2022]
Abstract
Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system.
Collapse
Affiliation(s)
- Jeanette N McClintick
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xiaoling Xuei
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Howard J Edenberg
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
30
|
Hendriksen H, Bink DI, Vergoossen DLE, Suzet van Slobbe E, Olivier B, Oosting RS. Food restriction does not relieve PTSD-like anxiety. Eur J Pharmacol 2014; 753:177-82. [PMID: 25460029 DOI: 10.1016/j.ejphar.2014.10.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/05/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
We used the inescapable foot shock paradigm (IFS) in rats as an animal model for post-traumatic stress disorder (PTSD). Previously we showed that exercise reversed the enhanced stress sensitivity induced by IFS. From literature it is known that food restriction has antidepressant and anxiolytic effects. Since both treatments influence energy expenditure, we questioned whether food restriction reduces anxiety in the IFS model via a comparable, NPY dependent mechanism as enrichment. Anxiety of IFS-exposed animals was measured as change in locomotion and freezing after sudden silence in an open field test, before and after two weeks of food restriction. In addition a forced swim test (FST) was performed. Next, using qPCR, the expression of neuropeptide Y (NPY) and the neuropeptide Y1 receptor (Y1 receptor) was measured in the amygdala. Food restriction increased locomotion and decreased freezing behavior both in control and IFS animals. These effects were small. IFS-induced anxiety was not abolished after two weeks of food restriction. IFS did not influence immobility or the duration of swimming in the FST of animals fed ad libitum. However, food restriction increased swimming and decreased the duration of immobility in IFS-exposed animals. Y1 receptor expression in the basolateral amygdala decreased after both IFS and food restriction. Although food restriction seems to induce a general anxiolytic effect, it does not operate via enhanced Y1 receptor expression and has no effect on the more pathogenic anxiety induced by IFS.
Collapse
Affiliation(s)
- Hendrikus Hendriksen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Diewertje I Bink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dana L E Vergoossen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - E Suzet van Slobbe
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ronald S Oosting
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Changes in gene expression within the extended amygdala following binge-like alcohol drinking by adolescent alcohol-preferring (P) rats. Pharmacol Biochem Behav 2013; 117:52-60. [PMID: 24355552 DOI: 10.1016/j.pbb.2013.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/11/2013] [Accepted: 12/06/2013] [Indexed: 01/21/2023]
Abstract
The objective of this study was to determine changes in gene expression within the extended amygdala following binge-like alcohol drinking by male adolescent alcohol-preferring (P) rats. Starting at 28 days of age, P rats were given concurrent access to 15 and 30% ethanol for 3 one-h sessions/day for 5 consecutive days/week for 3 weeks. Rats were killed by decapitation 3 h after the first ethanol access session on the 15th day of drinking. RNA was prepared from micropunch samples of the nucleus accumbens shell (Acb-sh) and central nucleus of the amygdala (CeA). Ethanol intakes were 2.5-3.0 g/kg/session. There were 154 and 182 unique named genes that significantly differed (FDR=0.2) between the water and ethanol group in the Acb-sh and CeA, respectively. Gene Ontology (GO) analyses indicated that adolescent binge drinking produced changes in biological processes involved with cell proliferation and regulation of cellular structure in the Acb-sh, and in neuron projection and positive regulation of cellular organization in the CeA. Ingenuity Pathway Analysis indicated that, in the Acb-sh, there were several major intracellular signaling pathways (e.g., cAMP-mediated and protein kinase A signaling pathways) altered by adolescent drinking, with 3-fold more genes up-regulated than down-regulated in the alcohol group. The cAMP-mediated signaling system was also up-regulated in the CeA of the alcohol group. Weighted gene co-expression network analysis indicated significant G-protein coupled receptor signaling and transmembrane receptor protein kinase signaling categories in the Acb-sh and CeA, respectively. Overall, the results of this study indicated that binge-like alcohol drinking by adolescent P rats is differentially altering the expression of genes in the Acb-sh and CeA, some of which are involved in intracellular signaling pathways and may produce changes in neuronal function.
Collapse
|
32
|
McClintick JN, Xuei X, Tischfield JA, Goate A, Foroud T, Wetherill L, Ehringer MA, Edenberg HJ. Stress-response pathways are altered in the hippocampus of chronic alcoholics. Alcohol 2013; 47:505-15. [PMID: 23981442 DOI: 10.1016/j.alcohol.2013.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022]
Abstract
The chronic high-level alcohol consumption seen in alcoholism leads to dramatic effects on the hippocampus, including decreased white matter, loss of oligodendrocytes and other glial cells, and inhibition of neurogenesis. Examining gene expression in post mortem hippocampal tissue from 20 alcoholics and 19 controls allowed us to detect differentially expressed genes that may play a role in the risk for alcoholism or whose expression is modified by chronic consumption of alcohol. We identified 639 named genes whose expression significantly differed between alcoholics and controls at a False Discovery Rate (FDR) ≤ 0.20; 52% of these genes differed by at least 1.2-fold. Differentially expressed genes included the glucocorticoid receptor and the related gene FK506 binding protein 5 (FKBP5), UDP glycosyltransferase 8 (UGT8), urea transporter (SLC14A1), zinc transporter (SLC39A10), Interleukin 1 receptor type 1 (IL1R1), thioredoxin interacting protein (TXNIP), and many metallothioneins. Pathways related to inflammation, hypoxia, and stress showed activation, and pathways that play roles in neurogenesis and myelination showed decreases. The cortisol pathway dysregulation and increased inflammation identified here are seen in other stress-related conditions such as depression and post-traumatic stress disorder and most likely play a role in addiction. Many of the detrimental effects on the hippocampus appear to be mediated through NF-κB signaling. Twenty-four of the differentially regulated genes were previously identified by genome-wide association studies of alcohol use disorders; this raises the potential interest of genes not normally associated with alcoholism, such as suppression of tumorigenicity 18 (ST18), BCL2-associated athanogene 3 (BAG3), and von Willebrand factor (VWF).
Collapse
|
33
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hyytia P, Colombo G, Liang T, Edenberg HJ, Lumeng L, Bell RL. Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Alcohol 2013; 47:517-29. [PMID: 24157127 DOI: 10.1016/j.alcohol.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022]
Abstract
The objectives of this study were to determine innate differences in gene expression in 2 regions of the extended amygdala between 5 different pairs of lines of male rats selectively bred for high or low ethanol consumption: a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats, b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line-pairs 1 and 2), c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats, and d) Sardinian alcohol-preferring (sP) vs. Sardinian alcohol-nonpreferring (sNP) rats, and then to determine if these differences are common across the line-pairs. Microarray analysis revealed up to 1772 unique named genes in the nucleus accumbens shell (AcbSh) and 494 unique named genes in the central nucleus of the amygdala (CeA) that significantly differed [False Discovery Rate (FDR) = 0.10; fold-change at least 1.2] in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 or 4 line-pairs, but not for all 5 line-pairs. However, there were almost no individual genes in common within these categories and networks. ANOVAs of the combined data for the 5 line-pairs indicated 1014 and 731 significant (p < 0.01) differences in expression of named genes in the AcbSh and CeA, respectively. There were 4-6 individual named genes that significantly differed across up to 3 line-pairs in both regions; only 1 gene (Gsta4 in the CeA) differed in as many as 4 line-pairs. Overall, the findings suggest that a) some biological categories or networks (e.g., cell-to-cell signaling, cellular stress response, cellular organization, etc.) may be in common for subsets of line-pairs within either the AcbSh or CeA, and b) regulation of different genes and/or combinations of multiple biological systems may be contributing to the disparate alcohol drinking behaviors of these line-pairs.
Collapse
|
34
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hauser SR, Edenberg HJ, Bell RL, Rodd ZA. Changes in gene expression within the ventral tegmental area following repeated excessive binge-like alcohol drinking by alcohol-preferring (P) rats. Alcohol 2013; 47:367-80. [PMID: 23714385 DOI: 10.1016/j.alcohol.2013.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/02/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
The objective of this study was to detect changes in gene expression in the ventral tegmental area (VTA) following repeated excessive binge-like ('loss-of-control') alcohol drinking by alcohol-preferring (P) rats. Adult female P rats (n = 7) were given concurrent access to 10, 20, and 30% EtOH for 4 1-h sessions daily for 10 weeks followed by 2 cycles of 2 weeks of abstinence and 2 weeks of EtOH access. Rats were sacrificed by decapitation 3 h after the 4th daily EtOH-access session at the end of the second 2-week relapse period. A water-control group of female P rats (n = 8) was also sacrificed. RNA was prepared from micro-punch samples of the VTA from individual rats; analyses were conducted with Affymetrix Rat 230.2 GeneChips. Ethanol intakes were 1.2-1.7 g/kg per session, resulting in blood levels >200 mg% at the end of the 4th session. There were 211 unique named genes that significantly differed (FDR = 0.1) between the water and EtOH groups. Bioinformatics analyses indicated alterations in a) transcription factors that reduced excitation-coupled transcription and promoted excitotoxic neuronal damage involving clusters of genes associated with Nfkbia, Fos, and Srebf1, b) genes that reduced cholesterol and fatty acid synthesis, and increased protein degradation, and c) genes involved in cell-to-cell interactions and regulation of the actin cytoskeleton. Among the named genes, there were 62 genes that showed differences between alcohol-naïve P and non-preferring (NP) rats, with 43 of the genes changing toward NP-like expression levels following excessive binge-like drinking in the P rats. These genes are involved in a pro-inflammatory response, and enhanced response to glucocorticoids and steroid hormones. Overall, the results of this study indicate that the repeated excessive binge-like alcohol drinking can change the expression of genes that may alter neuronal function in several ways, some of which may be deleterious.
Collapse
Affiliation(s)
- William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lesscher HMB, Vanderschuren LJMJ. Compulsive drug use and its neural substrates. Rev Neurosci 2013; 23:731-45. [PMID: 23079511 DOI: 10.1515/revneuro-2012-0066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/15/2012] [Indexed: 12/22/2022]
Abstract
Drug addiction is a chronic relapsing brain disease, characterized by compulsive drug use. Despite the fact that drug addiction affects millions of people worldwide, treatments for this disorder are limited in number and efficacy. In our opinion, understanding the neural underpinnings of drug addiction would open new avenues for the development of innovative treatments for this disorder. Based on an awareness that drug use and drug reward do not equal drug addiction, there has been increasing interest in developing animal models of addiction that mimick the loss of control over drug use more closely than existing models aimed at studying drug reward. The present review provides an overview of animal studies of compulsive drug use and the neural mechanisms involved. First, the employed models are summarized, with a particular emphasis on models of escalation of drug use and resistance to punishment. Next, we discuss mechanisms within the (ventral and dorsal) striatum and (central) amygdala that have recently been implicated in the compulsive seeking and taking of alcohol and cocaine. The studies discussed here provide a promising line of research that will advance our knowledge of the neural circuits involved in the self-destructive behavior that characterizes drug addiction.
Collapse
Affiliation(s)
- Heidi M B Lesscher
- Department of Animals in Science and Society, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
36
|
Osterndorff-Kahanek E, Ponomarev I, Blednov YA, Harris RA. Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation. PLoS One 2013; 8:e59870. [PMID: 23555817 PMCID: PMC3612084 DOI: 10.1371/journal.pone.0059870] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/19/2013] [Indexed: 12/17/2022] Open
Abstract
Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.
Collapse
Affiliation(s)
- Elizabeth Osterndorff-Kahanek
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, Colleges of Natural Science and Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Harmful excessive use of alcohol has a severe impact on society and it remains one of the major causes of morbidity and mortality in the population. However, mechanisms that underlie excessive alcohol consumption are still poorly understood, and thus available medications for alcohol use disorders are limited. Here, we report that changing the level of chromatin condensation by affecting DNA methylation or histone acetylation limits excessive alcohol drinking and seeking behaviors in rodents. Specifically, we show that decreasing DNA methylation by inhibiting the activity of DNA methyltransferase (DNMT) with systemic administration of the FDA-approved drug, 5-azacitidine (5-AzaC) prevents excessive alcohol use in mice. Similarly, we find that increasing histone acetylation via systemic treatment with several histone deacetylase (HDAC) inhibitors reduces mice binge-like alcohol drinking. We further report that systemic administration of the FDA-approved HDAC inhibitor, SAHA, inhibits the motivation of rats to seek alcohol. Importantly, the actions of both DNMT and HDAC inhibitors are specific for alcohol, as no changes in saccharin or sucrose intake were observed. In line with these behavioral findings, we demonstrate that excessive alcohol drinking increases DNMT1 levels and reduces histone H4 acetylation in the nucleus accumbens (NAc) of rodents. Together, our findings illustrate that DNA methylation and histone acetylation control the level of excessive alcohol drinking and seeking behaviors in preclinical rodent models. Our study therefore highlights the possibility that DNMT and HDAC inhibitors can be used to treat harmful alcohol abuse.
Collapse
|
38
|
Crabbe JC, Kendler KS, Hitzemann RJ. Modeling the diagnostic criteria for alcohol dependence with genetic animal models. Curr Top Behav Neurosci 2013; 13:187-221. [PMID: 21910077 PMCID: PMC3371181 DOI: 10.1007/7854_2011_162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A diagnosis of alcohol dependence (AD) using the DSM-IV-R is categorical, based on an individual's manifestation of three or more symptoms from a list of seven. AD risk can be traced to both genetic and environmental sources. Most genetic studies of AD risk implicitly assume that an AD diagnosis represents a single underlying genetic factor. We recently found that the criteria for an AD diagnosis represent three somewhat distinct genetic paths to individual risk. Specifically, heavy use and tolerance versus withdrawal and continued use despite problems reflected separate genetic factors. However, some data suggest that genetic risk for AD is adequately described with a single underlying genetic risk factor. Rodent animal models for alcohol-related phenotypes typically target discrete aspects of the complex human AD diagnosis. Here, we review the literature derived from genetic animal models in an attempt to determine whether they support a single-factor or multiple-factor genetic structure. We conclude that there is modest support in the animal literature that alcohol tolerance and withdrawal reflect distinct genetic risk factors, in agreement with our human data. We suggest areas where more research could clarify this attempt to align the rodent and human data.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
39
|
Contet C. Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain. CURRENT PSYCHOPHARMACOLOGY 2012; 1:301-314. [PMID: 24078902 PMCID: PMC3783024 DOI: 10.2174/2211556011201040301] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics.
Collapse
Affiliation(s)
- Candice Contet
- The Scripps Research Institute, Committee on the Neurobiology of Addictive Disorders, La Jolla, CA, USA
| |
Collapse
|
40
|
Palmer RHC, McGeary JE, Francazio S, Raphael BJ, Lander AD, Heath AC, Knopik VS. The genetics of alcohol dependence: advancing towards systems-based approaches. Drug Alcohol Depend 2012; 125:179-91. [PMID: 22854292 PMCID: PMC3470479 DOI: 10.1016/j.drugalcdep.2012.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Personalized treatment for psychopathologies, in particular alcoholism, is highly dependent upon our ability to identify patterns of genetic and environmental effects that influence a person's risk. Unfortunately, array-based whole genome investigations into heritable factors that explain why one person becomes dependent upon alcohol and another does not, have indicated that alcohol's genetic architecture is highly complex. That said, uncovering and interpreting the missing heritability in alcohol genetics research has become all the more important, especially since the problem may extend to our inability to model the cumulative and combinatorial relationships between common and rare genetic variants. As numerous studies begin to illustrate the dependency of alcohol pharmacotherapies on an individual's genotype, the field is further challenged to identify new ways to transcend agnostic genomewide association approaches. We discuss insights from genetic studies of alcohol related diseases, as well as issues surrounding alcohol's genetic complexity and etiological heterogeneity. Finally, we describe the need for innovative systems-based approaches (systems genetics) that can provide additional statistical power that can enhance future gene-finding strategies and help to identify heretofore-unrealized mechanisms that may provide new targets for prevention/treatments efforts. Emerging evidence from early studies suggest that systems genetics has the potential to organize our neurological, pharmacological, and genetic understanding of alcohol dependence into a biologically plausible framework that represents how perturbations across evolutionarily robust biological systems determine susceptibility to alcohol dependence.
Collapse
Affiliation(s)
- R H C Palmer
- Division of Behavioral Genetics, Department of Psychiatry at Rhode Island Hospital, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hendriksen H, Bink DI, Daniels EG, Pandit R, Piriou C, Slieker R, Westphal KG, Olivier B, Oosting RS. Re-exposure and environmental enrichment reveal NPY-Y1 as a possible target for post-traumatic stress disorder. Neuropharmacology 2012; 63:733-42. [DOI: 10.1016/j.neuropharm.2012.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
42
|
Freeman K, Staehle MM, Vadigepalli R, Gonye GE, Ogunnaike BA, Hoek JB, Schwaber JS. Coordinated dynamic gene expression changes in the central nucleus of the amygdala during alcohol withdrawal. Alcohol Clin Exp Res 2012; 37 Suppl 1:E88-100. [PMID: 22827539 DOI: 10.1111/j.1530-0277.2012.01910.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/06/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic alcohol use causes widespread changes in the cellular biology of the amygdala's central nucleus (CeA), a GABAergic center that integrates autonomic physiology with the emotional aspects of motivation and learning. While alcohol-induced neurochemical changes play a role in dependence and drinking behavior, little is known about the CeA's dynamic changes during withdrawal, a period of emotional and physiologic disturbance. METHODS We used a qRT-PCR platform to measure 139 transcripts in 92 rat CeA samples from control (N = 33), chronically alcohol exposed (N = 26), and withdrawn rats (t = 4, 8, 18, 32, and 48 hours; N = 5, 10, 7, 6, 5). This focused transcript set allowed us to identify significant dynamic expression patterns during the first 48 hours of withdrawal and propose potential regulatory mechanisms. RESULTS Chronic alcohol exposure causes a limited number of small magnitude expression changes. In contrast, withdrawal results in a greater number of large changes within 4 hours of removal of the alcohol diet. Sixty-five of the 139 measured transcripts (47%) showed differential regulation during withdrawal. Over the 48-hour period, dynamic changes in the expression of γ-aminobutyric acid type A (GABA(A) ), ionotropic glutamate and neuropeptide system-related G-protein-coupled receptor subunits, and the Ras/Raf signaling pathway were seen as well as downstream transcription factors (TFs) and epigenetic regulators. Four temporally correlated gene clusters were identified with shared functional roles including NMDA receptors, MAPKKK and chemokine signaling cascades, and mediators of long-term potentiation, among others. Cluster promoter regions shared overrepresented binding sites for multiple TFs including Cebp, Usf-1, Smad3, Ap-2, and c-Ets, suggesting a potential regulatory role. CONCLUSIONS During alcohol withdrawal, the CeA experiences rapid changes in mRNA expression of these functionally related transcripts that were not predicted by measurement during chronic exposure. This study provides new insight into dynamic expression changes during alcohol withdrawal and suggests novel regulatory relationships that potentially impact the aspects of emotional modulation.
Collapse
Affiliation(s)
- Kate Freeman
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Mary M Staehle
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Gregory E Gonye
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Babatunde A Ogunnaike
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - James S Schwaber
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| |
Collapse
|
43
|
Freeman K, Brureau A, Vadigepalli R, Staehle MM, Brureau MM, Gonye GE, Hoek JB, Hooper DC, Schwaber JS. Temporal changes in innate immune signals in a rat model of alcohol withdrawal in emotional and cardiorespiratory homeostatic nuclei. J Neuroinflammation 2012; 9:97. [PMID: 22626265 PMCID: PMC3411448 DOI: 10.1186/1742-2094-9-97] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/24/2012] [Indexed: 02/08/2023] Open
Abstract
Background Chronic alcohol use changes the brain’s inflammatory state. However, there is little work examining the progression of the cytokine response during alcohol withdrawal, a period of profound autonomic and emotional upset. This study examines the inflammatory response in the central nucleus of the amygdala (CeA) and dorsal vagal complex (DVC), brain regions neuroanatomically associated with affective and cardiorespiratory regulation in an in vivo rat model of withdrawal following a single chronic exposure. Methods For qRT-PCR studies, we measured the expression of TNF-α, NOS-2, Ccl2 (MCP-1), MHC II invariant chain CD74, and the TNF receptor Tnfrsf1a in CeA and DVC samples from adult male rats exposed to a liquid alcohol diet for thirty-five days and in similarly treated animals at four hours and forty-eight hours following alcohol withdrawal. ANOVA was used to identify statistically significant treatment effects. Immunohistochemistry (IHC) and confocal microscopy were performed in a second set of animals during chronic alcohol exposure and subsequent 48-hour withdrawal. Results Following a chronic alcohol exposure, withdrawal resulted in a statistically significant increase in the expression of mRNAs specific for innate immune markers Ccl2, TNF-α, NOS-2, Tnfrsf1a, and CD74. This response was present in both the CeA and DVC and most prominent at 48 hours. Confocal IHC of samples taken 48 hours into withdrawal demonstrate the presence of TNF-α staining surrounding cells expressing the neural marker NeuN and endothelial cells colabeled with ICAM-1 (CD54) and RECA-1, markers associated with an inflammatory response. Again, findings were consistent in both brain regions. Conclusions This study demonstrates the rapid induction of Ccl2, TNF-α, NOS-2, Tnfrsf1a and CD74 expression during alcohol withdrawal in both the CeA and DVC. IHC dual labeling showed an increase in TNF-α surrounding neurons and ICAM-1 on vascular endothelial cells 48 hours into withdrawal, confirming the inflammatory response at the protein level. These findings suggest that an abrupt cessation of alcohol intake leads to an acute central nervous system (CNS) inflammatory response in these regions that regulate autonomic and emotional state.
Collapse
Affiliation(s)
- Kate Freeman
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sprow GM, Thiele TE. The neurobiology of binge-like ethanol drinking: evidence from rodent models. Physiol Behav 2012; 106:325-31. [PMID: 22245775 DOI: 10.1016/j.physbeh.2011.12.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
Abstract
Binge alcohol (ethanol) drinking is a destructive pattern of ethanol consumption that may precipitate ethanol dependence-a chronic, debilitating, and prevalent health problem. While an abundance of research has focused on the neurochemical underpinnings of ethanol dependence, relatively little is known about the mechanisms underlying the heavy consumption characteristic of binge ethanol drinking. Recently, a simple preclinical model termed "drinking in the dark" (DID) was developed to examine binge-like ethanol consumption in a rodent population. This assay capitalizes on the predisposition of C57BL/6J mice to voluntarily consume substantial quantities of a high concentration (20% v/v) ethanol solution, resulting in pharmacologically relevant blood ethanol concentrations (BECs). This review provides a comprehensive overview of recent literature utilizing this model to investigate the neuromodulatory systems that may influence binge ethanol drinking. Studies examining the glutamatergic and opioidergic systems not only provide evidence for these systems in the modulation of binge-like ethanol consumption, but also suggest this preclinical model has predictive validity and may be an appropriate tool for screening novel pharmacological compounds aimed at treating binge ethanol drinking in the human population. Additionally, this review presents evidence for the involvement of the GABAergic, dopaminergic, nicotinic, and endocannabinoid systems in modulating binge-like ethanol consumption. Finally, recent evidence shows that corticotropin-releasing factor (CRF), agouti-related protein (AgRP), neuropeptide Y (NPY), and ghrelin are also implicated as impacting this pattern of ethanol consumption.
Collapse
Affiliation(s)
- Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC 27599-3270, USA
| | | |
Collapse
|
45
|
Le Merrer J, Befort K, Gardon O, Filliol D, Darcq E, Dembele D, Becker JAJ, Kieffer BL. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict Biol 2012; 17:1-12. [PMID: 21955143 DOI: 10.1111/j.1369-1600.2011.00365.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM and CNRS, Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bell RL, Rodd ZA, Smith RJ, Toalston JE, Franklin KM, McBride WJ. Modeling binge-like ethanol drinking by peri-adolescent and adult P rats. Pharmacol Biochem Behav 2011; 100:90-7. [PMID: 21824488 DOI: 10.1016/j.pbb.2011.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 01/27/2023]
Abstract
Alcohol binge-drinking, especially among adolescents and young adults, is a serious public health concern. The present study examined ethanol binge-like drinking by peri-adolescent [postnatal days (PNDs 30-72)] and adult (PNDs 90-132) alcohol-preferring (P) rats with a drinking-in-the-dark-multiple-scheduled-access (DID-MSA) procedure used by our laboratory. Male and female P rats were provided concurrent access to 15% and 30% ethanol for three 1-h sessions across the dark cycle 5 days/week. For the 1st week, adolescent and adult female P rats consumed 3.4 and 1.6g/kg of ethanol, respectively, during the 1st hour of access, whereas for male rats the values were 3.5 and 1.1g/kg of ethanol, respectively. Adult intakes increased to ~2.0 g/kg/h and adolescent intakes decreased to ~2.5 g/kg/h across the 6 weeks of ethanol access. The daily ethanol intake of adult DID-MSA rats approximated or modestly exceeded that seen in continuous access (CA) rats or the selection criterion for P rats (≥5 g/kg/day). However, in general, the daily ethanol intake of DID-MSA peri-adolescent rats significantly exceeded that of their CA counterparts. BELs were assessed at 15-min intervals across the 3rd hour of access during the 4th week. Ethanol intake was 1.7 g/kg vs. 2.7 g/kg and BELs were 57 mg% vs. 100mg% at 15- and 60-min, respectively. Intoxication induced by DID-MSA in female P rats was assessed during the 1st vs. 4th week of ethanol access. Level of impairment did not differ between the 2 weeks (106 vs. 97 s latency to fall, 120 s criterion) and was significant (vs. naïve controls) only during the 4th week. Overall, these findings support the use of the DID-MSA procedure in rats, and underscore the presence of age- and sex-dependent effects mediating ethanol binge-like drinking in P rats.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Binge drinking is prevalent and has serious biomedical consequences. In children, adolescents, and young adults, it is a prominent risk factor for later development of alcohol-use disorders. Many preclinical models have been employed to study the genetic risks for and biomedical consequences of alcohol drinking. However, these models historically did not result in blood-alcohol concentrations (BACs) exceeding 80 mg%; this relatively modest level is the threshold that currently defines a binge session, according to the NIAAA and CDC. Nevertheless, in alcohol-dependent rodents, binge drinking has been well documented. Key neurobiological substrates localized to brain reward and stress systems have been identified. Studies of newer models of binge drinking without dependence are reviewed here. In these models, rodents, non-human primates, and flies will drink enough to reach high BACs. They often display observable signs of intoxication. The neurobiological consequences of these episodes of binge drinking without dependence are reviewed, and preliminary evidence for roles for GABA, glutamate, opioid peptides, and corticotropin releasing factor are discussed, as is the need for more work to identify the antecedents and consequences of binge drinking in both animal models and humans.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and VA Medical Center, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
48
|
Le-Niculescu H, Case NJ, Hulvershorn L, Patel SD, Bowker D, Gupta J, Bell R, Edenberg HJ, Tsuang MT, Kuczenski R, Geyer MA, Rodd ZA, Niculescu AB. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism. Transl Psychiatry 2011; 1:e4. [PMID: 22832392 PMCID: PMC3309466 DOI: 10.1038/tp.2011.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/24/2011] [Indexed: 12/28/2022] Open
Abstract
Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N J Case
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - D Bowker
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Gupta
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M T Tsuang
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - R Kuczenski
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - M A Geyer
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
49
|
Ethanol-induced changes in the expression of proteins related to neurotransmission and metabolism in different regions of the rat brain. Pharmacol Biochem Behav 2011; 99:428-36. [PMID: 21397625 DOI: 10.1016/j.pbb.2011.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 01/06/2023]
Abstract
Despite extensive description of the damaging effects of chronic alcohol exposure on brain structure, mechanistic explanations for the observed changes are just emerging. To investigate regional brain changes in protein expression levels following chronic ethanol treatment, one rat per sibling pair of male Wistar rats was exposed to intermittent (14 h/day) vaporized ethanol, the other to air for 26 weeks. At the end of 24 weeks of vapor exposure, the ethanol group had blood ethanol levels averaging 450 mg%, had not experienced a protracted (> 16 h) withdrawal from ethanol, and revealed only mild evidence of hepatic steatosis. Extracted brains were micro-dissected to isolate the prefrontal cortex (PFC), dorsal striatum (STR), corpus callosum genu (CCg), CC body (CCb), anterior vermis (AV), and anterior dorsal lateral cerebellum (ADLC) for protein analysis with two-dimensional gel electrophoresis. Expression levels for 54 protein spots were significantly different between the ethanol- and air-treated groups. Of these 54 proteins, tandem mass spectroscopy successfully identified 39 unique proteins, the levels of which were modified by ethanol treatment: 13 in the PFC, 7 in the STR, 2 in the CCg, 7 in the CCb, 7 in the AV, and 5 in the ADLC. The functions of the proteins altered by chronic ethanol exposure were predominantly associated with neurotransmitter systems in the PFC and cell metabolism in the STR. Stress response proteins were elevated only in the PFC, AV, and ADLC perhaps supporting a role for frontocerebellar circuitry disruption in alcoholism. Of the remaining proteins, some had functions associated with cytoskeletal physiology (e.g., in the CCb) and others with transcription/translation (e.g., in the ADLC). Considered collectively, all but 4 of the 39 proteins identified in the present study have been previously identified in ethanol gene- and/or protein-expression studies lending support for their role in ethanol-related brain alterations.
Collapse
|
50
|
Sari Y, Sakai M, Weedman JM, Rebec GV, Bell RL. Ceftriaxone, a beta-lactam antibiotic, reduces ethanol consumption in alcohol-preferring rats. Alcohol Alcohol 2011; 46:239-46. [PMID: 21422004 DOI: 10.1093/alcalc/agr023] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Changes in glutamatergic transmission affect many aspects of neuroplasticity associated with ethanol and drug addiction. For instance, ethanol- and drug-seeking behavior is promoted by increased glutamate transmission in key regions of the motive circuit. We hypothesized that because glutamate transporter 1 (GLT1) is responsible for the removal of most extracellular glutamate, up-regulation or activation of GLT1 would attenuate ethanol consumption. METHODS Alcohol-preferring (P) rats were given 24 h/day concurrent access to 15 and 30% ethanol, water and food for 7 weeks. During Week 6, P rats received either 25, 50, 100 or 200 mg/kg ceftriaxone (CEF, i.p.), a β-lactam antibiotic known to elevate GLT1 expression, or a saline vehicle for five consecutive days. Water intake, ethanol consumption and body weight were measured daily for 15 days starting on Day 1 of injections. We also tested the effects of CEF (100 and 200 mg/kg, i.p.) on daily sucrose (10%) consumption as a control for motivated behavioral drinking. RESULTS Statistical analyses revealed a significant reduction in daily ethanol, but not sucrose, consumption following CEF treatment. During the post treatment period, there was a recovery of ethanol intake across days. Dose-dependent increases in water intake were manifest concurrent with the CEF-induced decreases in ethanol intake. Nevertheless, CEF did not affect body weight. An examination of a subset of the CEF-treated ethanol-drinking rats, on the third day post CEF treatment, revealed increases in GTL1 expression levels within the prefrontal cortex and nucleus accumbens. CONCLUSIONS These results indicate that CEF effectively reduces ethanol intake, possibly through activation of GLT1, and may be a potential therapeutic drug for alcohol addiction treatment.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | | | | | | | | |
Collapse
|